181 |
Improving Channel Estimation and Tracking Performance in Distributed MIMO Communication SystemsDavid, Radu Alin 29 April 2015 (has links)
This dissertation develops and analyzes several techniques for improving channel estimation and tracking performance in distributed multi-input multi-output (D-MIMO) wireless communication systems. D-MIMO communication systems have been studied for the last decade and are known to offer the benefits of antenna arrays, e.g., improved range and data rates, to systems of single-antenna devices. D-MIMO communication systems are considered a promising technology for future wireless standards including advanced cellular communication systems. This dissertation considers problems related to channel estimation and tracking in D-MIMO communication systems and is focused on three related topics: (i) characterizing oscillator stability for nodes in D-MIMO systems, (ii) the development of an optimal unified tracking framework and a performance comparison to previously considered sub-optimal tracking approaches, and (iii) incorporating independent kinematics into dynamic channel models and using accelerometers to improve channel tracking performance. A key challenge of D-MIMO systems is estimating and tracking the time-varying channels present between each pair of nodes in the system. Even if the propagation channel between a pair of nodes is time-invariant, the independent local oscillators in each node cause the carrier phases and frequencies and the effective channels between the nodes to have random time-varying phase offsets. The first part of this dissertation considers the problem of characterizing the stability parameters of the oscillators used as references for the transmitted waveforms. Having good estimates of these parameters is critical to facilitate optimal tracking of the phase and frequency offsets. We develop a new method for estimating these oscillator stability parameters based on Allan deviation measurements and compare this method to several previously developed parameter estimation techniques based on innovation covariance whitening. The Allan deviation method is validated with both simulations and experimental data from low-precision and high-precision oscillators. The second part of this dissertation considers a D-MIMO scenario with $N_t$ transmitters and $N_r$ receivers. While there are $N_t imes N_r$ node-to-node pairwise channels in such a system, there are only $N_t + N_r$ independent oscillators. We develop a new unified tracking model where one Kalman filter jointly tracks all of the pairwise channels and compare the performance of unified tracking to previously developed suboptimal local tracking approaches where the channels are not jointly tracked. Numerical results show that unified tracking tends to provide similar beamforming performance to local tracking but can provide significantly better nullforming performance in some scenarios. The third part of this dissertation considers a scenario where the transmit nodes in a D-MIMO system have independent kinematics. In general, this makes the channel tracking problem more difficult since the independent kinematics make the D-MIMO channels less predictable. We develop dynamics models which incorporate the effects of acceleration on oscillator frequency and displacement on propagation time. The tracking performance of a system with conventional feedback is compared to a system with conventional feedback and local accelerometer measurements. Numerical results show that the tracking performance is significantly improved with local accelerometer measurements.
|
182 |
Récepteurs avancés et nouvelles formes d'ondes pour les communications aéronautiques / Advanced receivers and waveforms for UAV/Aircraft aeronautical communicationsRaddadi, Bilel 03 July 2018 (has links)
De nos jours, l'utilisation des drones ne cesse d'augmenter et de nombreuses études sont réalisées afin de mettre en place des systèmes de communication dronique destinés à des applications non seulement militaires mais aussi civiles. Pour le moment, les règles d'intégration des drones commerciaux dans l’espace aérien doivent encore être définies et le principal enjeu occupation est d'assurer une communication fiable et sécurisée. Cette thèse s’inscrit dans ce contexte de communication. Motivée par la croissance rapide du nombre des drones et par les nouvelles générations des drones commandés par satellite, la thèse vise à étudier les différents liens possibles qui relient le drone aux autres composants du système de communication. Trois principaux liens sont à mettre en place : le lien de contrôle, le lien de retour et le lien de mission. En raison de la rareté des ressources fréquentielles déjà allouées pour les futurs systèmes droniques, l'efficacité spectrale devient un paramètre crucial pour leur déploiement à grande échelle. Afin de mettre en place un système de communication par drones spectralement efficace, une bonne compréhension des canaux de transmission pour chacune des trois liaisons est indispensable, ainsi qu’un choix judicieux de la forme d’onde. Cette thèse commence par étudier les canaux de propagation pour chaque liaison : canaux de type muti-trajets avec ligne de vue directe, dans un contexte d’utilisation de drones à moyenne altitude et longue endurance (drones MALE). L’objectif de cette thèse est de proposer de nouveaux algorithmes de réception permettant d’estimer et égaliser ces canaux de propagation muti-trajets. Les méthodes proposées dépendent du choix de la forme d’onde. Du fait de la présence d’un lien satellite, les formes d’onde considérées sont de type mono-porteuse (avec un faible facteur de crête) : SC et EW-SCOFDM. L’égalisation est réalisée dans le domaine temporel (SC) ou fréquentiel (EW-SC-OFDM). L'architecture UAV prévoit l'implantation de deux antennes placées aux ailes. Ces deux antennes peuvent être utilisées pour augmenter le gain de diversité (gain de matrice de canal). Afin de réduire la complexité de l'égalisation des canaux, la forme d'onde EW-SC-OFDM est proposée et étudiée dans un contexte muti-antennes, dans le but d'améliorer l'endurance de l'UAV et d'accroître l'efficacité spectrale, une nouvelle technique de modulation est considérée: Modulation spatiale ( SM). Dans SM, les antennes de transmission sont activées en alternance. L'utilisation de la forme d'onde EW-SC-OFDM combinée à la technique SM nous permet de proposer de nouvelles structures modifiées qui exploitent l’étalement spectrale pour mieux protéger des bits de sélection des antennes émettrices et ainsi améliorer les performances du système. / Nowadays, several studies are launched for the design of reliable and safe communications systems that introduce Unmanned Aerial Vehicle (UAV), this paves the way for UAV communication systems to play an important role in a lot of applications for non-segregated military and civil airspaces. Until today, rules for integrating commercial UAVs in airspace still need to be defined, the design of secure, highly reliable and cost effective communications systems still a challenging task. This thesis is part of this communication context. Motivated by the rapid growth of UAV quantities and by the new generations of UAVs controlled by satellite, the thesis aims to study the various possible UAV links which connect UAV/aircraft to other communication system components (satellite, terrestrial networks, etc.). Three main links are considered: the Forward link, the Return link and the Mission link. Due to spectrum scarcity and higher concentration in aircraft density, spectral efficiency becomes a crucial parameter for largescale deployment of UAVs. In order to set up a spectrally efficient UAV communication system, a good understanding of transmission channel for each link is indispensable, as well as a judicious choice of the waveform. This thesis begins to study propagation channels for each link: a mutipath channels through radio Line-of-Sight (LOS) links, in a context of using Meduim Altitude Long drones Endurance (MALE) UAVs. The objective of this thesis is to maximize the solutions and the algorithms used for signal reception such as channel estimation and channel equalization. These algorithms will be used to estimate and to equalize the existing muti-path propagation channels. Furthermore, the proposed methods depend on the choosen waveform. Because of the presence of satellite link, in this thesis, we consider two low-papr linear waveforms: classical Single-Carrier (SC) waveform and Extented Weighted Single-Carrier Orthogonal Frequency-Division Multiplexing (EW-SC-OFDM) waveform. channel estimation and channel equalization are performed in the time-domain (SC) or in the frequency-domain (EW-SC-OFDM). UAV architecture envisages the implantation of two antennas placed at wings. These two antennas can be used to increase diversity gain (channel matrix gain). In order to reduce channel equalization complexity, the EWSC- OFDM waveform is proposed and studied in a muti-antennas context, also for the purpose of enhancing UAV endurance and also increasing spectral efficiency, a new modulation technique is considered: Spatial Modulation (SM). In SM, transmit antennas are activated in an alternating manner. The use of EW-SC-OFDM waveform combined to SM technique allows us to propose new modified structures which exploit exces bandwidth to improve antenna bit protection and thus enhancing system performances.
|
183 |
Optimisation d'un précodeur MIMO-OFDM dans le contexte de l'estimation aveugle et semi-aveugle du canal de communication / Optimization of a MIMO -OFDM precoder in the context of blind estimation and semi-blind of the communication channelChehade, Tarek 03 December 2015 (has links)
L’estimation de canal joue un rôle important dans les communications mobiles sans fil et en particulier dans les systèmes multi-antennes MIMO. Contrairement aux techniques classiques d’estimation de canal basées sur des séquences d’apprentissage ou des symboles pilotes, les techniques aveugles ne nécessitent aucune insertion de symboles d'apprentissage et permettent d'augmenter le débit utile. Les principales difficultés des techniques aveugles résident dans l’ambiguïté présente sur les estimées. Les techniques d’estimation semi-aveugles, basées sur les mêmes méthodes que l’estimation aveugle, sont plus robustes. Elles exploitent l’information aveugle ainsi que l’information provenant d’un nombre réduit de symboles d’apprentissage. Cette estimation du canal de communication est très utile dans les systèmes MIMO et permet de précoder le signal MIMO-OFDM en lui appliquant un pré-mélange permettant d'améliorer les performances. De nombreux types de précodeurs existent et leurs performances varient en fonction des critères d'optimisation retenus (Water-Filling, MMSE, Equal Error, max-SNR, max-d min …), mais aussi avec la qualité de l'estimation du canal de communication. Nous étudions dans cette thèse l’impact de l’utilisation de l’information du canal (CSI) provenant des méthodes d’estimation aveugle et semi-aveugle, dans l’application des précodeurs linéaires MIMO. Nous présentons également une étude statistique de l’erreur d’estimation provenant de ces méthodes. L’optimisation de ces précodeurs nous mène par la suite à exploiter un autre procédé permettant l’amélioration des performances : les codes correcteurs d’erreur. Nous nous intéressons particulièrement aux codes LDPC non-binaires et leur association avec les précodeurs linéaires MIMO. Nous montrons qu’une adaptation est possible et s’avère bénéfique dans certains cas. L’optimisation de cette association nous a permis de proposer un nouveau précodeur basé sur la maximisation de l’information mutuelle, robuste et plus performant. / Channel estimation plays an important role in wireless mobile communications, especially in MIMO systems. Unlike conventional channel estimation techniques based on training sequences or pilot symbols, blind techniques does not require the insertion of training symbols and allow higher throughput. The main problems of the blind lies in the ambiguity over the estimated channel. Based on the same methods as the blind estimation, the semi-blind estimation techniques are more robust. They exploit the blind information along with information provided by a small number of training symbols. The channel estimation is useful in MIMO systems and allows the precoding of the MIMO-OFDM signal by applying a pre-mixture in order to improve performance. Many types of precoders exist and their performance varies depending not only on the optimization criteria (Water-Filling, MMSE, Equal Error, max-SNR, max-d min ...), but also on the estimated channel. In this thesis we study the impact of using the channel information (CSI) from the blind and semi-blind estimation techniques to apply MIMO linear precoders. We also present a statistical study of the estimation error of these methods. The optimization of these precoders leads eventually to use another process allowing more performance improvement: the error correcting codes. We are particularly interested in non-binary LDPC codes and their association with linear MIMO precoders. We show that a matching is possible, and is beneficial in some cases. The optimization of this combination has allowed us to propose a new robust and more efficient precoder based on the maximization of mutual information.
|
184 |
Block-based Bayesian Decision Feedback Equalization for ZP-OFDM Systems with Semi-Blind Channel EstimationBai, Yun-kai 25 August 2007 (has links)
Orthogonal frequency division multiplexing (OFDM) modulator with redundancy has been adopted in many wireless communication systems for higher data rate transmissions. The introduced redundancy at the transmitter allows us to overcome serious inter-block interference (IBI) problems due to highly dispersive channel. However, the selection of redundancy length will affect the system performance and spectral efficiency, and is highly dependent on the length of channel impulse response. In this thesis, based on the pseudorandom postfix (PRP) OFDM scheme we propose a novel block-based OFDM transceiver framework. Since in the PRP-OFDM system the PRP can be employed for semi-blind channel estimation with order-one statistics of the received signal. Hence, for sufficient redundancy case the PRP-OFDM system with the Bayesian decision feedback equalizer (DFE) is adopted for suppressing the IBI and ISI simultaneously. However, for the insufficient redundancy case (the length of redundancy is less than the order of channel), we first propose a modified scheme for channel estimation. To further reduce the complexity of receiver, the maximum shortening signal-to-noise-ratio time domain equalizer (MSSNR TEQ) with the Bayesian DFE is developed for suppressing the IBI and ISI, separately. That is, after knowing the channel state information (CSI) and removing the effect of IBI with MSSNR TEQ, the Bayesian DFE is applied for eliminating the ISI. Via computer simulation, we verify that performance improvement, in terms of bit error rate (BER), compared with the conventional block-based minimum mean square error (MMSE)-DFE can be achieved.
|
185 |
Constellation Design under Channel UncertaintyGiese, Jochen January 2005 (has links)
The topic of this thesis is signaling design for data transmission through wireless channels between a transmitter and a receiver that can both be equipped with one or more antennas. In particular, the focus is on channels where the propagation coefficients between each transmitter--receiver antenna pair are only partially known or completetly unknown to the receiver and unknown to the transmitter. A standard signal design approach for this scenario is based on separate training for the acquisition of channel knowledge at the receiver and subsequent error-control coding for data detection over channels that are known or at least approximately known at the receiver. If the number of parameters to estimate in the acquisition phase is high as, e.g., in a frequency-selective multiple-input multiple-output channel, the required amount of training symbols can be substantial. It is therefore of interest to study signaling schemes that minimize the overhead of training or avoid a training sequence altogether. Several approaches for the design of such schemes are considered in this thesis. Two different design methods are investigated based on a signal representation in the time domain. In the first approach, the symbol alphabet is preselected, the design problem is formulated as an integer optimization problem and solutions are found using simulated annealing. The second design method is targeted towards general complex-valued signaling and applies a constrained gradient-search algorithm. Both approaches result in signaling schemes with excellent detection performance, albeit at the cost of significant complexity requirements. A third approach is based on a signal representation in the frequency domain. A low-complexity signaling scheme performing differential space--frequency modulation and detection is described, analyzed in detail and evaluated by simulation examples. The mentioned design approaches assumed that the receiver has no knowledge about the value of the channel coefficients. However, we also investigate a scenario where the receiver has access to an estimate of the channel coefficients with known error statistics. In the case of a frequency-flat fading channel, a design criterion allowing for a smooth transition between the corresponding criteria for known and unknown channel is derived and used to design signaling schemes matched to the quality of the channel estimate. In particular, a constellation design is proposed that offers a high level of flexibility to accomodate various levels of channel knowledge at the receiver. / QC 20101014
|
186 |
Estima e igualación ciega de canales MIMO con y sin redundancia espacialVía Rodríguez, Javier 02 July 2007 (has links)
La mayor parte de los sistemas de comunicaciones requieren el conocimiento previo del canal, el cual se suele estimar a partir de una secuencia de entrenamiento. Sin embargo, la transmisión de símbolos piloto se traduce en una reducción de la eficiencia espectral del sistema, lo que imposibilita que se alcancen los límites predichos por la Teoría de la Información. Este problema ha motivado el desarrollo de un gran número de técnicas para la estima e igualación ciega de canal, es decir, para la obtención del canal o la fuente sin necesidad de transmitir una señal de entrenamiento. Normalmente, estas técnicas se basan en el conocimiento previo de ciertas características de la señal, tales como su pertenencia a un alfabeto finito, o sus estadísticos de orden superior. Sin embargo, en el caso de sistemas de múltiples entradas y salidas (MIMO), se ha demostrado que los estadísticos de segundo orden de las observaciones proporcionan la información suficiente para resolver el problema ciego.El objetivo de esta Tesis consiste en la obtención de nuevas técnicas para la estima e igualación ciega de canales MIMO, tanto en sistemas con redundancia espacial, como en casos más generales en los que las fuentes no presentan ningún tipo particular de estructura. De manera general, los métodos propuestos se basan en los estadísticos de segundo orden de las observaciones. Sin embargo, las técnicas se presentan desde un punto de vista determinista, es decir, los algoritmos propuestos explotan directamente la estructura de las matrices de datos, lo que permite obtener resultados más precisos cuando se dispone de un número reducido de observaciones. Adicionalmente, la reformulación de los criterios propuestos como problemas clásicos del análisis estadístico de señales, ha permitido la obtención de algoritmos adaptativos eficientes para la estima e igualación de canales MIMO. En primer lugar se aborda el caso de sistemas sin redundancia. Más concretamente, se analiza el problema de igualación ciega de canales MIMO selectivos en frecuencia, el cual se reformula como un conjunto de problemas de análisis de correlaciones canónicas (CCA). La solución de los problemas CCA se puede obtener de manera directa mediante un problema de autovalores generalizado. Además, en esta Tesis se presenta un algoritmo adaptativo basado en la reformulación de CCA como un conjunto de problemas de regresión lineal acoplados. De esta manera, se obtienen nuevos algoritmos bloque y adaptativos para la igualación ciega de canales MIMO de una manera sencilla. Finalmente, el método propuesto se basa, como muchas otras técnicas ciegas, en el conocimiento a priori del orden del canal, lo que constituye un problema casi tan complicado como el de la estima o igualación ciega. Así, en el caso de canales de una entrada y varias salidas (SIMO), la combinación de la técnica propuesta con otros métodos para la estima ciega del canal permite obtener un nuevo criterio para extracción del orden de este tipo de canalesEn segundo lugar se considera el problema de estima ciega de canal en sistemas con algún tipo de redundancia o estructura espacial, con especial interés en el caso de sistemas con codificación espacio-temporal por bloques (STBC). Específicamente, se propone una nueva técnica para la estima ciega del canal, cuya complejidad se reduce a la extracción del autovector principal de una matriz de correlación modificada. El principal problema asociado a este tipo de sistemas viene dado por la existencia de ciertas ambigüedades a la hora de estimar el canal. En esta Tesis se plantea el problema de identificabilidad de una manera general, y en el caso de códigos ortogonales (OSTBCs) se presentan varios nuevos teoremas que aseguran la identificabilidad del canal en un gran número de casos. Adicionalmente, se proponen varias técnicas para la resolución de las ambigüedades, tanto en el caso OSTBC como para códigos más generales. En concreto, se introduce el concepto de diversidad de código, que consiste en la combinación de varios códigos STBC. Esta técnica permite resolver las indeterminaciones asociadas a un gran número de problemas, y en su versión más sencilla se reduce a una precodificación no redundante consistente en una simple rotación o permutación de las antenas transmisoras.En definitiva, en esta Tesis se abordan los problemas de estima e igualación ciega de canal en sistemas MIMO, y se presentan varias técnicas ciegas, cuyas prestaciones se evalúan mediante un gran número de ejemplos de simulación. / The majority of communication systems need the previous knowledge of the channel, which is usually estimated by means of a training sequence. However, the transmission of pilot symbols provokes a reduction in bandwidth efficiency, which precludes the system from reaching the limits predicted by the Information Theory. This problem has motivated the development of a large number of blind channel estimation and equalization techniques, which are able to obtain the channel or the source without the need of transmitting a training signal. Usually, these techniques are based on the previous knowledge of certain properties of the signal, such as its belonging to a finite alphabet, or its higher-order statistics. However, in the case of multiple-input multiple-output (MIMO) systems, it has been proven that the second order statistics of the observations provide the sufficient information for solving the blind problem.The aim of this Thesis is the development of new blind MIMO channel estimation and equalization techniques, both in systems with spatial redundancy, and in more general cases where the sources do not have any particular spatial structure. In general, the proposed methods are based on the second order statistics of the observations. However, the techniques are presented from a deterministic point of view, i.e., the proposed algorithms directly exploit the structure of the data matrices, which allows us to obtain more accurate results when only a reduced number of observations is available. Additionally, the reformulation of the proposed criteria as classical statistical signal processing problems is exploited to obtain efficient adaptive algorithms for MIMO channel estimation and equalization.Firstly, we consider the case of systems without spatial redundancy. Specifically, we analyze the problem of blind equalization of frequency selective MIMO channels, which is reformulated as a set of canonical correlation analysis (CCA) problems. The solution of the CCA problems can be obtained by means of a generalized eigenvalue problem. In this Thesis, we present a new adaptive algorithm based on the reformulation of CCA as a set of coupled linear regression problems. Therefore, new batch and adaptive algorithms for blind MIMO channel equalization are easily obtained. Finally, the proposed method, as well as many other blind techniques, is based on the previous knowledge of the channel order, which is a problem nearly as complicated as the blind channel estimation or equalization. Thus, in the case of single-input multiple-output (SIMO) channels, the combination of the proposed technique with other blind channel estimation methods provides a new criterion for the order extraction of this class of channels.Secondly, we consider the problem of blind channel estimation in systems with some kind of redundancy or spatial structure, with special interest in space-time block coded (STBC) systems. Specifically, a new blind channel estimation technique is proposed, whose computational complexity reduces to the extraction of the principal eigenvector of a modified correlation matrix. The main problem in these cases is due to the existence of certain ambiguities associated to the blind channel estimation problem. In this Thesis the general identifiability problem is formulated and, in the case of orthogonal codes (OSTBCs), we present several new theorems which ensure the channel identifiability in a large number of cases. Additionally, several techniques for the resolution of the ambiguities are proposed, both in the OSTBC case as well as for more general codes. In particular, we introduce the concept of code diversity, which consists in the combination of several STBCs. This technique avoids the ambiguities associated to a large number of problems, and in its simplest version it reduces to a non-redundant precoding consisting of a single rotation or permutation of the transmit antennas.In summary, in this Thesis the blind MIMO channel estimation and equalization problems are analyzed, and several blind techniques are presented, whose performance is evaluated by means of a large number of simulation examples.
|
187 |
Orthogonal Frequency Division Multiplexing for Wireless CommunicationsZhang, Hua 24 November 2004 (has links)
OFDM is a promising technique for high-data-rate wireless communications because it can combat inter-symbol interference (ISI) caused by the dispersive fading of wireless channels. The proposed research focuses on techniques that improve the performance of OFDM-based wireless communications and its commercial and military applications. In particular, we address the following aspects of OFDM: inter-channel interference (ICI) suppression, interference suppression for clustered OFDM, clustered OFDM based anti-jamming modulation, channel estimation for MIMO-OFDM, MIMO transmission with limited feedback.
For inter-channel interference suppression, a frequency domain partial response coding (PRC) scheme is proposed to mitigate ICI. We derive the near-optimal weights for PRC that is independent on the channel power spectrum. The error floor resulting from ICI can be reduced significantly using a two-tap or a three-tap PRC. Clustered OFDM is a new technique that has many advantages over traditional OFDM. In clustered OFDM systems, adaptive antenna arrays are used for interference suppression. To calculate weights for interference suppression, we propose a polynomial-based parameter estimator to combat the severe leakage of the DFT based estimator due to the small size of the cluster. An adaptive algorithm is developed to obtain optimal performance. For high data rate military communications, we propose a clustered OFDM base spread spectrum modulation to provide both anti-jamming and fading suppression capability. We analyze the performance of uncoded and coded system. Employing multiple transmit and receive antennas in OFDM systems (MIMO-OFDM) can increase the spectral efficiency and link reliability. We develop a minimum mean-square-error (MMSE) channel estimator that takes advantage of the spatial-frequency correlations in MIMO-OFDM systems to minimize the estimation error. We investigate the training sequence design and two optimal training sequence designs are given for arbitrary spatial correlations. For a MIMO system, the diversity and array gains can be obtained by exploiting channel information at the transmitter. For MIMO-OFDM systems, we propose a subspace tracking based approach that can exploit the frequency correlations of the OFDM system to reduce the feedback rate. The proposed approach does not need recalculate the precoding matrix and is robust to multiple data stream transmission.
|
188 |
Linearly Constrained Constant Modulus Inverse QRD-RLS Algorithm for Modified Gaussian Wavelet-Based MC-CDMA ReceiverYu, Hung-ming 13 February 2007 (has links)
In this thesis, the problem of multiple access interference (MAI) suppression for the multi-carrier (MC) code division multiple access (CDMA) system, based on the multi-carrier modulation with modified Gaussian wavelet, associated with the combining process is investigated for Rayleigh fading channel. The main concern of this thesis is to derive a new scheme, based on the linearly constrained constant modulus (LCCM) criterion with the robust inverse QR decomposition (IQRD) recursive least squares (RLS) algorithm to improve the performance of the wavelet-based MC-CDMA system with combining process. To verify the merits of the new algorithm, the effect due to imperfect channel parameters estimation and near-far effect are investigated. We show that the proposed robust LCCM IQRD-RLS algorithm outperforms the conventional LCCM-gradient algorithm, in terms of output SINR, for MAI suppression under channel mismatch environment. Also, the performance of the modified Gaussian wavelet-based MC-CDMA system is superior to the one with wavelet-based MC-CDMA system. It is more robust to the channel mismatch and near-far effect. Moreover, the modified Gaussian wavelet-based MC-CDMA system with robust LCCM IQRD-RLS algorithm does have better performance over other conventional approaches, such as the LCCM-gradient algorithm, maximum ratio combining (MRC), and blind adaptation algorithm, in terms of the capability of MAI suppression and bit error rate (BER).
|
189 |
Joint Frequency Offset And Channel EstimationAvan, Muhammet 01 December 2008 (has links) (PDF)
In this thesis study, joint frequency offset and channel estimation methods for
single-input single-output (SISO) systems are examined. The performance of
maximum likelihood estimate of the parameters are studied for different training
sequences. Conventionally training sequences are designed solely for the channel
estimation purpose. We present a numerical comparison of different training
sequences for the joint estimation problem. The performance comparisons are made
in terms of mean square estimation error (MSE) versus SNR and MSE versus the
total training energy metrics. A novel estimation scheme using complementary
sequences have been proposed and compared with existing schemes. The proposed
scheme presents a lower estimation error than the others in almost all numerical
simulations. The thesis also includes an extension for the joint channel-frequency
offset estimation problem to the multi-input multi-output systems and a brief
discussion for multiple frequency offset case is also given.
|
190 |
Code Aided Frame Synchronization For Frequency Selective ChannelsEkinci, Umut Utku 01 May 2010 (has links) (PDF)
Frame synchronization is an important problem in digital communication systems. In frame synchronization, the main task is to find the frame start given the flow of the communication symbols. In this thesis, frame synchronization problem is investigated for both additive white Gaussian noise (AWGN) channels and frequency selective channels. Most of the previous works on frame synchronization consider the simple case of AWGN channels. The algorithms developed for this purpose fail in frequency selective channels. There is limited number of algorithms proposed for the frequency selective channels. In this thesis, existing frame synchronization techniques are investigated for both AWGN and frequency selective channels. Code-aided frame synchronization techniques are combined with the methods for frequency selective channels. Mainly two types of code-aided frame synchronization schemes are considered and two new system structures are proposed for frame synchronization. One of the proposed structures performs better than the alternative methods for frequency selective channels. The overall system for this new synchronizer is composed of a list synchronizer which generates the possible frame starts, a channel estimator, a soft output MLSE equalizer, and a soft output Viterbi decoder. A mode separation algorithm is used to generate the statistics for the selection of the true frame start. Several experiments are done and the performance is outlined for a variety of scenarios.
|
Page generated in 0.0334 seconds