81 |
The Circadian Clock in Monarch Butterfly: A Tale of Two CRYs: A DissertationYuan, Quan 08 May 2009 (has links)
Every fall, Northeastern America monarch butterflies (Danaus plexippus) undergo an extraordinary migration to their overwintering site in Central Mexico. During their long migration, monarch migrants use sun compass to navigate. To maintain a southward flying direction, monarch migrants compensate for the continuously changing position of the sun by providing timing information to the compass using their circadian clock.
Animal circadian clocks depend primarily on a negative transcriptional feedback loop to track time. I started my work to re-construct the monarch butterfly circadian clock negative feedback loop in cell culture, focusing on homologs of Drosophila clock genes. It turned out that in addition to a Drosophila-like cryptochrome (cry1) gene, a second mammalian-like cry2 gene exists in monarch butterflies and many other insects, except in Drosophila. The two CRYs showed distinct functions in our initial assays in cultured Drosophila Schneider 2 (S2) cells. CRY2 functions as a potent transcriptional repressor, while CRY1 is light sensitive but shows no obvious transcriptional activity. The existence of two cry genes in insects changed the Drosophila-centric view of insect circadian clock.
During the course of my study, our lab obtained a monarch cell line called DpN1 cells. These cells possess a light-driven clock and contributed tremendously to the research on monarch circadian clock. Using this cell line, I provided strong evidence supporting monarch CRY2’s role as a major circadian clock repressor and identified a protein-protein protective interaction cascade underlying the CRY1-mediated resetting of the molecular oscillator in DpN1 cells.
I continued my work trying to understand how insect CRY2 inhibits transcription. I provided evidence suggesting the involvement of monarch PER in promoting CRY2 nuclear entry in both S2 cells and DpN1 cells. Finally, I mapped CRY2’s transcriptional inhibitory activity onto its N-terminal domain.
Collectively, my research helped to change our view of insect clocks from a Drosophila-centric standpoint to a much more diverse picture. My studies also advanced the understanding of monarch circadian clock mechanism, and provides a foundation for further studies.
|
82 |
CIRCADIAN REGULATION OF mTOR SIGNALING VIA BMAL1 DEPENDENT MECHANISMKHAPRE, ROHINI VISHAL 05 May 2014 (has links)
No description available.
|
83 |
Mammalian Target of Rapamycin Signaling and the Suprachiasmatic Circadian ClockCao, Ruifeng 14 December 2010 (has links)
No description available.
|
84 |
Protein Phosphatase 4 ist ein neuer Regulator der circadianen Uhr in SäugernKlemz, Sabrina 11 September 2014 (has links)
Circadiane Uhren sind endogene Oszillatoren, die tägliche Rhythmen in Physiologie, Metabolismus und Verhalten steuern. Auf molekularem Level wird die Dynamik der circadianen Oszillation über ein genregulatorisches Netzwerk aus transkriptionellen-translationalen Rückkopplungsschleifen gesteuert. Posttranslationale Modifikationen von Uhrproteinen sind für eine präzise Justierung der circadianen Periode essentiell. Dabei spielt die Phosphorylierung von Uhrproteinen für die Regulation von Aktivität, Stabilität und intrazellulärer Lokalisation eine wichtige Rolle. Bisher sind verschiedene Kinasen als Modulatoren der circadianen Uhr charakterisiert worden, jedoch ist eine funktionale Rolle von Protein Phosphatasen bisher nur unzureichend untersucht. In dieser Arbeit wurde mittels eines RNAi-basierten Screenings in oszillierenden humanen Zellen untersucht, ob sich die gezielte Depletion katalytischer Untereinheiten der Serin/Threonin-Phosphatasen auf die normale Oszillationsdynamik auswirkt und welche Rolle ausgewählte Phosphatase-Kandidaten für die posttranslationale Kontrolle des molekularen Oszillators spielen. Die RNAi vermittelte Depletion von Protein Phosphatase 4 führte gewebe- und speziesübergreifend zu einer signifikant kurzen circadianen Periode, während die Überexpression von wildtypischer Pp4c in einer stark reprimierten Amplitude resultierte. Mechanistische Untersuchungen zur funktionellen Relevanz von PP4c für die Regulation der circadianen Uhr zeigten, dass PP4c womöglich eine duale Rolle spielt: Einerseits ist PP4c in die direkte Aktivierung des Bmal1-Promotors über RRE-Elemente involviert. Anderseits wirkt PP4c inhibierend auf die CLOCK/BMAL1-vermittelte, E-Box getriebene Genexpression. Ein favorisiertes Modell fundiert auf der Vermutung, dass eine durch PP4c induzierte Modulation des Phosphorylierungsstatus von BMAL1 zu einem stabilen, aber transktiptionsinaktiven BMAL1 und damit zu einer verstärkten Repression der Uhrgentranskription führt. / Circadian clocks are endogenous oscillators that drive daily rhythms in physiology, metabolism and behavior. On the molecular level the dynamics of circadian oscillations are regulated by a transcriptional-translational gene-regulatory network. Posttranslational modifications of clock proteins are essential for the precise timing of an about 24 hour-period. Among these modifications, protein phosphorylation plays an important role in regulating activity, stability and intracellular localization of clock proteins. Several kinases were characterized as regulators of the circadian clock. However, the function of protein phosphatases, which balance phosphorylation events, in the mammalian clock mechanism is less well understood. By using a systematic RNAi-based approach in oscillating human cells, this work aimed to study the impact of catalytic subunits of Serine/Threonin-phosphatases on normal circadian dynamics and the functional role of potential candidates in the posttranslational control of the mammalian molecular oscillator. This study demonstrates, that genetic depletion of the catalytic subunit of protein phosphatase 4 results independently from tissue and species in a significant shorter period, whereas overexpression of wildtype PP4c results in a severely reduced amplitude rhythm. Mechanistic experiments to uncover the functional relevance of PP4c in the regulation of the circadian clock showed, that PP4c plays a dual role: Firstly, PP4 is involved in the direct activation of the Bmal1-promotor via RRE elements. Secondly, PP4c is inhibiting the CLOCK/BMAL1-mediated gene expression. A favored model is based on the assumption, that PP4c-induced modulation of the phosphorylation status of BMAL1 leads to a more stable and transcriptional inactive protein and thereby to a repression of the transcription of clock genes.
|
85 |
Qualitative und quantitative Analyse der Phosphorylierung von Proteinen der circadianen UhrHaaf, Erik 03 September 2012 (has links)
Die Phosphorylierung als posttranslationale Modifikation von Proteinen spielt bei Signalwegen in Zellen eine große Rolle. Für die Entschlüsselung des molekularen Mechanismus der circadianen Uhr ist es daher von Interesse, die Phosphorylierungsstellen beteiligter Proteine zu identifizieren. Im Rahmen dieser Arbeit wurden die Proteine Period I und II mittels Flüssigkeitschromatographie und Tandemmassenspektrometrie (LC-MS/MS) auf Phosphorylierungsstellen untersucht. Hierbei lag der Fokus auf der Verbesserung bestehender Methoden, um eine bessere und umfassendere Identifizierung der Phosphorylierungsstellen, insbesondere in Bezug auf mehrfach phosphorylierte Peptide, zu erreichen. Der Arbeitsablauf beinhaltete die Verwendung mehrerer Proteasen, um eine hohe Sequenzabdeckung des Proteins zu erreichen. Nach der Proteolyse wurden die Phosphopeptide mittels Titandioxid angereichert. Hierbei und bei der LC-MS/MS-Analyse wurde Citrat als Additiv verwendet, welches eine bessere Chromatographie multiphosphorylierter Peptide ermöglicht. Bei der MS/MS-Analyse wurden CID und ETD als Fragmentierungsmethoden eingesetzt. Es konnten durch diese Methodik 30 bzw. 42 Phosphorylierungsstellen an den Proteinen Period I und II identifiziert werden, von denen 26 bzw. 14 zuvor nicht beschrieben waren. Nach der qualitativen Identifizierung wurden quantitative Varianten der optimierten Analytik untersucht, um die biologische Funktion der gefundenen Phosphorylierungsstellen untersuchen zu können. Hierbei wurden das metabolische Labeling der Zellen mit 15N-stickstoffhaltigen Aminosäuren und die säurekatalysierte Isotopenmarkierung auf Peptidebene mit 18O-Sauerstoff untersucht. Mit einer optimierten Variante der säurekatalysierten Isotopenmarkierung mit 18O-Sauerstoff lassen sich die Carboxygruppen der Peptide in 5h 30min mit einer Rate von >97% 18O-Sauerstoff markieren. Mit dieser Methode können weitere funktionelle Untersuchungen der Phosphorylierung an den Period-Proteinen durchgeführt werden. / Protein phosphorylation, a posttranslational modification, plays an important role in signal cascades in cells. In order to understand the molecular mechanism of the circadian clock, it is thus of interest to identify the phosphorylation sites on proteins contributing to the system. During the work for this thesis, the proteins Period I and II were analyzed for phosphorylation sites with liquid chromatography and tandem mass spectrometry (LC-MS/MS). Hereby the focus was on improving existing methods in order to better identify multi-phosphorylated peptides. In the workflow, the Period proteins were digested with several proteases in order to archive a high sequence coverage for analysis. After proteolysis the phosphopeptides were subsequently enriched with titanium dioxide. During phosphopeptide enrichment and reversed phase chromatography, citrate was used as an additive for a better chromatography and recovery of multiphosphorylated peptides. During LC-MS/MS analysis, CID and ETD were used as fragmentation mechanisms in the mass spectrometer. Using these methods, 30 and 42 phosphorylation sites could be identified on the proteins Period I and II, respectively, including 26 and 14 which were previously unpublished. In order to unravel the biological function of these phosphorylation sites, quantitative methods for the optimized LC-MS approach were investigated. This included the metabolic labeling of cells with amino acids containing 15N-nitrogen as well as acid catalyzed 18O-oxygen labeling on peptide level. The developed optimized variant of acid catalyzed 18O-oxygen labeling achieves an inclusion of 18O-oxygen at the peptide carboxy groups with a rate of >97% in 5h 30min. This method can be used for further investigation of the biological function of the phosphorylation on the Period proteins.
|
86 |
Multiscale modeling for the regulation of cell cycle by the circadian clock : applications to chronotherapy / Modélisation multi-échelle de la régulation du cycle cellulaire par l'horloge circadienne : applications pour la chronothérapieEl Cheikh, Raouf 22 June 2015 (has links)
Cette thèse est dédiée au développement d’un modèle mathématique multi-échelle pour la régulation du cycle cellulaire par l’horloge circadienne. Ceci est motivé par le fait que plusieurs études ont montré un lien direct entre certains cancers et un dysfonctionnement du mécanisme de l’horloge circadienne. Le but est de comprendre l’effet des rythmes circadiens et leur perturbation sur la prolifération d’une population de cellules / This thesis is dedicated to the development of a multiscale mathematical model that describes the regulation of the cell cycle by the circadian clock. What motivated this work is the fact that several tumorigenic diseases are linked to circadian rhythms disruption. We would like to understand the effect of circadian rhythms on the proliferation of a cell population and hence give plausible explanation for diseases that arise form circadian clock disruption. The mammalian cell cycle and the circadian clock are two molecular processes that operate in a rhythmic manner and exquisite precision. On one hand, the cell cycle is driven by the rhythmic activity of cyclin dependent kinases which dictate the time a cell must engage mitosis and the time it must divide giving birth to two daughter cells. On the other hand, the circadian clock is a system of transcriptional and translational feedback-loops that generates sustained oscillations of different mRNAs and proteins with a period of approximately 24 h. It turns out that several components of the circadian clock regulates various cyclin-dependent kinases at different stages of the cell cycle. This makes the circadian clock a key player of the temporal organization of the cell cycle and makes these two biological processes act as two tightly coupled oscillators. Our modeling approach consists of using a molecular-structured partial differential equation that describes the proliferation of a cell population. Proliferation depends on the coupled cell cycle-circadian clock molecular state of cells. Due to the large number of molecular components involved in the cell cycle-circadian clock system, the problem becomes of high-dimensionality and specific numerical techniques are needed to solve the equation
|
87 |
Zeitliche Koordination in CyanobakterienWiegard, Anika 16 June 2015 (has links)
Das Cyanobakterium Synechococcus elongatus PCC 7942 besitzt eine circadiane Uhr, die aus nur drei Proteinen besteht: KaiA, KaiB und KaiC. Durch 24stündige Phosphorylierungs- und ATPase-Zyklen des KaiC wird u. a. die globale Genaktivität gesteuert. Der Anteil circadian regulierter Gene sowie die Zahl und Organisation der kai-Gene scheinen in Cyanobakterien stark zu variieren. Um die Komponenten eines potenziell komplexeren Kai-Systems zu untersuchen, wurde in der vorliegenden Arbeit Synechocystis sp. PCC 6803 als Modell ausgewählt. In dessen Genom werden ein KaiA- sowie jeweils drei divergierte KaiB- und KaiC-Proteine kodiert. Durch in vitro Studien konnte die Aktivität von KaiC1 und KaiC3 erstmals charakterisiert werden: KaiC1 zeigte eine KaiA-abhängige Kinase-Aktivität und bildet mit KaiA und KaiB1 vermutlich einen „Standard-Oszillator“. KaiC3 wies die typischen Kinase-, ATP-Synthase- und ATPase-Aktivitäten des KaiC aus Synechococcus auf. Deren Ausprägung erschien jedoch modifiziert. Ferner wurde die zeitliche und räumliche intrazelluläre Verteilung des KaiA sowie der KaiC-Proteine aufgeklärt. Die Kai-Proteine verhielten sich insgesamt abweichend von den Homologen aus Synechococcus, was das Fehlen einer circadianen Rhythmik unter den gewählten Wachstumsbedingungen erklärt. Angesichts kontroverser Diskussionen über die molekularen Details der Assemblierung von KaiC und KaiB aus Synechococcus wurde in einem ergänzenden Projekt demonstriert, dass die gesteigerte Phosphorylierung des KaiC bei 4°C zur Bildung stabiler KaiC-KaiB-Komplexe führt. Die dabei etablierte Methode erlaubt Untersuchungen der KaiC-KaiB-Interaktion unter Verwendung der Wildtyp-Proteine. / The cyanobacterium Synechococcus elongatus PCC 7942 harbors a circadian clock consisting of only three proteins: KaiA, KaiB and KaiC. 24hour phosphorylation and ATPase cycles of KaiC control global gene activity. The number of circadian regulated genes as well as the number and organization of kai-genes seem to vary strongly among cyanobacteria. To analyze the components of a probably more complex Kai-system, Synechocystis sp. PCC 6803 was chosen as a model in the present study. Its genome encodes one KaiA- and each three KaiB and KaiC proteins. The activity of KaiC1 and KaiC3 was – for the first time - characterized by in vitro studies: KaiC1 displayed a KaiA-dependent kinase activity and builds a ,standard oscillator‘ together with KaiA and KaiB1. KaiC3 displayed the typical kinase, ATP synthase and ATPase activities of KaiC from Synechococcus. However, the characteristics of the activities appeared to be modified. Moreover, the temporal and spatial intracellular distribution of KaiA and the KaiC proteins was elucidated. Altogether, the Kai proteins performed different from their Synechococcus homologs, explaining the lack of circadian rhythms under the chosen growth conditions. In view of the controversial discussions about the assembly of KaiC and KaiB from Synechococcus, an additional project was set up to demonstrate that increased auto-phosphorylation of KaiC at 4 °C leads to the formation of stable KaiC-KaiB-complexes. In this context, a protocol was established that allows to analyse KaiC-KaiB interactions using wild-type proteins.
|
88 |
Funktionelle Bedeutung von Hämoxygenase-1 und Kohlenmonoxid für circadiane OszillatorenKlemz, Roman 15 October 2009 (has links)
Hämoxygenasen (HO) katalysieren unter der Aufnahme von molekularen Sauerstoff und der Freisetzung von Kohlenmonoxid (CO) und Eisen (Fe2+) die Oxidation von Häm zu Biliverdin. HO-1, eine induzierbare Isoform der HO, wird durch ihre Aktivität mit zellschützenden, antiinflammatorischen und antiapoptotischen Eigenschaften in Verbindung gebracht. Dabei gilt insbesondere das CO als Mediator dieser Eigenschaften. Die molekularen Wechselwirkungen und genregulatorischen Funktionen von CO sind allerdings noch weitgehend unbekannt. In dieser Arbeit wurden mittels cDNA Microarray-Technologie Gene identifiziert, die in der murinen Leber nach Inhalation von CO oder nach pharmakologischer Induktion von mHO-1 eine differentielle Expression der mRNA aufwiesen. Diese Gene konnten in einen Zusammenhang mit der circadianen Uhr gebracht werden und führten zu der Hypothese, dass CO einen direkten Einfluss auf den molekularen Oszillator der Inneren Uhr hat. Dies konnte in primären Hepatozyten durch eine veränderte circadiane Expression der essentiellen Uhrgene mPer2 und mRev-erba nach CO-Behandlung bestätigt werden. Weiterhin wurde für mHo-1 eine, bisher unbekannte, circadian regulierte Genexpression in primären Hepatozyten und der murinen Leber gezeigt. Es konnte die Funktionalität einer speziesübergreifend, konservierten E-Box im Promotor von mHo-1 nachgewiesen werden, die diese Regulation initiieren kann. Bezüglich der circadianen Oszillation von essentiellen Komponenten der circadianen Uhr zeigten mHo-1 Knockout-Fibroblasten eine veränderte Genexpression. Die Ergebnisse dieser Arbeit demonstrieren eine enge Kopplung des Häm-Metabolismus mit der circadianen Uhr. HO-1 scheint dabei in diesem regulativen Netzwerk eine funktionale Rolle zu spielen. Einerseits könnte diese Verbindung eine weitere Kommunikation der circadianen Uhr mit metabolischen Prozessen darstellen und bietet andererseits eine neue Sichtweise bezüglich der Aufklärung der zellschützenden Eigenschaften von HO-1. / Heme oxygenases (HO) catalyze the oxidation of heme and generate the bile pigment biliverdin, ferric iron and carbon monoxide (CO). Endogenous produced CO, especially due to the activity of the inducible isoform HO-1, has been associated with cytoprotective, anti-inflammatory and –apoptotic functions. CO is a signalling molecule, but the molecular interactions and gene regulatory functions are still unknown. In the present thesis a cDNA microarray identified genes in murine liver which were expressed differentially after inhalation of CO and pharmacological induction of HO-1. Interestingly, the expression of the candidate genes is directly controlled by the molecular circadian clockwork, and led to the hypothesis that CO has an influence on the molecular oscillator of the circadian clock. It was shown, that CO influences the gene expression of essential clock genes in primary hepatocytes. Furthermore, it was demonstrated that the gene expression and activity of mHO-1 is circadian regulated in primary hepatocytes and liver, and is reasonably based on a functional E-box in the promoter of the mHO-1 gene. The deficiency of HO-1 in HO-1 knockout mice displayed differential gene expression profiles in magnitude and amplitude of the circadian oscillations of essential clock and output genes. In this work it was shown, that the heme metabolism is coupled very close to the molecular circadian oscillator. HO-1 plays a functional role in the regulation of this regulatory network, which could provide insights into the understanding of cytoprotective properties of HO-1.
|
89 |
Rôle de l’horloge circadienne dans la cancérisation hépatique expérimentale et sa prévention / Role of circadian clock in liver carcinogenesis and its preventionMteyrek, Ali 10 January 2014 (has links)
L’agence internationale de recherche sur le cancer (IARC) a indiqué que le travail posté qui provoquait une disruption circadienne était probablement cancérogène chez l’Homme. Ainsi, une perturbation expérimentale sévère du système circadien accélère-t elle la progression tumorale et pourrait favoriser la cancérogénèse. Durant ma thèse, j’ai démontré que la disruption circadienne résultant d’une mutation ou d’une mise au silence des gènes de l’horloge Per ou Cry accélérait la cancérogénèse hépatique induite par la diéthylnitrosamine, en favorisant l’instabilité génomique, la prolifération cellulaire, et l’inflammation. J’ai montré que l’alimentation programmée ou la dexaméthasone modifiaient la régulation circadienne de ces trois caractéristiques du cancer, suggérant ainsi qu’une intervention thérapeutique ciblant le système circadien pourrait prévenir la cancérogénèse. J’ai ainsi mis en évidence le contrôle circadien de trois mécanismes moléculaires de la cancérogenèse précoce et proposé deux interventions ciblant l’horloge circadienne dans un but de prévention de la cancérogenèse. / The International Agency for Research on Cancer (IARC) concluded that “shift-work that involves circadian disruption is probably carcinogenic to humans”. Severe disruption alteration accelerated tumor progression and enhanced carcinogenesis. During my PhD, I demonstrated that circadian disruption resulting from mutation of Per and Cry clock genes accelerated liver carcinogenesis induced by diethylnitrosamine through promoting genomic instability, cellular proliferation, and inflammation. I showed that meal timing or dexamethasone altered circadian regulation of these three characteristics of cancer, suggesting a therapeutic intervention targeting the circadian system could prevent carcinogenesis. I have thus demonstrated the circadian control of three molecular mechanisms of early carcinogenesis and proposed two interventions targeting the circadian clock for liver carcinogenesis prevention.
|
90 |
Rôle de la coordination des fonctions cellulaires par les rythmes thermiques de la progression tumorale et l'activité chronothérapeutique : Approches expérimentale et clinique / Role of coordination of cellular functions by thermal rhythms in tumor progression and chronotherapeutic activity : Experimental and clinical approachesRoche, Veronique 21 May 2014 (has links)
La chronothérapie des cancers administre les médicaments anticancéreux à des moments précis de la journée afin d’en optimiser la tolérance et l’efficacité. Cependant le système circadien qui règle sur 24 h la prolifération et le métabolisme cellulaires peut être altéré par un décalage horaire chronique, la mutation d’un gène de l’horloge, ou un traitement, favorisant ainsi la survenue de pathologies métaboliques, comportementales ou malignes. La disparité des profils circadiens de température corporelle des patients cancéreux ainsi que leurs modifications sous chimiothérapie fournit les bases d’une personnalisation de la chronothérapeutique. La capacité d’un cycle thermique à entraîner sur 24 h l’horloge circadienne de cellules d’hépatocarcinome en culture indique que ce biomarqueur est aussi un effecteur de la synchronisation des cellules cancéreuses, et constitue un repère circadien pour la chronothérapeutique in vitro et in vivo. / Chronotherapy delivers anticancer drugs at specific times of the day to optimize tolerability and efficacy. However, the circadian system that controls cell proliferation and metabolism over 24 h, can be altered by a chronic jet lag, a clock gene mutation, or a xeniobiotic treatment, thus favoring the occurrence of metabolic, behavioral or malignancies. The disparity of circadian body temperature patterns of cancer patients as well as its disruption during the treatment provides a clincher for chronotherapy personalization. The ability of a thermal cycle to drive the circadian clock in cultured hepatocarcinoma cells of 24 h indicates that this biomarker is also an effector of the synchronization of cancer cells, as well as a marker for the circadian in vitro and in vivo chronotherapeutic.
|
Page generated in 0.0285 seconds