11 |
Modelling CO2 sequestration in deep saline aquifersKhudaida, Kamal January 2016 (has links)
In spite of the large number of research works on carbon capture and sequestration (CCS), the migration and behaviour of CO2 in the subsurface (i. e. strata below the earth's surface) still needs further understanding and investigations with the aim of encouraging the governmental policy makers to adopt CCS technology as one of the most viable means to tackle the global warming threats. In this research work, a series of numerical simulations has been carried out using STOMP-CO2 simulation code to determine the flow behaviour and ultimate fate of the injected supercritical carbon dioxide (scCO2) into saline aquifers in medium terms of storage (i. e. few thousand years). The characteristics of the employed simulator, including the mathematical algorithm, governing equations, equations of states and phase equilibria calculations are explained in details.
|
12 |
Numerical Simulation of CO2 Injection in Peridotite for Geological Storage / Numerisk simulering av CO2-injektion i peridotit för geologisk lagringMatsumoto, Mirai January 2024 (has links)
The problem of global warming is becoming more and more serious, and carbon dioxide is one of the main causes of climate problems. Therefore, in order to re-duce CO2 emissions, the use of mineralization to store CO2 has become one of the potential methods. In addition, due to the high mineralization rate of peridotite, it will become the research object of this study. This study uses COMSOL Multiphysics to simulate the changing characteristics of carbon dioxide after injection into peridotite. Sensitivity analysis is performed by changing the porosity of the rock and the rate of CO2 injection to further understand the impact on CO2. The results show that at a lower injection rate, the pressure distribution is relatively uniform, the CO2 concentration range is also small, and the saturation increases slowly. On the other hand, when the porosity decreases, the pressure will increase significantly, the diffusion range of CO2 will be relatively expanded, and the saturation will increase. In addition, no matter which factor, it will tend to decrease with the increase of distance and time, and eventually stabilize. Therefore, in order to avoid the possibility of formation rupture and potential leakage of CO2, it is necessary to combine these influencing factors to seek a stable and effective CO2 storage solution. / Problemet med den globala uppvärmningen blir mer och mer allvarligt och kol-dioxid är en av huvudorsakerna till klimatproblemen. Därför, för att minska CO2 utsläppen, har användningen av mineralisering för att lagra CO2 blivit en av de möjliga metoderna. Dessutom, på grund av den höga mineraliseringshastigheten för peridotit, kommer det att bli forskningsobjektet för denna studie. Denna studie använder COMSOL Multiphysics för att simulera de förändrade egenskaperna hos koldioxid efter injektion i peridotit. Känslighetsanalys utförs genom att ändra bergartens porositet och hastigheten för CO2 injektion för att ytterligare förstå påverkan på CO2. Resultaten visar att vid en lägre injektionshastighet är tryckfördelningen relativt jämn, koncentrationsområdet CO2 är också litet och mättnaden ökar långsamt. Å andra sidan, när porositeten minskar, kommer trycket att öka av-sevärt, diffusionsområdet för CO2 kommer att vara relativt expanderat, och mättnaden kommer att öka. Dessutom, oavsett vilken faktor, kommer den att tendera att minska med ökningen av avstånd och tid, och så småningom stabiliseras. Därför, för att undvika risken för formationsbrott och potentiellt läckage av CO2, är det nödvändigt att kombinera dessa påverkande faktorer för att söka en stabil och effektiv CO2 förvaringslösning.
|
13 |
[pt] MODELAGEM NUMÉRICA DA INJEÇÃO DE CO2 EM AQUÍFERO SALINO, OBJETIVANDO AVALIAR O APRISIONAMENTO MINERAL / [en] NUMERICAL MODELING OF CO2 INJECTION IN SALINE AQUIFERS, AIMING TO EVALUATE MINERAL STORAGEROBERTA DOMINGOS RODRIGUES 13 December 2017 (has links)
[pt] Para contribuir com a mitigação das mudanças climáticas, tecnologias com o intuito de promover a redução de emissões dos Gases de Efeito Estufa, como é o caso do dióxido de carbono, tem obtido grande destaque nas pesquisas ultimamente. Uma das alternativas para impedir que todo esse carbono seja liberado para a
atmosfera é reinjetar o CO2 nos próprios reservatórios ou em outras formações geológicas próximas. Neste sentido, esta dissertação apresenta uma tecnologia relacionada à captura e armazenamento geológico de CO2 e avalia o processo de injeção de dióxido de carbono em aquíferos salinos. O principal objetivo é avaliar o processo de injeção de dióxido de carbono em aquíferos salinos de rochas carbonáticas, numa escala de tempo de três mil anos, para avaliar o aprisionamento do CO2 em suas diferentes formas, incluindo o armazenamento mineral. Tal estudo também considera na modelagem, as reações químicas entre os componentes na fase aquosa e a difusão molecular do dióxido de carbono na fase aquosa, assim como as reações químicas de dissolução e precipitação mineral. A partir das informações obtidas em literatura, estabeleceu-se as premissas para a simulação do caso base, e gerou-se casos derivados variando individualmente cada uma das seguintes propriedades: difusividade, salinidade, pH e temperatura, no qual avaliou-se a contribuição de cada uma delas nas diferentes formas de armazenamento do CO2. Por fim, concluiu-se que a mineralização do CO2 iniciou-se após aproximadamente 200 anos de simulação. No entanto, devido às lentas taxas da reação de precipitação mineral, a predominância do armazenamento do CO2 ainda foi na forma dissolvida. As propriedades variadas que contribuíram para o aumento do armazenamento mineral de CO2, que é considerada a forma mais estável, foram: menor fator de difusividade, maior salinidade do aquífero, pH básico (pH igual a 8,0) e
maior temperatura. / [en] In order to contribute to climatic changes mitigation, technologies aiming the reduction of pollution gases emissions, such as carbon dioxide, have been highlighted in recent researches. One of the alternatives to prevent all this carbon from being released into the atmosphere is to reinject CO2 into reservoirs or in other nearby geological formations. In this sense, this work presents a technology related to the capture and geological storage of CO2 and evaluates the carbon dioxide injection process into saline aquifers. The main objective is to evaluate the carbon dioxide injection process in saline aquifers of carbonate rocks, in a time scale of three thousand years, to evaluate the storage mechanism of CO2 in its different
forms, including mineral storage. Such study also considers in the modeling, the chemical reactions between the components in the aqueous phase and the molecular diffusion of the carbon dioxide in the aqueous phase, as well as the chemical reactions of mineral dissolution and precipitation. From the research made and the information gathered in the literature, the premises for the simulation of the base case were established, and derivative cases were generated by individually varying each of the following properties: diffusivity, salinity, pH and temperature, in which the contribution of each property was evaluated on the different CO2 storage forms. Finally, it was concluded that the injected CO2 mineralization process started after approximately 200 years of simulation. However, due to slow rates of the mineral precipitation, the CO2 storage in the dissolved form was still predominant. The different properties that contributed to increase the CO2 mineral storage, which is considered the more estable one, were: lower diffusivity factor, higher aquifer salinity, basic pH (pH equal to 8.0) and higher temperature.
|
14 |
Modélisation des couplages chimio-poromécaniques appliquée au stockage de CO2 dans le charbon / Modelling of chemo-poromechanical coupling applied to the CO2 storage in coalSaliya, Kanssoune 04 September 2014 (has links)
Le stockage géologique du CO2 dans des réservoirs aquifères de type calcaire et grès, du charbon non exploité est une des solutions envisagées pour réduire les émissions de gaz à effet de serre dans l’atmosphère. Cependant, l’injection de CO2 peut perturber les propriétés pétrophysiques (porosité et perméabilité), minéralogiques (transformations) et mécaniques (déformations, résistance à la rupture) des roches réservoir (calcaire, grès, charbon). Dans le cas du charbon, l’injection de CO2 peut également se traduire par des phénomènes de gonflement de la matrice liés au processus d’adsorption. L’objectif de ce travail de thèse est de traduire en termes de modèles phénoménologiques les comportements et les couplages chimio-poromécaniques des roches réservoir de type charbon. Dans ce travail, nous nous sommes focalisés en particulier sur l’étude de l’injection de CO2 dans le charbon. Pour cela, deux modèles homogénéisés de porosité du charbon ont été développés avec la prise en compte du phénomène d’adsorption, connu pour être le principal mécanisme de production ou de séquestration de CO2 dans de nombreux réservoir de charbon. Le premier modèle permet d’étudier le comportement poro-élastique du charbon pour une injection simple de CO2 et le second permet d’étudier le comportement poro-élastique du charbon pour une injection de CO2 avec une récupération assistée de méthane CH4. Le processus d’adsorption est classiquement modélisé à l’aide de l’isotherme d’adsorption de Langmuir (pour un gaz dans le premier modèle et pour deux gaz dans le second modèle). L’implantation de ces modèles dans le Code_Aster (code d’analyse de calcul de structures entièrement couplé THM, développé par Electricité De France - EDF) nous a permis de faire des simulations numériques de stockage de CO2 dans le charbon. Pour une injection simple du CO2 dans le charbon (premier modèle), la matrice du charbon s’est comportée de deux façons différentes : elle gonfle (ce qui induit une diminution de la porosité du charbon) avec la prise en compte du phénomène d’adsorption et se contracte (ce qui induit une augmentation de la porosité du charbon) dans le cas contraire. Etant en bon accord avec les résultats de la littérature spécialisée, cela montre la capacité du modèle à prédire le comportement poro-élastique du charbon durant l’injection de CO2. Toujours avec le premier modèle, nous avons en particulier étudié l’influence des propriétés hydro-mécaniques du charbon (coefficient de Biot, module de Young/module d’incompressibilité), les paramètres d’adsorption de Langmuir et la pression initiale du liquide interstitiel dans le charbon, sur la réponse du charbon à l’injection du CO2. Dans le cas d’une récupération assistée du méthane CH4 (le second modèle), un couplage du Code_Aster et un code de transport réactif HYTEC (HYdrological Transport coupled with Equilibrium Chemistry, développé par MINES Paris Tech) était nécessaire pour gérer surtout le calcul des pressions partielles des deux gaz (CO2 et CH4) à chaque pas de temps. Un travail de développement numérique sur les deux codes de calcul était alors nécessaire. Ce travail de thèse a proposé une méthode de couplage entre les deux codes (Code_Aster et HYTEC) dont les techniques sont largement décrites dans le manuscrit. / The geological storage of CO2 in aquifers reservoirs such as limestone and sandstone, coal is a possible way to reduce greenhouse gas emission into the atmosphere. However, the injection of CO2 may modify petrophysical (porosity and permeability), mineralogical (transformations) and mechanical (deformations, strength) properties of reservoir rocks (limestone, sandstone, coal). In the case of coal, the injection of CO2 can also induce matrix swelling due to adsorption processes. The focus of this thesis is to translate in terms of phenomenological models, the behaviors and chemo-poromechanical coupling of reservoir rocks of coal type. In this work, we focused particularly on the study of CO2 injection into coal. For this, two models of homogenized coal porosity have been developed by taking into account the adsorption phenomenon, known to be the main mechanism of production or sequestration of CO2 in many coal reservoirs. The first model allows the study of the poroelastic behavior of coal in the case of a single injection of CO2, and the second model allows the study of the poroelastic behavior of coal in the case of an injection of CO2 with methane CH4 recovery. The adsorption process is classically modelled using Langmuir’s isotherm (for one gas in the first model and for two gases in the second model). The implementation of these models in Code_Aster (a fully coupled Thermo-Hydro-Mechanical analysis code for structures calculations, developed by Electricity of France - EDF) allowed us to make numerical simulations of CO2 storage in coal. For a single injection of CO2 into coal (first model), the coal matrix behaved in two different ways: it swells (resulting in the decrease of coal porosity) when the adsorption phenomenon is taken into account and shrinks (resulting in the increase of coal porosity) otherwise. Being in good agreement with the results in specialized literature in this field, it shows the ability of the model to predict the poroelastic behaviour of coal to CO2 injection. Also with the first model, we studied particularly through numerical simulations the influence of coal’s hydro-mechanical properties (Biot’s coefficient, bulk modulus), Langmuir’s adsorption parameters and the initial liquid pressure in rock mass during CO2 injection in coal. In the case of methane recovery (second model), a coupling of Code_Aster and a reactive transport code, HYTEC (Hydrological Transport coupled with Equilibrium Chemistry, developed by Mines Paris Tech) was needed to handle the above calculation of partial pressures of the two gases (CO2 and CH4) at each time step. Digital development work on the two computers codes (Code_Aster and HYTEC) was then necessary. This thesis proposed a method of coupling between the two codes whose techniques are widely described in the manuscript.
|
15 |
Evaluation des paramètres structuraux des asphaltènes et de leurs effets sur les propriétés physiques et chimiques des bruts / Asphaltenes structural parameters and their effects on physical and chemical properties of crude oilsMarcano Brito, Francia 01 June 2012 (has links)
Le but de ce travail est de fournir des informations qui peuvent aider à clarifier le mécanisme par lequel se produit la précipitation d’asphaltènes afin d'optimiser les modèles qui prédisent ce phénomène. Premièrement, la composition chimique des fractions aromatiques et saturées est analysée au regard à la stabilité des asphaltènes dans le brut. Plus précisément, la composition SARA de différents bruts vénézuéliens est corrélée au seuil de floculation des asphaltènes. Nos résultats mettent en évidence que les saturées, semblables aux résines, ont un effet significatif sur la stabilité des asphaltènes dans le brut. Deuxièmement, la teneur en Ni et V dans les asphaltènes et leurs sous fractions A1 et A2 a été déterminé par spectroscopie d'émission atomique avec plasma inductif. Les données expérimentales établissent que A1 a une concentration en V et en Ni supérieure à celle de A2, quelque soit la stabilité des bruts. Nous interprétons ces données comme l’illustration d’interactions fortes, telles que des liaisons covalentes entre pétroporphyrines et les molécules d’asphaltènes. Finalement, un dispositif haut pression est utilisé pour détecter visuellement la pression seuil de floculation d'un système modèle correspondant à une solution d’asphaltènes dans un mélange toluène/heptane/CO2. Les résultats confirment, pour ces systèmes gazés, que les augmentations de pression conduisent à une augmentation de la solubilité des asphaltènes et que pour la température il y a deux régimes opposés. Le premier correspond à une diminution de la stabilité du fluide avec l’augmentation de la température et le second, passé une valeur seuil proche de 80°C, conduit au phénomène inverse. / The purpose of this work is to provide information that can help in clarifying the mechanism by which asphaltene precipitation occurs in order to optimize the models that predict the phenomenon. The study is divided into three chapters. In the first one, the constituents of aromatic and saturate fractions of some Venezuelan crude oils were associated with the asphaltenes stability. SARA composition was correlated with asphaltene flocculation onsets and the results showed that saturates, similar to resins, have a significant effect on the flocculation process of the asphaltenes. In the second chapter, the concentration of Ni and V was determined in asphaltenes and their fractions A1 and A2. The samples were analyzed using inductively coupled plasma atomic emission spectrometry and elemental combustion analysis. Results show that A1 presents higher Ni and V concentrations than A2, in both stable and unstable crude oils. These results can be explained by strong interactions, such as covalent bonds between the petroporphyrins and the asphaltene molecules. In the final section, the asphaltenes phase envelopes were obteined for a system consisting of asphaltene in a mixture toluene/heptane/CO2. The temperature ranges 10-150 °C with varying concentrations of CO2 between 10 and 20 wt%. The experimental results confirm that increase of pressure leads to increase of solubility of the asphaltenes in the medium. Also, there are two temperature regimes having opposite trends. First, the solubility of the asphaltenes increases with the temperature, then after a threshold value of 80 °C, the stability is getting worse with the temperature
|
16 |
Improved tracer techniques for georeservoir applications / Artificial tracer examination identifying experimentally relevant properties and potential metrics for the joint application of hydrolysis tracer and heat injection experimentsMaier, Friedrich 24 October 2014 (has links)
Für eine effiziente und nachhaltige Nutzung von Georeservoiren sind bestmögliche Reservoirmanagementverfahren erforderlich. Oft setzen diese Verfahren auf Tracer-Tests. Dabei enthalten die aufgezeichneten Tracersignale integrale Informationen der Reservoireigenschaften. Tracer-Tests bieten somit eine leistungsfähige Technik zur Charakterisierung und Überwachung der bewirtschafteten Georeservoire. Im Gegensatz zu Tracer-Tests mit konservativen Tracern, welche bereits etablierte Testroutinen zur Verfügung stellen, ist die Verwendung von reaktiven Tracern ein neuer Ansatz. Aufgrund unpassender physikalisch-chemischer Modelle und/oder falschen Annahmen ist die Analyse und Interpretation von reaktiven Tracersignalen jedoch oft verzerrt, fehlinterpretiert oder sogar unmöglich. Reaktive Tracer sind dennoch unersetzbar, da sie durch die gezielte Ausnutzung selektiver und spezifischer Reaktionen mögliche Metriken von Reservoirtestverfahren auf einzigartige Weise erweitern. So liefern reaktive Tracer für ein integriertes Reservoirmanagement geforderten Aussagen über Reservoirmetriken wie z.B. Wärmeaustauschflächen oder in-situ Temperaturen.
Um Unsicherheiten bei der Auswertung von Tracerexperimenten zu reduzieren, werden theoretische und experimentelle Untersuchungen zu hydrolysierenden Tracern vorgestellt. Diese Tracer sind durch ihre Reaktion mit Wasser charakterisiert. Einerseits können sie als thermo-sensitive Tracer Informationen über Temperaturen und abgekühlte Anteile eines beprobten Reservoirs liefern. Für die Interpretation von thermo-sensitiven Tracerexperimenten sind die Kenntnis der zugrunde liegenden Reaktionsmechanismen sowie bekannte Arrhenius-Parameter Voraussetzung, um die verwendete Reaktion pseudo erster Ordnung nutzen zu können. Darüber hinaus ermöglichen die verwendeten Verbindungen durch ihre Fluoreszenzeigenschaften eine Online-Messung. Um die Empfindlichkeit und praktischen Grenzen thermo-sensitiver Tracer zu untersuchen, wurden kontrollierte Laborexperimente in einem eigens dafür entwickelten Versuchsaufbau durchgeführt. Dieser besteht aus zwei seriell geschalteten Säulen, die beide mit Sand gefüllt sind und jeweils auf eine eigene Temperatur eingestellt werden können. Somit ist es möglich, verschiedene thermische Einstellungen zu betrachten. Die untersuchten experimentellen Szenarien imitieren größtenteils Feldanwendungen: Durchflussexperimente sowie auch Experimente mit einer Umkehr der Fließrichtung. Darüber hinaus wurde untersucht, ob thermo-sensitive Tracer auch sensitiv gegenüber der Position der Temperaturfront sind. Dabei wurden die Tracer kontinuierlich oder gepulst injiziert. Die Ergebnisse bestätigen die zugrunde liegende Theorie experimentell. Wenn die pH-Abhängigkeit der Hydrolyse bei der Analyse berücksichtigt wird, kann eine Temperaturschätzung mit einer Genauigkeit und Präzision von bis zu 1 K erreicht werden. Die Schätzungen sind von Verweilzeit und gemessenen Konzentrationen unabhängig. Weiterhin lässt sich eine Schätzung über den ausgekühlten Anteil des Systems erhalten. Durch die steuerbaren und definierten Laborbedingungen ist es erstmals möglich, die geforderte Anwendbarkeit von thermo-sensitiven Tracern belastbar nachzuweisen.
Des Weiteren wird eine zweite Anwendung hydrolysierender Tracer vorgeschlagen. Beim Lösen von CO2 für „Carbon Capture and Storage“-Anwendungen hängt die Effizienz maßgeblich von der Grenzfläche zwischen CO2 und der Sole in tiefen Reservoiren ab. Somit ist diese Metrik wichtig, um die Effizienz der CO2 Auflösung in Wasser zu bewerten. Die gezielt entwickelten Kinetic-Interface-Senitive-Tracer (KIS-Tracer) nutzen, zusätzlich zur Hydrolyse an der Grenzfläche, die unterschiedlichen Lösungseigenschaften von Tracer und Reaktionsprodukt im entsprechenden Fluid. Somit lassen sich potentiell Aussagen über die Dynamik der Grenzfläche machen. Neben dem grundlegenden Konzept sowie den theoretischen Tracer-Anforderungen wird eine erste Anwendung im Laborexperiment vorgestellt. Diese zeigt das erfolgreiche, zielorientierte Moleküldesign und bietet eine experimentelle Basis für ein makroskopisches numerisches Modell, mit welchem numerische Simulationen verschiedener Testszenarien durchgeführt werden, um das Zusammenspiel von KIS-Tracer und dynamischer Grenzfläche zu untersuchen.
Aufgrund der Temperaturabhängigkeit der Reaktionsgeschwindigkeit hydrolysierender Tracer werden in der Regel auch thermische Signale aufgezeichnet. Der letzte Teil prüft die Möglichkeit, Informationen aus den aufgezeichneten Temperaturen zu extrahieren. Für ein idealisiertes Einzelkluftsystem wird eine Reihe von analytischen Lösungen diskutiert. Aus thermischen Injektion-/Entzugsversuchen können damit räumliche und zeitliche Profile abgeleitet werden. Mit der Verwendung von mathematisch effizienten Inversionsverfahren wie der iterativen Laplace-Transformation lassen sich rechentechnisch effiziente Realraum-Lösungen ableiten. Durch die Einführung von drei dimensionslosen Kennzahlen können die berechneten Temperaturprofile auf Bruchbreite oder Wärmetransportrate, wechselnde Injektions-/ Pumpraten und/oder auf in der Nähe beobachtbare räumliche Informationen analysiert werden. Schließlich werden analytische Lösungen als Kernel-Funktionen für nichtlineare Optimierungsalgorithmen vorgestellt.
Zusammenfassend bearbeitet die vorliegende Arbeit den Übergang zwischen Tracerauswahl und Traceranwendung. Die Ergebnisse helfen Planungs- und Analyseunsicherheiten zu reduzieren. Dies wird bezüglich der Empfindlichkeit gegenüber Temperaturen, Kühlungsanteilen, flüssig/flüssig-Grenzfläche, Kluftbreite und Wärmetransportrate gezeigt. Somit bieten die vorgestellten Tracerkonzepte neue Metriken zur Verbesserung von Reservoirmanagementverfahren. Die experimentellen Ergebnisse und die neuen analytischen Modelle ermöglichen einen tiefen Einblick in die kollektive Rolle der Parameter, welche die Hydrolyse und den Wärmetransport in Georeservoiren kontrollieren.
|
Page generated in 0.0979 seconds