511 |
Rhéoépaississement des suspensions denses : mise en évidence de la transition frictionnelle / Shear thickening in dense suspensions : revealing the frictional transitionClavaud, Cécile 10 July 2018 (has links)
Le rhéoépaississement est un phénomène spectaculaire apparaissant dans certaines suspensions concentrées en particules. Il se manifeste par l’augmentation brutale de la viscosité de la suspension au delà d’une contrainte critique. L’exemple emblématique de suspension présentant ce type de comportement est le mélange d’amidon de maïs et d’eau. Le rhéoépaississement est longtemps resté une énigme, jusqu’à des travaux théoriques et numériques récents proposant un modèle microscopique cohérent. Selon celui-ci, le rhéoépaississement provient d’une transition frictionnelle due à la présence d’une force répulsive entre les grains. Au cours de ma thèse, j’ai réalisé une des premières démonstrations expérimentales directe de ce mécanisme. En m'inspirant de travaux venant du domaine des milieux granulaires, j'ai montré qu'en accord avec le modèle de transition frictionnelle, une suspension rhéoépaississante possède à faible pression granulaire un état non frottant. J'ai ensuite mis en évidence la transition en elle-même dans des suspensions contrôlées de billes de silice dans des solutions salines. Pour cela, j'ai dû développer de nouvelles méthodes de rhéologie à pression imposée. En effet, les rhéomètres standard ne permettent pas d'accéder aux propriétés de frottement des suspensions. Le seul rhéomètre qui le permet n'est pas adapté aux suspensions étudiées ici, qui sont constituées de particules colloïdales. Ce travail ouvre donc la voie au développement d’une nouvelle génération de rhéomètres permettant de mesurer le frottement dans les suspensions colloïdales, un enjeu majeur pour la rhéologie des fluides complexes. / Shear thickening is a spectacular phenomenon which takes place in some dense suspensions. It manifests itself by a brutal increase of the suspension's viscosity above a certain critical stress. The most iconic example of shear-thickening suspensions is cornstarch and water mixes. Shear thickening long remained a mystery, until recent theoretical and numerical works which proposed a consistent microscopic model. This model explains the shear thickening transition as a frictional one due to the presence of a repulsive force between the grains.During my PhD, I provided one of the first direct experimental proofs of this mechanism. Inspired by granular physics, I showed that shear-thickening suspensions possess a frictionless flowing state at low granular pressure, which is consistent with the proposed model. I then evidenced the frictional transition with controlled experiments using suspensions of silica beads in ionic solutions. To do this, I developed new rheological techniques enabling pressure imposed measurements. Indeed, standard rheological tools do not allow access to the frictional properties of suspensions. The only rheometer that does that is not adapted to the suspensions we study here, which are colloidal. This work thus paves the way for the development of a new generation of pressure imposed rheometers, giving access to colloidal suspensions friction, which is a major challenge in complex fluids rheology.
|
512 |
Precipitation of Kraft Lignin under Alkaline ConditionsSundin, Jonas January 2000 (has links)
No description available.
|
513 |
Surfactants in anionic latex filmsPaakkonen, Johan January 2010 (has links)
No description available.
|
514 |
Bio-functionalized peg-maleimide hydrogel for vascularization of transplanted pancreatic isletsPhelps, Edward Allen 08 November 2011 (has links)
Type 1 diabetes affects one in every 400-600 children and adolescents in the US. Standard therapy with exogenous insulin is burdensome, associated with a significant risk of dangerous hypoglycemia, and only partially efficacious in preventing the long term complications of diabetes. Pancreatic islet transplantation has emerged as a promising therapy for type 1 diabetes. However, this cell-based therapy is significantly limited by inadequate islet supply (more than one donor pancreas is needed per recipient), instant blood-mediated inflammatory reaction, and loss of islet viability/function during isolation and following implantation. In particular, inadequate revascularization of transplanted islets results in reduced islet viability, function, and engraftment. Delivery of pro-vascularization factors has been shown to improve vascularization and islet function, but these strategies are hindered by insufficient and/or complex release pharmacokinetics and inadequate delivery matrices as well as technical and safety considerations. We hypothesized that controlled presentation of angiogenic cues within a bioartificial matrix could enhance the vascularization, viability, and function of transplanted islets. The primary objective of this dissertation was to enhance allogenic islet engraftment, survival and function by utilizing synthetic hydrogels as engineered delivery matrices. Polyethylene glycol (PEG)-maleimide hydrogels presenting cell adhesive motifs and vascular endothelial growth factor (VEGF) were designed to support islet activities and promote vascularization in vivo. We analyzed the material properties and cyto-compatibility of these engineered materials, islet engraftment in a transplantation model, and glycemic control in diabetic subjects. The rationale for this project is to establish novel biomaterial strategies for islet delivery that support islet viability and function via the induction of local vascularization.
|
515 |
Microfluidic Development of Bubble-templated Microstructured MaterialsPark, Jai Il 23 February 2011 (has links)
This thesis presented a microfluidic preparation of bubbles-templated micro-size materials. In particular, this thesis focused on the microfluidic formation and dissolution of CO2 bubbles. First, this thesis described pH-regulated behaviours of CO2 bubbles in the microfluidic channel. This method opened a new way to generate small (<10 µm in diameter) with a narrow size distribution (CV<5%). Second, the microfluidic dissolution of CO2 bubbles possessed the important feature: the local change of pH on the bubble surface. This allowed us to encapsulate the bubbles with various colloidal particles. The bubbles coated with particles showed a high stability against coalescences and Ostwald ripening. The dimensions and shapes of bubbles with a shell of colloidal particle were manipulated by the hydrodynamic and chemical means, respectively. Third, we proposed a microfluidic method for the generation of small and stable bubbles coated with a lysozyme-alginate shell. The local pH decrease at the periphery of CO2 bubbles led to the electrostatic attraction between lysozyme on the bubble surface and alginate in the continuous phase. This produced the bubbles with a shell of biopolymers, which gave a long-term stability (up to a month, at least) against the dissolution and coalescence. Fourth, we presented a single-step method to functionalize bubbles with a variety of nanoparticles. The bubbles showed the corresponding properties of nanoparticles on their surface. Further, we explored the potential applications of these bubbles as contrast agents in ultrasound and magnetic resonance imaging.
|
516 |
Pathways of abiotic humification as catalyzed by mineral colloidsHardie, Ailsa Ghillaine 21 August 2008
The polyphenol pathway and Maillard reaction (polycondensation of sugars and amino acids) are regarded as important pathways in natural humification. The significance of linking the Maillard reaction and polyphenol pathways into an integrated humification pathway has been addressed. However, the ability of mineral colloids commonly occurring in tropical and temperate environments to promote the Maillard reaction and integrated polyphenol-Maillard humification pathways remained to be uncovered. Furthermore, the effect of the nature and relative abundance of biomolecules on humification and associated reaction products remained to be studied.<p>The results of this study show that the structure of polyphenols and the relative molar ratio of polyphenol, glucose and glycine, significantly affected humification processes and the associated carbonate formation in the integrated polyphenol-Maillard reaction catalyzed by birnessite. Increasing the molar ratio of ortho-polyphenols (catechol and pyrogallol) to Maillard reagents in the polyphenol-Maillard pathway catalyzed by birnessite enhanced humification while suppressing the formation of rhodochrosite (MnCO3). The opposite trend of MnCO3 formation was observed in the meta-polyphenol (resorcinol)-Maillard reaction system. Increasing the amount of glucose in the integrated catechol-Maillard system under the catalysis of birnessite promoted the formation of Maillard reaction-type humic acid in the supernatant and MnCO3 in the solid phase.<p>The catalytic abilities of commonly occurring mineral colloids from temperate and tropical regions greatly differed in influencing humification processes and products in the Maillard reaction and integrated polyphenol-Maillard pathways. Compared with layer silicate colloids, the poorly ordered Fe and Mn oxides were by far the strongest catalysts of humification reactions in the Maillard and catechol-Maillard pathways. This accounted for the significant difference in reactivity between the sesquioxide-rich Oxisol clay from the high rainfall region of South Africa and the Mollisol clay from the Canadian Prairies. Furthermore, the nature of the mineral colloids also affected the extent of organic C accumulation in the solid phase upon humification, and related mineral surface alteration. The metal oxide- and Oxisol clay-catalyzed Maillard and catechol-Maillard reaction systems had the highest accumulation of organic C in the solid phase, indicating their significance in contributing to C sequestration in the environment.<p>The findings obtained in this study are of fundamental significance in understanding the influence of the atomic bonding, structural configuration and related surface properties of mineral colloids, and the nature and abundance of biomolecules on the abiotic humification pathways and related reaction products in natural environments.
|
517 |
Microfluidic Development of Bubble-templated Microstructured MaterialsPark, Jai Il 23 February 2011 (has links)
This thesis presented a microfluidic preparation of bubbles-templated micro-size materials. In particular, this thesis focused on the microfluidic formation and dissolution of CO2 bubbles. First, this thesis described pH-regulated behaviours of CO2 bubbles in the microfluidic channel. This method opened a new way to generate small (<10 µm in diameter) with a narrow size distribution (CV<5%). Second, the microfluidic dissolution of CO2 bubbles possessed the important feature: the local change of pH on the bubble surface. This allowed us to encapsulate the bubbles with various colloidal particles. The bubbles coated with particles showed a high stability against coalescences and Ostwald ripening. The dimensions and shapes of bubbles with a shell of colloidal particle were manipulated by the hydrodynamic and chemical means, respectively. Third, we proposed a microfluidic method for the generation of small and stable bubbles coated with a lysozyme-alginate shell. The local pH decrease at the periphery of CO2 bubbles led to the electrostatic attraction between lysozyme on the bubble surface and alginate in the continuous phase. This produced the bubbles with a shell of biopolymers, which gave a long-term stability (up to a month, at least) against the dissolution and coalescence. Fourth, we presented a single-step method to functionalize bubbles with a variety of nanoparticles. The bubbles showed the corresponding properties of nanoparticles on their surface. Further, we explored the potential applications of these bubbles as contrast agents in ultrasound and magnetic resonance imaging.
|
518 |
Structure-property relationship of hydrogel: molecular dynamics simulation approachLee, Seung Geol 01 July 2011 (has links)
We have used a molecular modeling of both random and blocky sequence hydrogel networks of poly(N-vinyl-2-pyrrolidone-co-2-hydroxyethyl methacrylate) (P(VP-co-HEMA)) with a composition of VP:HEMA = 37:13 to investigate the effect of the monomeric sequence and the water content on the equilibrium structures and the mechanical and transport properties by full-atomistic molecular dynamics (MD) simulations. The degree of randomness of the monomer sequence for the random and the blocky copolymers, were 1.170 and 0.104, respectively, and the degree of polymerization was fixed at 50. The equilibrated density of the hydrogel was found to be larger for the random sequence than for the blocky sequence at low water contents (< 40 wt %), but this density difference decreased with increasing water content. The pair correlation function analysis shows that VP is more hydrophilic than HEMA and that the random sequence hydrogel is solvated more than the blocky sequence hydrogel at low water content, which disappears with increasing water content. Correspondingly, the water structure is more disrupted by the random sequence hydrogel at low water content but eventually develops the expected bulk-water-like structure with increasing water content. From mechanical deformation simulations, the stress-strain analysis showed that the VP is found to relax more efficiently, especially in the blocky sequence, so that the blocky sequence hydrogel shows less stress levels compared to the random sequence hydrogel. As the water content increases, the stress level becomes identical for both sequences. The elastic moduli of the hydrogels calculated from the constant strain energy minimization show the same trend with the stress-strain analysis. Ascorbic acid and D-glucose were used to study the effect of the monomeric sequence on the diffusion of small guest molecules within the hydrogels. By analyzing the pair correlation functions, it was found that the guest molecule has greater accessibility to the VP units than to the HEMA units with both monomeric sequences due to its higher hydrophilicity compared to the HEMA units. The monomeric sequence effect on the P(VP-co-HEMA) hydrogel is clearly observed with 20 wt % water content, but the monomeric sequence effect is significantly reduced with 40 wt % water content and disappears with 80 wt % water content. This is because the hydrophilic guest molecules are more likely to be associated with water molecules than with the polymer network at the high water content. By analyzing the mean square displacement, the displacement of the guest molecules and the inner surface area, it is also found that the guest molecule is confined in the system at 20 wt % water content, resulting in highly anomalous subdiffusion. Therefore, the diffusion of the guest molecules is directly affected by their interaction with the monomer units, the monomeric sequence and the geometrical confinement in the hydrogel at a low water content, but the monomeric sequence effect and the restriction on the diffusion of the guest molecule are significantly decreased with increasing the water content.
We also investigated the de-swelling mechanisms of the surface-grafted poly(N-isopropylacrylamide) (P(NIPAAm)) brushes containing 1300 water molecules at 275 K, 290 K, 320 K, 345 K, and 370 K. We clearly observed the de-swelling of the water molecules for P(NIPAAm) above the lower critical solution temperature (LCST) (~305 K). Below the LCST, we did not observe the de-swelling of water molecules. Using the upper critical solution temperature (UCST) systems (poly(acrylamide) brushes) for comparison purposes, we did not observe the de-swelling of water molecules at a given range of temperatures. By analyzing the pair correlation functions and the coordination numbers, the de-swelling of the water molecules occurred distinctly around the isopropyl group of the P(NIPAAm) brush above the LCST because C(NIPAAm) does not offer sufficient interaction with the water molecules via the hydrogen bonding type of secondary interaction. We also found that the contribution of the N(NIPAAm)-O(water) pair is quite small because of the steric hindrance of the isopropyl group. By analyzing the change in the hydrogen bonds, the hydrogen bonds between polar groups and water molecules in the P(NIPAAm) brushes weaken with increasing temperature, which leads to the de-swelling of the water molecules out of the brushes above the LCST. Below the LCST, the change in the hydrogen bonds is not significant. Again, the contribution of the NH(NIPAAm)-water pairs is insignificant; the total number of hydrogen bonds is ~20, indicating that the interaction between the NH group and the water molecules is not significant due to steric hindrances. Lastly, we observed that the total surface area of the P(NIPAAm) brushes that is accessible to water molecules is decreased by collapsing the brushes followed by the de-swelling of water molecules above the LCST.
|
519 |
Engineering the Structual Properties of Self-assembled Polymer/Nanoparticle CapsulesJanuary 2011 (has links)
A materials synthesis technique was recently developed to generate polymer/nanoparticles composite microcapsules in which synthetic polyamines such as polyallylamine and/or polylysine were crosslinked with multivalent anions to form polymer-salt aggregates, that then served as templates for deposition of nanoparticles (NPs) of various compositions to form micron-sized hollow spheres or "nanoparticle-assembled capsules" (NACs). This electrostatically-driven "polymer-salt aggregate" or "PSA" assembly route is attractive for encapsulation and scale-up because encapsulation and materials formation occur in water, at mild pH values, and at room temperature. NACs can potentially find wide-ranging applications in pharmaceutical, food, and consumer products. It is of crucial importance to address the physical property aspects of NACs in view of their use and applicability. While most applications may require that NACs not disassemble or deform under shear stress, some may require triggered release under specific conditions to release the encapsulated material (e.g., enzymes or drugs). Comparatively, little has been done to assess the physical properties of NACs. The behavior of NACs under varying p1-1 and ionic strength conditions were determined. The capsules were found to be structural intact in the pH range of 4-9 at an ionic strength of 10 mM. The pH range in which they were intact narrowed with increasing ionic strength; the capsules fragmented into smaller pieces at 500 mM. The NACs could be made stable at ionic strengths as high as 1M by the addition of multivalent anions to the suspending fluid. The structurally intact NACs were found to vary in compressive strength from 1 atm to > ∼25 atm, via osmotic pressure studies. The benign assembly conditions of NACs allowed for encapsulation studies of various molecules such as fluorescein, Gd[DOTP] 5- (MRI contrast agent), doxorubicin (an anticancer drug), and uracil (pharmaceutical drug with anticancer properties). X-ray irradiation was studied as a potential external trigger for cargo release. A thorough experimental analysis on diffusive release of a dye molecule (fluorescein) from NACs was carried out. Manipulation of the PSA assembly process was carried out in several studies to explore the generality of the synthesis method. Positively-charged aluminosilicate NPs were studied in place of negatively-charged silica NPs. Surprisingly, these led to solid microspheres instead of hollow microspheres. Following the diffusion-deposition model for microsphere formation, it is seems that the NPs, with positively charged alumina patches on top of a negatively charged silica surface, can fully penetrate into the polymer-salt aggregate to form the solid microspheres. The viscoelastic nature of polymer-salt aggregates was exploited to produce non-sphere-shaped NACs through the use of a high-shear flow instrument (Reynolds number of ∼21,000). A mathematical model was developed to understand the formation of elongated NACs, which indicated the shear and elongational stresses within the boundary layer zones along the flow channel walls were responsible for the observed formation of rod-like microparticles.
|
520 |
Paramagnetic particle assemblies as colloidal models for atomic and molecular systemsJanuary 2011 (has links)
Colloidal particles are ideal models for studying the behavior of atomic and molecular systems. They resemble their atomic and molecular analogues in that their dynamics are driven by thermal energy and their equilibrium properties are controlled by inter-particle interactions. Based on this analogy, it is reasonable to construct colloidal chains, where each particle represents a repeat unit, as models for polymers. The advantages of this system over molecular systems are its controllable rigidity, contour length and diameter, as well as the convenience to capture its instantaneous shape and position via video microscopy, which are not trivial to realize in molecular systems. By utilizing the dipolar properties of magnetic colloids, a number of groups have assembled semiflexible and rigid colloidal chains by cross-linking magnetic beads under a magnetic field using polymer linkers. Recently, efforts in constructing colloidal chains led even to anisotropic magnetic colloidal chains that mimic the detailed atomic arrangements of polymers. These properties make colloidal chains possible candidates for the classic bead-spring or bead-rod model systems for semiflexible and rigid polymers. In my thesis, I present a method for generating linear colloidal chain structures by linking surface functionalized paramagnetic particles using DNA. First, I investigate the force interactions between individual magnetic particles under different conditions to optimize the resulting chain stability. A systematic study the bending and rotational diffusion dynamics of the chains and their relationship with the DNA linking chemistry is presented. I then demonstrate their use as a ideal model system to study polymer dynamics In addition, a technique to measure short-range repulsive surface forces between these colloids with high precision was developed. Building on these repulsive force studies, a colloidal system to study 2-D phase transitions was created. This thesis provides insights into understanding and engineering the directed-assembly of magnetic colloids with specific surface interactions, as well as using the assemblies as model systems to study molecular level phenomena.
|
Page generated in 0.0671 seconds