391 |
Uma extensão para o problema de roteamento e estoque / An extension to the inventory routing problemRaimundo, Marcos Medeiros, 1988- 25 August 2018 (has links)
Orientador: Fernando José Von Zuben / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-25T22:55:48Z (GMT). No. of bitstreams: 1
Raimundo_MarcosMedeiros_M.pdf: 764820 bytes, checksum: 80ad4c20c482ad09b06c3e07d1b2c240 (MD5)
Previous issue date: 2014 / Resumo: O gerenciamento de cadeias de suprimento no mundo corporativo é de grande relevância prática e uma de suas versões é conhecida como problema de roteamento e estoque. Este trabalho propõe uma formulação linear-inteira genérica e flexível para este problema de otimização, assim como uma metodologia de solução. Nesta nova formulação proposta, algumas peculiaridades da rede de suprimentos podem ser especificadas como parâmetros de entrada, permitindo assim que o usuário seja capaz de realizar modificações na estrutura, na hierarquia e no elenco de restrições da cadeia de suprimentos, sem precisar refazer a formulação matemática associada. Com isso, é possível resolver uma grande diversidade de configurações do problema, sem a necessidade de adaptações junto à metodologia de solução. A natureza genérica e flexível da formulação linear-inteira se deve às seguintes propriedades, todas elas passíveis de serem definidas como parâmetros de entrada: (1) Todo nó da rede pode produzir ou consumir produtos; (2) Todo nó da rede pode enviar e receber produtos; (3) Decorrente das propriedades (1) e (2), a hierarquia de entrega fica generalizada, com o produto podendo passar por vários nós antes de ser consumido; (4) Restrições presentes na formulação garantem consistência, por exemplo, entre quantidade de produto entregue pelos fornecedores e recebida pelos consumidores; (5) Restrições presentes na formulação estão associadas a especificações que podem ser ativadas, como intervalo de tempo entre entregas. Os resultados experimentais contemplam soluções para múltiplas configurações do problema, todas representáveis pela formulação proposta e, portanto, todas resolvidas pela mesma metodologia de solução. Essas múltiplas configurações trabalhadas nos experimentos evidenciam os benefícios do emprego de uma formulação estendida para o problema de roteamento e estoque. Além disso, visando comparação com propostas alternativas disponíveis na literatura, tomou-se uma configuração específica e bem-estabelecida do problema, para a qual existe uma formulação própria e uma metodologia de solução dedicada. Neste experimento comparativo, chegou-se às mesmas soluções e, em algumas parametrizações, até a soluções de melhor qualidade / Abstract: Managing supply chains in the corporate world is of great practical relevance and one of its versions is named inventory routing problem. This work proposes a more generic and flexible linear-integer formulation for this optimization problem, together with a solution methodology. In the novel formulation proposed here, some peculiarities of the supply network can be specified as input parameters, thus allowing the user to make modifications to the structure, the hierarchy and the set of constraints in the supply chain, without having to rebuild the associated mathematical formulation. Therefore, it is possible to solve a wide variety of configurations of the problem without the need for adjustments in the solution methodology. The generic and flexible nature of the linear-integer formulation is due to the following properties, all of them being definable as input parameters: (1) Every node of the network can produce or consume products; (2) Every node of the network can send and receive products; (3) Due to properties (1) and (2), the hierarchy of delivery is generalized, with the product being able to pass through several nodes before being consumed; (4) Some restrictions of the formulation ensure consistency, for example, between the amount of product delivered by the suppliers and received by the consumers; (5) Some restrictions of the formulation are associated with specifications that can be activated, as the time interval between deliveries. The experimental results include solutions for multiple configurations of the problem, all representable by the proposed formulation and, as a consequence, all able to be solved by the same solution methodology. Those multiple configurations considered in the experiments highlight the benefits of employing an extended formulation for the inventory routing problem. Aiming at comparing to alternative proposals available in the literature, it was considered a specific and well-established configuration of the problem, for which there are a proper formulation and a dedicated solution methodology. In this comparative experiment, we came to the same solutions and, in some parameterizations, even better solutions / Mestrado / Engenharia de Computação / Mestre em Engenharia Elétrica
|
392 |
Problemas de empacotamento com itens irregulares : heurísticas e avaliação de construtores de NFP / Irregular packing problems : heuristics and evaluation of NFP constructorsSilveira, Tiago, 1987- 23 August 2018 (has links)
Orientador: Eduardo Candido Xavier / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-23T15:26:56Z (GMT). No. of bitstreams: 1
Silveira_Tiago_M.pdf: 2498154 bytes, checksum: 4bbdff83ad5a399e1c436ffdbeb89a92 (MD5)
Previous issue date: 2013 / Resumo: O resumo poderá ser visualizado no texto completo da tese digital / Abstract: The complete abstract is available with the full electronic document / Mestrado / Ciência da Computação / Mestre em Ciência da Computação
|
393 |
O problema do corredor de comprimento mínimo : algoritmos exatos, aproximativos e heurísticos / The minimum length corridor problem : exact, approximative and heuristic algorithmsOliveira, Lucas de, 1987- 20 August 2018 (has links)
Orientador: Cid Carvalho de Souza / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-20T15:20:18Z (GMT). No. of bitstreams: 1
Oliveira_Lucasde_M.pdf: 1308997 bytes, checksum: cc147cd3d3c9f50c61a48d83579b6c49 (MD5)
Previous issue date: 2012 / Resumo: Esta dissertação tem como foco a investigação experimental de algoritmos exatos, aproximativos e heurísticos aplicados na resolução do chamado problema do corredor de comprimento mínimo (PCCM). No PCCM recebemos um polígono retilinear P e um conjunto de polígonos retilineares menores formando uma subdivisão S planar conexa de P. Uma solução para este problema, também chamada de corredor, é formada por um conjunto conexo de arestas de S, e tal que cada face interna em S possui pelo menos um ponto em sua borda que pertence a alguma aresta deste conjunto. O objetivo então é encontrar um corredor tal que a soma total dos comprimentos das arestas seja a menor possível. Trata-se de um problema NP-difícil com aplicações em áreas diversas, tais como telecomunicações, engenharia civil e projeto de circuitos VLSI. O PCCM pode ser reduzido polinomialmente a um problema em grafos denominado problema da árvore de Steiner com grupos (PASG). Considerando esta transformação, estudamos e implementamos dois métodos aproximativos, um método exato de branch-and-cut, e um método heurístico baseado na metaheurística GRASP combinada com um evolutionary path relinking (GRASP+EPR). Além disso, propomos três heurísticas de busca local que visam melhorar a qualidade de soluções do PASG. Instâncias do PCCM foram geradas aleatoriamente, nas quais aplicamos os métodos implementados. Analisamos os resultados, e apresentamos as situações onde é interessante utilizar cada método. Verificamos que o método branch-and-cut foi capaz de encontrar soluções ótimas para instâncias que julgamos ser de grande porte em tempos computacionalmente aceitáveis. O melhor algoritmo aproximativo obteve corredores que na média têm comprimento 17% maior que o comprimento ótimo. Se combinarmos este algoritmo com as heurísticas de melhoria propostas este percentual cai para a média de 3,5%. Finalmente, o GRASP+EPR consome mais tempo que este algoritmo aproximativo, entretanto, o comprimento dos corredores obtidos por ele é em média 0,9% maior que o comprimento ótimo / Abstract: This dissertation focuses on the experimental investigation of exact, approximation and heuristic algorithms applied to solve the so-called minimum length corridor problem (MLCP). In the MLCP we receive a rectilinear polygon P and a set of minor rectilinear polygons forming a connected planar subdivision S of P. A solution for this problem, also called corridor, is formed by a set of connected edges of S, and such that each inner face of S has at least one point on its your border which belongs to an edge in this set. The goal is to find a corridor such that the sum of lengths of the edges is as small as possible. This is an NP-hard problem with applications in several areas such as telecommunications, civil engineering and design of VLSI circuits. The MLCP can be polynomially reduced to a graph problem known as group Steiner tree problem (GSTP). Based on this transformation, we studied and implemented two approximation methods, an exact branch-and-cut method, and a heuristic method based on the metaheuristic GRASP combined with an evolutionary path relinking (GRASP+EPR). Furthermore, we propose three local search heuristics to improve the quality of GSTP solutions. MLCP instances were randomly generated, in which we apply the methods implemented. We analyzed the results, and present situations where it is interesting to use each method. We found that the branch-and-cut has been able to find optimal solutions for instances that we consider to be large in acceptable computational times. The best approximation algorithm obtained corridors having average length 17% higher than the optimum length. If we combine this algorithm with the improvement heuristics proposed this percentage drops to an average of 3.5%. Finally, the GRASP+EPR spent more time than this approximation algorithm, however, the length of the corridors obtained by the method is, on average, 0.9% higher than the optimum length / Mestrado / Ciência da Computação / Mestre em Ciência da Computação
|
394 |
[en] PRIMAL AND DUAL ALGORITHMS FOR THE UNCAPACITED P-MEDIAN PROBLEM / [pt] ALGORITMOS PRIMAIS E DUAIS PARA O PROBLEMA DAS P-MEDIANASGLEIDSON FONSECA SOARES 04 November 2009 (has links)
[pt] Uma facilidade é qualquer centro que presta serviços a um conjunto
de clientes. Pode ser, dentre outros, uma escola, uma fabrica ou um armazém. Problemas de localização de facilidades são problemas de otimização
combinatória que tratam da tomada de decisão relativa ao posicionamento
destes serviços, que devem otimizar algum critério pré-definido. As medidas
que usualmente são utilizadas para quantificar a qualidade de uma solução
para esta classe de problemas tem seus cálculos baseados em que clientes
são servidos por que facilidade. Uma conseqüência imediata é a forte relação entre os problemas de localização e os problemas de classificação de
dados (clusterização). Dentre os problemas de localização de facilidades amplamente
estudados esta o problema das p-Medianas (PMNC), objeto de
pesquisa desta dissertação. O PMNC tem como objetivo determinar quais
p facilidades devem ser abertas com o intuito de minimizar a soma das
distancias de cada cliente a facilidade aberta mais próxima do mesmo. O
PMNC é classificado como um problema NP - Difícil e é um dos problemas
centrais na classificação automática de dados (clusterização). Esta dissertação apresenta algoritmos primais, duais e exatos para tratamento do
PMNC, focando no desenvolvimento de algoritmos duais e exatos. Foram
implementadas cinco heurísticas construtivas e um método de busca local.
Além disto, foram propostos três novos métodos duais e um método exato.
Como resultado, analisamos um conjunto de técnicas para o tratamento do
problema. A escolha da melhor técnica é fortemente dependente da configuração da instancia tratada. Foi obtido o ótimo para algumas instancias e
para as demais a diferença entre o valor dos limites inferior e superior nos
melhores casos não ultrapassam 3%. / [en] A facility is any center that offers services to a set of clients. It
may be, among others, a school, a factory or a depot. Facility location
problems are combinatorial optimization problems that handle decisionmaking
in respect to the positioning of those services, optimizing some
defined criteria. The measures often used to assess the quality of a solution
for this class of problems relate to which clients are served by which facility.
An immediate consequence is the strong relationship between location
problems and data clustering. One of the widely studied facility location
problems is the uncapacited p-median problem (UPM), the main subject of
this thesis. Given a set of possible facility locations, the UPM consists in
determining a subset of locations at which the facilities shall be established,
minimizing the sum of distances from each client to its closest open facility.
The UPM belongs to the class of NP-hard problems and is a central problem
of data clustering. This thesis presents primal, dual and exact algorithms
for approaching the UPM, focusing on the development of dual and exact
algorithms. Five constructive heuristics and one local search method were
implemented. Furthermore, three new dual methods and one exact method
were proposed. The result is the analysis of a set of techniques to solve
the problem. The choice of best technique is strongly dependent of the
configuration of the treated instance. We obtained the optimum for some
instances and for others the difference between the value of the lower and
upper bounds in the best cases do not exceed 3%.
|
395 |
Maximum Bounded Rooted-Tree Problem : Algorithms and Polyhedra / Le problème de l’arbre enraciné borné maximum : algorithmes et polyèdresZhao, Jinhua 19 June 2017 (has links)
Étant donnés un graphe simple non orienté G = (V, E) et un sommet particulier r dans V appelé racine, un arbre enraciné, ou r-arbre, de G est soit le graphe nul soit un arbre contenant r. Si un vecteur de capacités sur les sommets est donné, un sous-graphe de G est dit borné si le degré de chaque sommet dans le sous-graphe est inférieur ou égal à sa capacité. Soit w un vecteur de poids sur les arêtes et p un vecteur de profits sur les sommets. Le problème du r-arbre borné maximum (MBrT, de l’anglais Maximum Bounded r-Tree) consiste à trouver un r-arbre borné T = (U, F) de G tel que son poids soit maximisé. Si la contrainte de capacité du problème MBrT est relâchée, nous obtenons le problème du r-arbre maximum (MrT, de l’anglais Maximum r-Tree). Cette thèse contribue à l’étude des problèmes MBrT et MrT.Tout d’abord, ces deux problèmes sont formellement définis et leur complexité est étudiée. Nous présentons ensuite des polytopes associés ainsi qu’une formulation pour chacun d’entre eux. Par la suite, nous proposons plusieurs algorithmes combinatoires pour résoudre le problème MBrT (et donc le problème MrT) en temps polynomial sur les arbres, les cycles et les cactus. En particulier, un algorithme de programmation dynamique est utilisé pour résoudre le problème MBrT sur les arbres. Pour les cycles, nous sommes amenés a considérer trois cas différents pour lesquels le problem MBrT se réduit à certains problèmes polynomiaux. Pour les cactus, nous montrons tout d’abord que le problème MBrT peut être résolu en temps polynomial sur un type de graphes appelé cactus basis. En utilisant une série de décompositions en sous-problèmes sur les arbres et les cactus basis, nous obtenons un algorithme pour les graphes de type cactus.La deuxième partie de ce travail étudie la structure polyédrale de trois polytopes associés aux problèmes MBrT et MrT. Les deux premiers polytopes, Bxy(G,r,c) et Bx(G,r,c) sont associés au problème MBrT. Tous deux considèrent des variables sur les arêtes de G, mais seuls Bxy(G,r,c) possède également des variables sur les sommets de G. Le troisième polytope, Rx(G,r), est associé au problème MrT et repose uniquement sur les variables sur les arêtes. Pour chacun de ces trois polytopes, nous étudions sa dimension, caractérisons certaines inégalités définissant des facettes, et présentons les moyens possibles de décomposition. Nous introduisons également de nouvelles familles de contraintes. L’ajout de ces contraintes nous permettent de caractériser ces trois polytopes dans plusieurs classes de graphes.Pour finir, nous étudions les problèmes de séparation pour toutes les inégalités que nous avons trouvées jusqu’ici. Des algorithmes polynomiaux de séparation sont présentés, et lorsqu’un problème de séparation est NP-difficile, nous donnons des heuristiques de séparation. Tous les résultats théoriques développés dans ce travail sont implémentés dans plusieurs algorithmes de coupes et branchements auxquels une matheuristique est également jointe pour générer rapidement des solutions réalisables. Des expérimentations intensives ont été menées via le logiciel CPLEX afin de comparer les formulations renforcées et originales. Les résultats obtenus montrent de manière convaincante la force des formulations renforcées. / Given a simple undirected graph G = (V, E) with a so-called root node r in V, a rooted tree, or an r-tree, of G is either the empty graph, or a tree containing r. If a node-capacity vector c is given, then a subgraph of G is said to be bounded if the degree of each node in the subgraph does not exceed its capacity. Let w be an edge-weight vector and p a node-price vector. The Maximum Bounded r-Tree (MBrT) problem consists of finding a bounded r-tree T = (U, F) of G such that its weight is maximized. If the capacity constraint from the MBrT problem is relaxed, we then obtain the Maximum r-Tree (MrT) problem. This dissertation contributes to the study of the MBrT problem and the MrT problem.First we introduce the problems with their definitions and complexities. We define the associated polytopes along with a formulation for each of them. We present several polynomial-time combinatorial algorithms for both the MBrT problem (and thus the MrT problem) on trees, cycles and cactus graphs. Particularly, a dynamic-programming-based algorithm is used to solve the MBrT problem on trees, whereas on cycles we reduce it to some polynomially solvable problems in three different cases. For cactus graphs, we first show that the MBrT problem can be solved in polynomial time on a so-called cactus basis, then break down the problem on any cactus graph into a series of subproblems on trees and on cactus basis.The second part of this work investigates the polyhedral structure of three polytopes associated with the MBrT problem and the MrT problem, namely Bxy(G, r, c), Bx(G, r, c) and Rx(G, r). Bxy(G, r, c) and Bx(G, r, c) are polytopes associated with the MBrT problem, where Bxy(G, r, c) considers both edge- and node-indexed variables and Bx(G, r, c) considers only edge-indexed variables. Rx(G, r) is the polytope associated with the MrT problem that only considers edge-indexed variables. For each of the three polytopes, we study their dimensions, facets as well as possible ways of decomposition. We introduce some newly discovered constraints for each polytope, and show that these new constraints allow us to characterize them on several graph classes. Specifically, we provide characterization for Bxy (G, r, c) on cactus graphs with the help of a decomposition through 1-sum. On the other hand, a TDI-system that characterizes Bx(G,r,c) is given in each case of trees and cycles. The characterization of Rx(G,r) on trees and cycles then follows as an immediate result.Finally, we discuss the separation problems for all the inequalities we have found so far, and present algorithms or cut-generation heuristics accordingly. A couple of branch-and-cut frameworks are implemented to solve the MBrT problem together with a greedy-based matheuristic. We compare the performances of the enhanced formulations with the original formulations through intensive computational test, where the results demonstrate convincingly the strength of the enhanced formulations.
|
396 |
Advances in robust combinatorial optimization and linear programmingSalazar-Neumann, Martha 15 January 2010 (has links)
La construction de modèles qui protègent contre les incertitudes dans les données, telles que la variabilité de l'information et l'imprécision est une des principales préoccupations en optimisation sous incertitude. L'incertitude peut affecter différentes domaines, comme le transport, les télécommunications, la finance, etc. ainsi que les différentes parts d'un problème d'optimisation, comme les coefficients de la fonction objectif et /ou les contraintes. De plus, l'ensemble des données incertaines peut être modélisé de différentes façons, comme sous ensembles compactes et convexes de l´espace réel de dimension n, polytopes, produits Cartésiens des intervalles, ellipsoïdes, etc.<p><p>Une des approches possibles pour résoudre des tels problèmes est de considérer les versions minimax regret, pour lesquelles résoudre un problème sous incertitude revient à trouver une solution qui s'écarte le moins possible de la valeur solution optimale dans tout les cas. <p><p>Dans le cas des incertitudes définies par intervalles, les versions minimax regret de nombreux problèmes combinatoires polynomiaux sont NP-difficiles, d'ou l'importance d'essayer de réduire l'espace des solutions. Dans ce contexte, savoir quand un élément du problème, représenté par une variable, fait toujours ou jamais partie d'une solution optimal pour toute réalisation des données (variables 1-persistentes et 0-persistentes respectivement), constitue une manière de réduire la taille du problème. Un des principaux objectifs de cette thèse est d'étudier ces questions pour quelques problèmes d'optimisation combinatoire sous incertitude.<p><p>Nous étudions les versions minimax regret du problème du choix de p éléments parmi m, de l'arbre couvrant minimum et des deux problèmes de plus court chemin. Pour de tels problèmes, dans le cas des incertitudes définis par intervalles, nous étudions le problème de trouver les variables 1- et 0-persistentes. Nous présentons une procédure de pre-traitement du problème, lequel réduit grandement la taille des formulations des versions de minimax regret.<p><p>Nous nous intéressons aussi à la version minimax regret du problème de programmation linéaire dans le cas où les coefficients de la fonction objectif sont incertains et l'ensemble des données incertaines est polyédral. Dans le cas où l'ensemble des incertitudes est défini par des intervalles, le problème de trouver le regret maximum est NP-difficile. Nous présentons des cas spéciaux ou les problèmes de maximum regret et de minimax regret sont polynomiaux. Dans le cas où l´ensemble des incertitudes est défini par un polytope, nous présentons un algorithme pour trouver une solution exacte au problème de minimax regret et nous discutons les résultats numériques obtenus dans un grand nombre d´instances générées aléatoirement.<p><p>Nous étudions les relations entre le problème de 1-centre continu et la version minimax regret du problème de programmation linéaire dans le cas où les coefficients de la fonction objectif sont évalués à l´aide des intervalles. En particulier, nous décrivons la géométrie de ce dernier problème, nous généralisons quelques résultats en théorie de localisation et nous donnons des conditions sous lesquelles certaines variables peuvet être éliminées du problème. Finalement, nous testons ces conditions dans un nombre d´instances générées aléatoirement et nous donnons les conclusions. / Doctorat en sciences, Orientation recherche opérationnelle / info:eu-repo/semantics/nonPublished
|
397 |
Ordonnancement sur machines parallèles appliqué à la fabrication de semi-conducteurs : ateliers de photolithographie / Parallel machine scheduling for semiconductor manufacturing : Photolithography workstationsBitar, Abdoul 11 December 2015 (has links)
Le secteur des semi-conducteurs a connu un développement considérable ces dernières décennies, du fait des nouvelles applications de la microélectronique dans l'industrie. Le processus de fabrication est réputé pour sa complexité. L'un des ateliers les plus critiques de la production, l'atelier de photolithographie, est régi par un ensemble conséquent de contraintes de production. La multiplicité des ressources utilisées, le nombre important de produits traités, en font une zone importante à optimiser. Les objectifs de la thèse ont été de modéliser cet atelier sous la forme d'un problème d'ordonnancement sur machines parallèles et d'optimiser plusieurs critères jugés pertinents pour évaluer la qualité des solutions. Des résultats en termes de complexité, et d'algorithmes de résolution, ont permis une application industrielle, dans la mesure où un logiciel d'optimisation destiné à l'ordonnancement des lots en photolithographie a été développé. / Semiconductor manufacturing has grown considerably in recent decades, due to new industrial applications of microelectronic devices. The related manufacturing process is known to be complex. A bottleneck process step, the photolithography workshop, gathers various types of constraints, related to the number of auxiliary resources and the tools characteristics. The aims of the thesis were to model this workstation as a parallel machine scheduling problem and to optimize various criteria, determined by industrial needs. Some complexity results are provided and optimization algorithms led to an industrial application, i.e. a software providing optimized schedules in a specific fab.
|
398 |
Practical and theoretical approaches for module analysis of protein-protein interaction networks / Approches pratiques et théoriques pour l'analyse de modules au sein de réseaux d'interaction protéine-protéineHume, Thomas 10 October 2016 (has links)
Un des principaux défis de la bioinformatique moderne est de saisir le sens des données biologiques en constante croissance. Il est prépondérant de trouver de bons modèles pour toutes ces données, modèles qui servent à la fois à expliquer les données et à produire des réponses aux questions biologiques sous-jacentes. Une des nombreuses difficultés d’une telle approche est la grande variété dans les types des données manipulées. La biologie computationnelle moderne propose des approches qui combinent ces types de données dans des techniques dites intégratives. Cette thèse contribue au problème de l’identification de module biologique en intégrant les informations de conservation dans les modèles modernes d’identification d’ensemble de protéines. Nous introduisons un modèle pour la détection de modules connexes actifs et conservés, c’est-à-dire des modules connexes dont une majorité d’éléments sont similaires entre deux espèces. Nous présentons une formulation de notre modèle sous forme de programmation linéaire en nombres entiers, et proposons un algorithme branch-and-cut qui résout le modèle à l’optimalité en temps raisonnable. Nous appliquons notre modèle sur des données de différentiation cellulaire, à savoir les cellules Th0 en Th17 pour l’humain et la sourie. Nous analysons également notre modèle du point du vue de la complexité algorithmique, et fournissons des résultats pour le cas général ainsi que des cas spéciaux. / One of the major challenge for modern bioinformatics is making sense of the ever increasing size of biological data. Finding good models for all this data, models that can both explain the data and provide insight into biological questions, is paramount. One of the many difficulties of such path is the variety in the types of data. Modern computational biology approaches combine these many data into integrative approaches, that combine the knowledge inside the data in the hope to extract higher level information. This thesis contribute to the biological module identification problem by integrating conservation information with modern models of modular detection of protein sets. We introduce a model for the detection of conserved active connected modules, that is connected modules that are conversed across two species. These active connected modules are similar in sequence composition between the two species. We present a mixed-integer linear programming formulation of our model, and propose a branch-and-cut algorithm to solve to provable optimality in reasonable run time. We apply our model to cell line differentiation data, namely Th0 into Th17 for both human and mouse. We also analyse the model from a complexity standpoint, and provide general as well as special cases complexity results.
|
399 |
Simulation-based optimization for production planning : integrating meta-heuristics, simulation and exact techniques to address the uncertainty and complexity of manufacturing systemsDiaz Leiva, Juan Esteban January 2016 (has links)
This doctoral thesis investigates the application of simulation-based optimization (SBO) as an alternative to conventional optimization techniques when the inherent uncertainty and complex features of real manufacturing systems need to be considered. Inspired by a real-world production planning setting, we provide a general formulation of the situation as an extended knapsack problem. We proceed by proposing a solution approach based on single and multi-objective SBO models, which use simulation to capture the uncertainty and complexity of the manufacturing system and employ meta-heuristic optimizers to search for near-optimal solutions. Moreover, we consider the design of matheuristic approaches that combine the advantages of population-based meta-heuristics with mathematical programming techniques. More specifically, we consider the integration of mathematical programming techniques during the initialization stage of the single and multi-objective approaches as well as during the actual search process. Using data collected from a manufacturing company, we provide evidence for the advantages of our approaches over conventional methods (integer linear programming and chance-constrained programming) and highlight the synergies resulting from the combination of simulation, meta-heuristics and mathematical programming methods. In the context of the same real-world problem, we also analyse different single and multi-objective SBO models for robust optimization. We demonstrate that the choice of robustness measure and the sample size used during fitness evaluation are crucial considerations in designing an effective multi-objective model.
|
400 |
Optimisation de déploiement et localisation de cible dans les réseaux de capteurs / Deployment optimization and target tracking in sensor networksLe Berre, Matthieu 05 June 2014 (has links)
Au cours de cette thèse, nous avons abordé des problématiques liées à l’optimisation de déploiement et la localisation de cible dans les réseaux de capteurs. Nous avons tout d'abord proposé un premier modèle pour l’optimisation de deux objectifs contradictoires : le nombre de capteurs déployés ainsi que la précision de la localisation. Quatre algorithmes multi-objectifs classiques ont été implémentés, et des versions hybrides ont également été proposées.Une variante du précédent problème est également étudiée, dédiée aux applications de localisation indoor. Les algorithmes proposés pour le premier problème n'ont montré qu'une efficacité relative au cours des premières expérimentations. Une nouvelle heuristique est alors développée, et les résultats ont montré de très bonnes performances sur les instances de taille réduite, ainsi que de bien meilleures performances que les autres algorithmes implémentés sur des instances de grande taille.Enfin, la notion de connectivité et de couverture est également traitée et intégrée dans un modèle linéaire de déploiement. Un algorithme Branch and Bound a été développé afin de traiter ce problème, puis des tests ont été effectués afin de le comparer aux solveurs linéaires actuels / In this thesis, a joint approach for deployment optimization and target tracking in sensor networks is developed. First, we have proposed a linear model to minimize the number of deployed sensors and maximize the accuracy of the localization. We have also implemented several multi-objective methods and proposed hybridization for some of them.We have also proposed a modification of the previous model, taking into account the indoor localization constraints. Two methods of the previous problem have been used, and a specific heuristic has been developed.Finally, two linear models taking into account coverage and connectivity have been proposed. A Branch and Bound algorithm has also been developed, considering a geometric lower bound and two properties to reduce the number of fathomed nodes
|
Page generated in 0.0617 seconds