81 |
Mot Industri 4.0 genom statistisk dataanalys : En studie om positionen av stansade hål vid Scania Ferruforms saidobalkstillverkningHjälte, David January 2021 (has links)
Den fjärde industriella revolutionen, även kallad Industri 4.0, drivs av ett antal teknologier som medför digitalisering och automatisering av industriella processer. Konceptet innebär en applicering av dataanalys med avancerade analytiska verktyg på stora mängder data, vilka påstås ge stora möjligheter för kvalitetsförbättringar. För att en sådan övergång ska ske är förmågan att hantera data avgörande. Trots det uppvisar många företag idag bristande användning av data för att ta beslut. Frågan är hur företag kan göra för att hantera data och utföra en transformation till Industri 4.0. För att studera det här ämnet har det här examensarbetet utförts som en fallstudie på en stansprocess hos Scania Ferruform. Genom en litteraturstudie, kvantitativ datainsamling samt observationer och intervjuer undersökte examensarbetet den nuvarande användning av data i processen. Därefter undersöktes data med statistiska verktyg för att visa på hur data kan hanteras i en process för att erhålla större kunskap om orsaker till avvikelser. Examensarbetet utredde till sist hur fortsatt arbete med datahantering kan utföras för att uppnå målet Industri 4.0.Analysverktyg har använts för att analysera över 39 000 datapunkter. Resultatet visar på att det finns utvecklingsmöjligheter vad gäller insamling, kvalitet och användning av data. Ett ramverk presenteras för hur företaget bör hantera data för att kunna utvinna ny kunskap från deras processer samt hur Ferruform fortsatt kan arbeta mot Industri 4.0.Slutligen ges rekommendationer om fortsatta studier. Resultatet av examensarbetet blir ett stöd för Ferruform i deras arbete mot mer dugliga processer och den tekniska utveckling företaget eftersträvar. / The fourth industrial revolution, also called Industry 4.0 is powered by several technologies which result in digitalization and automatization of industrial processes. The concept includes the application of big data and advanced analytics, which are said to provide great opportunities for quality improvements. For such a transition to take place, the ability to handle data is crucial. Despite this, many companies today show a lack of use of data to drive decision-making. The question is how companies can manage data and ultimately transition towards Industry 4.0. To research this topic this thesis has been carried out as a case study of a punching process at Scania Ferruform. Through a literature review, quantitative data collection, as well as observations and interviews, the thesis examined the current use of data in the process. Subsequently, data were examined with statistical tools to illustrate how data can be managed in a process to attain increased knowledge about causes of deviations. Lastly, the thesis explored future work towards Industry 4.0. Analysis tools have been used to analyse over 39 000 data points. The result of the study shows that there are opportunities for development in terms of collection, quality and use of data. A framework of how Ferruform should manage data in order to extract new knowledge from its processes is presented. Furthermore, an action plan is presented for a transition towards Industry 4.0. Finally, recommendations are given for further studies. The result of the thesis will be helpful for Ferruform in its transition towards more efficient processes and the technical development of which the company strives towards.
|
82 |
Анализ корневых причин (RCA) возникновения инцидента методами машинного обучения : магистерская диссертация / Root cause analysis (RCA) of an incident using machine learning methodsПодлягин, А. В., Podlyagin, A. V. January 2023 (has links)
Объект исследования – кибер-физические системы, подверженные различным инцидентам, отказам и сбоям в своей работе. Цель работы – разработка модели машинного обучения для определения корневых причин сбоев в производственной системе, а также исследование возможности использования машинного обучения для определения причин будущих сбоев. Методы исследования: сбор, анализ и синтез данных, сравнение, обобщение, классификация, аналогия, эксперимент, измерение, описание. Результаты работы: разработана и обучена модель машинного обучения для анализа корневых причин инцидентов производственной установки методом классификации на выбранном наборе «сырых» данных небольшого объема с последующей проверкой качества ее работы на тестовых данных. Область применения – обучение модели корневым причинам инцидентов (отказов, сбоев) производственных систем на имеющихся данных с последующим оперативным обнаружением причин аномальной работы систем в тандеме с работой алгоритма по автоматическому обнаружению и прогнозированию аномалий. / The object of research is cyber-physical systems that are susceptible to various incidents, failures and malfunctions in their operation. The goal of the work is to develop a machine learning model to determine the root causes of failures in a production system, as well as to explore the possibility of using machine learning to determine the causes of future failures. Research methods: collection, analysis and synthesis of data, comparison, generalization, classification, analogy, experiment, measurement, description. Results of the work: a machine learning model was developed and trained to analyze the root causes of incidents in a production facility using the classification method on a selected set of small-volume “raw” data, followed by checking the quality of its work on test data. Scope of application: training a model for the root causes of incidents (failures, failures) of production systems using available data, followed by prompt detection of the causes of abnormal operation of systems in tandem with the work of the algorithm for automatic detection and prediction of anomalies.
|
Page generated in 0.0179 seconds