• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 173
  • 76
  • 27
  • 22
  • 8
  • 7
  • 7
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 416
  • 79
  • 56
  • 46
  • 45
  • 42
  • 37
  • 35
  • 32
  • 29
  • 29
  • 28
  • 28
  • 26
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Latent Cysteine Residues from Polymers Prepared via Free and Controlled Radical Polymerizations

Amato, Douglas Vincent 01 June 2013 (has links) (PDF)
One less commonly used “click” reaction is thiazolidine chemistry. Thiazolidine chemistry is a commonly used reaction used in biological systems because the reaction requires the presence of both cysteine (a common amino acid) and an aldehyde or ketone. If cysteine residues could be incorporated into a polymer then a variety of applications could be developed. Polymers containing free thiols (aka thiomers) have developed in the last decade to become great mucoadhesives. If there was a facile route to control the amount of free thiols along the polymer then more fine-tuned and potentially stronger adhesives could be made. For these reasons the attachment of cysteine residues in a facile way via reversible addition fragmentation chain transfer (RAFT) polymerization or small molecule synthesis was researched. The incorporation of latent cysteine residues into the polymer via post polymerization modification proved to be less successful. However protected cysteine molecules have been successfully ligated onto polymerizable monomers and have been show to be easily deprotected in the presence of an acid source.
242

The ScF<sub>V</sub> Interdomain Linker: A Protein Engineering Hotspot for Introducing Novel Functions into and Tuning the Biophysical Properties of ScF<sub>V</sub> Antibody Fragments

Ryan-Simkins, Michael Alfred January 2022 (has links)
No description available.
243

Development of a teaching coulometry instrument for the direct determination of sulfur compounds and of zinc indirectly

Padilla Mercado, Jeralyne Beatriz 20 July 2017 (has links)
No description available.
244

ROLE OF GLUTAMATE-CYSTEINE LIGASE IN MAINTAINING GLUTATHIONE HOMEOSTASIS AND PROTECTING AGAINST OXIDATIVE STRESS

YANG, YI 01 July 2003 (has links)
No description available.
245

Improving the Postproduction Quality of Floriculture Crops

Waterland, Nicole Lynn 28 September 2010 (has links)
No description available.
246

Facile protein and amino acid substitution reactions and their characterization using thermal, mechanical and optical techniques

Budhavaram, Naresh Kumar 29 December 2010 (has links)
The work focused on addressing four main objectives. The first objective was to quantify protein and amino acid substitution reactions. Michael addition reactions were used to modify the amino acids and protein. Amino acids alanine, cysteine, and lysine, and protein ovalbumin (OA) were substituted with different concentrations of ethyl vinyl sulfone (EVS). The substituted products were analyzed using Raman spectroscopy and UV-spectroscopy based ninhydrin assay. In case of alanine, Raman and UV results correlated with each other. With cysteine at lower EVS substitutions amine on the main chain was the preferred site while the substitution shifted to thiols at higher substitutions. This could only be discerned using Raman spectroscopy. Lysine has amines on the main chain and side chain while main chain amine was the most reactive site at lower concentrations of EVS while at higher concentrations side chain amines were also substituted. This information could be discerned using Raman spectroscopy only and not UV spectroscopy. In case of protein as observed by Raman and UV spectroscopy the reaction continued at higher concentrations of EVS indicating the participation of glutamine and asparagines at higher substitutions. However, the reaction considerably slowed down at higher EVS substitutions. The second objective of the study was to decrease the glass transition temperature (Tg) of OA through internal plasticization and also study the effects of the substituents on the thermal stability of OA. The hypothesis was by covalently attaching substituents to OA, number of hydrogen bonds can be reduced while increasing the free volume and this would reduce Tg. EVS, acrylic acid (AA), butadiene sulfone (BS) and maleimide (MA) were the four groups used. EVS was the most efficient plasticizer of all the four substituents. The Tg decreased with the increasing concentration of EVS until all of the reactive of groups on OA were used up. Tg decreased slightly with AA and BS while no change was observed with MA. However, the substituents showed exact opposite trend in thermal stability as measured using thermogravimetric analysis (TGA). The thermal stability of MA substituted OA was the highest and that of EVS substituted OA was least. FT-IR spectroscopy results indicated that all four substituents caused structural changes in OA. This implied that there were intermolecular interactions between substituted protein chains in case of AA, BS, and MA. This caused an increase in the thermal stability. EVS on the other hand is a linear chain monomer with a hydrophobic end group and hence could not participate in the intermolecular interactions and hence caused a decrease in Tg. As mentioned above the limitation to this technique is the number of available reactive groups on the protein. However, we successfully demonstrated the feasibility of this method in decreasing Tg of protein. The third objective was to create hydrogels by crosslinking OA with divinyl sulfone (DVS). Protein hydrogels due to their biocompatible nature find applications in drug delivery and tissue engineering. For tissue engineering applications the hydrogels need to be mechanically stable. In this study the protein was substituted with EVS or AA and then crosslinked with DVS. The swelling ratio was measured as a function of pH. All the hydrogels showed the same trend and swelled the least at pH 4.5 which is the isoelectric point of the protein. At basic pH conditions EVS substituted hydrogels swelled the most while AA substituted hydrogels showed least swelling. The static and dynamic moduli of the hydrogels were determined using tensile tester and rheometer respectively. The static modulus values were three times the dynamic modulus. The modulus of the control which is crosslinked OA was least and that of AA substituted OA was highest. The stress relaxation test also showed similar results in which AA substituted OA relaxed the most and the control relaxed the least. FT-IR of the dry hydrogels showed that the amount of hydrogen bonding increased with AA substitution. The hydrophilic AA end groups interacted with each other forming hydrogen bonds. These hydrogen bonds served as additional crosslinks there by increasing the modulus of the hydrogels. EVS on the other hand was incapable of interactions due to the lack of hydrophilic end groups. We were successfully able to create protein hydrogels and control the swelling and mechanical properties by varying the amount of substituted group. The final objective of the study was to create and characterize microstructures from substituted alanine and lysine. Alanine and lysine were substituted with different concentrations of EVS. Bars and fibers were observed for alanine at moderate substitutions while at higher concentrations random structures were observed using scanning electron microscopy (SEM). Lysine formed tubes at moderate EVS substitutions and rosettes at high concentrations of EVS as evidenced by SEM. FT-IR results suggested that instead of carbonyl one of sulfonyl bonded to the available amine in modified amino acids. And only in this case fibers, tubes and rosettes were observed. X-ray diffraction (XRD) results supported this observation. Using these results we hypothesized that the self assembled structures very much depended on the amount of EVS present in the substituted product and sulfonyl forming β-sheet analogs with amine. / Ph. D.
247

Inactivation of Stac3 causes skeletal muscle defects and perinatal death in mice

Reinholt, Brad Michael 13 March 2012 (has links)
The Src homology 3 domain (SH3) and cysteine rich domain (C1) 3 (Stac3) gene is a novel gene copiously expressed in skeletal muscle. The objective of this research was to determine the role of Stac3 in development, specifically in skeletal muscle. We achieved this objective by evaluating the phenotypic effects of Stac3 gene inactivation on development in mice. At birth homozygous Stac3 null (Stac3-/-) mice died perinatally and remained in fetal position with limp limbs, but possessed otherwise normal organs based on gross and histological evaluations. The primary phenotypes displayed at term in Stac3-/- mice were reduced late gestational body weights, increased prevalence of myotubes with centrally located nuclei and severe deformities throughout all skeletal muscles. At embryonic day 18.5 (E18.5) Stac3-/- mice displayed a 12.7% reduction (P < 0.001) in weight compared to wild type (Stac3+/+) or heterozygous (Stac3+/-) littermates while at E15.5 body weights and morphology were similar. At birth (P0) and at E17.5, Stac3-/- mice had 59% and 24% (P < 0.001) more myotubes with centrally located nuclei, respectively, than Stac3+/- or Stac3+/+ littermates. Stac3-/- mice also displayed increased myotube and myofiber cross sectional area at P0 (P < 0.001) and E17.5 (P < 0.05) with disorganized fiber bundling. Overall, these data show Stac3 is necessary for development of viable offspring and suggest Stac3 plays a critical role in fetal development where its primary phenotype is exhibited in skeletal muscle. / Master of Science
248

Anaerobic degradation of cyanuric acid, cysteine and atrazine by a facultative anaerobic bacterium

Jessee, Joel Allen January 1982 (has links)
A facultative anaerobic bacterium that rapidly degrades cyanuric acid (CA) was isolated from sediment of a stream that received industrial waste water effluent. CA decomposition was measured throughout the growth cycle by using a High Performance Liquid Chromatography assay while also measuring the concomitant production of ammonia. This bacterium used CA or cysteine as a major, if not sole, carbon and energy source under anaerobic, but not aerobic conditions in a defined medium. The cell yield was greatly enhanced by the simultaneous presence of cysteine and CA in the medium. Cysteine was preferentially used rather than CA early in the growth cycle, but all the CA was used without an apparent lag after the cysteine was metabolized. Atrazine was also degraded by this bacterium under anaerobic conditions in a defined medium. / Master of Science
249

Towards Identifying Cis and Trans Regulators of Expression of Xylem Cysteine Protease 1 (XCP1) in Arabidopsis

Stroud, William Jefferson 04 June 2009 (has links)
Secondary xylem, commonly known as wood, is a valuable commercial commodity. Among the major components of wood are the elongated, thick-walled water-conducting cells known as tracheary elements. Understanding tracheary element differentiation and maturation is of scientific and commercial importance as it may lead to broad understanding of cellular differentiation processes as well as ways to increase both the quality and quantity of wood produced by economically important tree species. One way to begin to understand the regulation of tracheary element differentiation is to identify elements that control expression of genes associated with tracheary elements. In Arabidopsis thaliana, Xylem Cysteine Protease 1 (XCP1) is specifically expressed in tracheary elements where it catalyzes microautolysis. Thus XCP1 can serve as a useful model for identifying factors that regulate tracheary element-specific gene expression. A deletion analysis of the XCP1 promoter was conducted to identify promoter elements that are necessary and sufficient for tracheary element-restricted gene expression. Two regions required for tracheary element-specific gene expression were identified. One of these was assembled as a multimeric bait construct and used in yeast one-hybrid assays to identify candidate transcription factors that bind to the XCP1 promoter region. Subsequently, a southwestern blot analysis was used to identify transcription factors displaying specific binding to a previously reported cis-element, CTTCAAAGCCA, found in the XCP1 promoter and other tracheary element-associated genes from multiple species. / Master of Science
250

Tissue and Cell-Type Localization and Partial Characterization of a Xylem Papain-Type Cysteine Protease From Arabidopsis

Kositsup, Boonthida 28 April 2000 (has links)
Cysteine proteases are associated with xylem tracheary element differentiation. XCP1 was recently identified as a xylem-specific cysteine protease in Arabidopsis (Zhao, et al., 2000). For this study a recombinant polyhistidine-tagged XCP1 (XCP1H6) was expressed and purified from an E. coli expression system. A polyclonal anti-XCP1 antibody was produced using purified XCP1H6. Immunoblot analysis of a developmental time course of xylem and bark protein extracted from root-hypocotyl segments demonstrated that XCP1 was expressed in xylem only. Further analysis under optimized immunoblot conditions, however, revealed that anti-XCP1 antibody reacted with protein present in both xylem and bark. The vast majority of immunoreactivity, however, was restricted to xylem. Cell-type localization of GUS expression under the control of a putative XCP1 promoter indicated that the XCP1 promoter specifies expression of XCP1 in tracheary elements in leaves, stems, roots and flowers. XCP1 promoter-driven GUS activity was not associated with senescing tissues. / Master of Science

Page generated in 0.0162 seconds