• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 36
  • 36
  • 14
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Shunt Passivation Process for CdTe Solar Cell - New Post Deposition Technique

Tessema, Misle Mesfin 25 September 2009 (has links)
No description available.
32

Herstellung und Charakterisierung periodisch strukturierter Dünnschichten für den Einsatz in optoelektronischen Bauteilen

Schumm, Benjamin 08 August 2013 (has links) (PDF)
Transparente Elektroden finden breite Verwendung in unterschiedlichen kommerziellen Produkten. Dünnschichtsolarzellen basieren ebenso auf diesen Funktionsschichten wie Displays oder organische Leuchtdioden. Im Falle von Dünnschichtsolarzellen kann durch gezielte Einstellung der Oberflächentextur der transparenten Elektrode ein entscheidender Einfluss auf die erreichbare Effizienz genommen werden. Dabei wird eine Verlängerung der Weglänge des Lichtes im Absorbermaterial durch Mehrfachreflexionen angestrebt. Häufig werden dafür Schichten transparenter leitfähiger Oxide (TCO) gezielt texturiert. Eine weitere Möglichkeit zur Erzeugung transparenter Elektroden stellt die Verwendung feiner Metallgitter dar. Diese ermöglichen hohe Leitfähigkeiten im Bereich der Gitterstege und hohe Transparenz im Bereich zwischen den Stegen. In dieser Arbeit sollte ein auf nasschemischen Prozessen basierendes Verfahren entwickelt werden, mit dem es möglich ist, sowohl strukturierte TCO-Elektroden als auch Metallgitter unterschiedlicher Geometrien gezielt herzustellen. Die Leistungsfähigkeit der Elektroden sollte anhand der Integration in entsprechende Bauteile bewertet werden. Namentlich sollte dieser Prozess für Cd2SnO4 (engl. Cadmium Tin Oxide, CTO) als ein TCO-Material hoher Transparenz und Leitfähigkeit sowie für Silber und Kupfer als metallische Systeme anwendbar sein. Als zielführende Methode kam die Nanoprägelithographie (von engl. Nanoimprint Lithography, NIL) zum Einsatz. Dieses Verfahren erlaubt die schnelle, einfache und kostengünstige Herstellung strukturierter Oberflächen. Grundsätzlich wird dazu ein strukturierter Elastomerstempel in eine Schicht eines zu vernetzenden Materials gepresst. Während des Pressens findet die Vernetzung statt. Nach anschließender Separation von Stempel und Schicht resultiert eine strukturierte Oberfläche. Gängige Präkursorensysteme für anorganische Verbindungen, bei denen Vernetzungsprozesse ablaufen, stellen Sol-Gel-Methoden und sogenannte polymere Präkursoren dar. Für letztere werden Metallzitrate mit Ethylenglykol verestert, um ein vernetztes Polymer zu generieren. Nach thermischem Entfernen der Organik bleibt das Metalloxid zurück. Im Rahmen dieser Arbeit ist ein Präkursorensystem entwickelt worden, das Metallionen komplexiert, auf Glassubstrate beschichtet werden kann und eine thermische Polymerisation erlaubt. Aus dem erhaltenen polymeren Präkursor konnten die Zielverbindungen durch thermisches Zersetzen einerseits in Pulverform und andererseits über vorhergehende Schleuderbeschichtung in Form dünner Schichten erhalten werden. Im Falle des kubischen Cd2SnO4 wurde im Rahmen dieser Arbeit erstmals eine Nanopulver-Synthese mit phasenreinem Produkt aus flüssigem Präkursor beschrieben. Dafür stellten sich der Anteil der verwendeten organischen Bestandteile sowie die Zersetzungsgeschwindigkeit als entscheidende Einflussparameter heraus. Zudem wurden CTO Dünnschichten mit dem beschriebene Präkursor hergestellt. Eine optimale Brenntemperatur zur Erzeugung phasenreiner CTO-Schichten von 700 ‰ wurde ermittelt. Die Zersetzungsgeschwindigkeit (bzw. Aufheizrate) beeinflusste die Oberflächenmorphologie der erhaltenen Schichten maßgeblich. Eine schrittweise Zersetzung (100 ‰°C, 200 °C‰, Zieltemperatur) führte dabei in effizienter Weise zu kompakten Schichten. Diese zeigten sehr gute optische und elektronische Eigenschaften. So konnten etwa 300 nm dicke CTO-Schichten mit spezifischen Widerständen von ca. 1 • 10^(−5) Ohm m bei einer Transmission von etwa 80 % (inklusive Glassubstrat) erhalten werden. Derartige CTO-Schichten konnten erfolgreich als transparente Frontelektroden für a-Si Dünnschichtsolarzellen verwendet werden. Ein positiver Einfluss periodischer Linienstrukturen auf die Lichteinfangeigenschaften und den resultierenden Photostrom im Vergleich zu flachen CTO-Schichten wurde bestätigt. Auch für die Herstellung von CdTe-Dünnschichtsolarzellen konnten die CTO-Schichten erfolgreich eingesetzt werden. Die erreichten Effizienzen lagen jedoch lediglich im Bereich von 3 bis 3,6 %. Ein signifikanter Unterschied zwischen flachen und strukturierten Proben konnte nicht ausgemacht werden. Durch die reduzierenden Eigenschaften von Zitronensäure und Ethylenglykol gegenüber Ag+ und Cu2+ Ionen war es möglich, die Metalle in elementarer Form durch einfache thermische Behandlung des Präkursors zu erhalten. Während dieser Prozess für silberhaltige Systeme relativ einfach zu realisieren war, musste bei kupferhaltigen Proben die Bildung oxidischer Nebenphasen festgestellt werden. So war für Letzteres eine reduktive Nachbehandlung vollständig oxidierter Proben im Wasserstoffplasma zielführend und lieferte leitfähige Dünnschichten mit hohem Cu(0)-Anteil. Im Falle von Silber führte eine geeignete thermische Behandlung der Präkursorschicht zu dünnen, leitfähigen Silberschichten mit spezifischen Widerständen von ca. 6 • 10^(−8) Ohm m (Festkörper: ca.1 • 10^(−8) Ohm m). Die Übertragung des NIL-Prozesses gelang sowohl für silber- als auch kupferhaltige Systeme. Mit NIL-strukturierten Silberdünnschichten gelang so die Herstellung semitransparenter Elektroden mit spezifischen Widerständen von 2,2 • 10^(−7) Ohm m, welche in Elektrolumineszenzbauteilen verwendet wurden. Aufgrund der relativ niedrigen Temperaturen, die für die Zersetzung des Silberpräkursors nötig waren (ca. 250 ‰ ), war die Fertigung entsprechender Elektroden und Bauteile auch auf Polyimidfolien möglich. Insgesamt bleibt die Erkenntnis, dass NIL-strukturierte dünne Schichten erfolgreich in optoelektronische Bauteile integriert werden konnten. Variable Präkursorsysteme erlauben die Herstellung verschiedener Schichten und somit Anwendungen in unterschiedlichen Bauteilen. Polymere Präkursoren haben sich als geeignet für dieses Vorgehen erwiesen und können relativ einfach auf diverse oxidische Stoffsysteme übertragen werden. Gleichzeitig eignen sie sich zur Herstellung metallischer transparenter Elektroden durch NIL-Strukturierung, was insbesondere im Hinblick auf flexible Bauteile von Vorteil ist.
33

A Meta-Analysis on Solar Cell Technologies / A Meta-Analysis on Solar Cell Technologies

Mohammadi, Farid January 2017 (has links)
The objective of this study is analysing the characteristics of five different solar cell technologies regarding their efficiency, fill factor, cost and environmental impacts and comparing their improvement records over years considering their efficiency. The five solar cell technologies of interest are amorphous silicon, monocrystalline silicon, polycrystalline silicon, cupper indium gallium selenide thin film and cadmium telluride thin film. The structure and manufacturing process of each of cell technologies were discussed. The study was conducted by the aid of available scientific reports regarding the electrical characteristics of different solar cell technologies. The extracted information regarding efficiency rate and fill factor was analysed using graphs and significant findings are discussed. The five technologies are also compared regarding their cost and ease of fabrication and their impacts on environment and recycling challenges. The result of this study is suggesting the most promising technology that may be the optimal option for further investment and research.
34

Modelling, Fabrication and Characterization of HgCdTe Infrared Detectors for High Operating Temperatures

Srivastav, Vanya January 2012 (has links) (PDF)
In this work, we have designed, simulated, fabricated and characterized homojunction Hg1-xCdxTe detector for high operating temperature in the MWIR region. The IR photon detectors need cryogenic cooling to suppress thermal generation. The temperature of operation in narrow gap semiconductor devices is limited by the noise due to statistical nature of thermal generation-recombination in narrow gap semiconductors. To make IR systems affordable they have to be operated without cooling or with minimal cooling compatible with low cost, low power and long life. Several fundamental and technological limitations to uncooled operation of photon detectors have been discussed in Chapter-1 of this thesis. Way and means adopted to increase the operating temperature, such as non-equilibrium operation, use of multilayer stacked hetero¬structures, optical immersion etc. have also been discussed. Key to improving the detector performance at any temperature is reduction of dark currents to level below the photocurrent and ultimately to the level where detector noise is determined by the fluctuations in photon flux from the scene (BLIP limit). In addition, design of present generation uncooled Hg1-xCdxTe infrared photon detectors relies on complex hetero-structures with a basic unit cell of type n+/π/p+. Theoretical modeling and numerical simulations on TLHJ device consisting of backside illuminated n+/π/p+ photodiodes have been performed. A numerical model for solving carrier transport equations for Hg1-xCdxTe infrared photodiodes was developed in MATLAB. Finite difference discretization of carrier transport equations and successive over relaxation method have been adopted. Numerical models are more appropriate than analytical models when analyzing multi-layer hetero-structures because we can account for realistic doping profiles, compositional grading and hetero-structures using this model. The model can be suitably modified to accommodate different device architectures, designs, material properties and operating temperature. Such a generalized model is useful to a device designer to customize the detector performance as per the availability of the material to suit the application specific requirements. The present work therefore proposes a more flexible, accurate and generalized methodology to accommodate the user needs by simulating the position dependence of carrier concentration, electrostatic potential and g-r rates and their effect on detector performance vis-à¬vis contact doping, absorber doping and absorber width on device performance. We detail aspects of our simulation model by developing a library of Hg1-xCdxTe properties using analytical and empirical expressions for material parameters (energy band gap, electron affinity, intrinsic carrier concentration, carrier effective mass, carrier mobility, dielectric constant and absorption coefficient). The PDEs were solved using the FDM coupled with SOR method. Behavior of Hg1-xCdxTe diodes (homo/hetero-junction) under different biasing, illumination and non equilibrium situations were modeled. Model has been validated for experimental measured data on n on p Hg1-xCdxTe photodiodes. The numerical computations are next applied to simulation/modeling of MWIR (λc=4.5 μm) n+/π/p+ TLHJ device for operation at T=250K. Several recombination processes occur in Hg1¬-xCdxTe depending on material quality, operating temperature, device design and processing conditions. Detailed mathematical models of radiative, Auger, Shockley Read Hall (SRH), surface recombination and optical g-r are analyzed and their effect on carrier lifetime have been evaluated. Analytical models for dark currents affecting the performance of Hg1-xCdxTe diodes at different temperatures are discussed. The mechanisms contributing to dark current are: (i) the thermal diffusion of minority carriers from the neutral regions (IDiff); (ii) generation-recombination from the space charge region of diode (IG-R) (iii) trap assisted tunneling currents, wherein the traps in the depletion region or the traps in the quasi neutral p region close to the depletion edge participate in the tunneling process(ITAT); (iii) band-to-band tunneling currents (IBTB) and (iv) surface leakage currents due to shunt resistance. Total current of a photodiode is ITOT=IDiff+IG-R+ITAT+IBTB+ISH-IP, where IP is the photocurrent. We evaluate the variation of electrostatic potential, carrier concentration, and electric field and g-r profiles as a function of position. The effect of variation in absorber width, doping and contact doping on D* is also analyzed. The mathematical models of different g-r processes (Auger, SRH, radiative, surface recombination and optical generation) affecting the device performance analyzed and their affect on carrier lifetimes are investigated. Responsivity ~3.25Amp-Watt-1, noise current~2pA/Hz1/2 and D* ~8x109 cmHz1/2watt-1 at 0.1V reverse bias have been calculated using optimized values of doping concentration, absorber width and carrier lifetime. The suitability of the method has been illustrated by demonstrating the feasibility of achieving the optimum device performance by carefully selecting the device design and other parameters. The numerical models provided insight about the operation and performance of Hg1-xCdxTe Auger-suppressed infrared photodiodes. Hetero-junction configuration increases the dynamic resistance, while the heavily doped contacts reduce the contact resistance. Wide gap/heavily doped contacts present a barrier to injection of minority carries into the absorber layer. At the same time they allow collection of minority carriers generated in the absorber region at the contacts. Hg1-xCdxTe hetero-diodes are grown by MOCVD and MBE with precise doping and compositional gradient control to reduce g-r contributions from defects and dislocations to the dark current in order to reap advantages of Auger suppression. Measured dark currents in hetero-junction photodiodes continue to be larger than expected in spite of the advancements in MBE technique. Delineation of an array on hetero-structures involves mesa separation of the diodes thus creating additional surface requiring passivation. Overall, the whole effort of fabricating a hetero Hg1-xCdxTe detector array is disproportionate to the overall gain in the performance. Therefore, we employ a much simpler fabrication process of homo-junction Hg1-xCdxTe detectors. It involves a planar device fabrication approach thus minimizing the surface passivation problem. We have deliberated upon the specific growth, characterization techniques and processing steps employed in our study. We discuss some of the experimental issues. We also presented results on the novel processing techniques developed that are potentially applicable to HOT technology and Hg1-xCdxTe technology in general. Hg1-xCdxTe (x=0.27-0.31) layer of ~ 15×15mm2 area and 15-20µm thickness is grown on CdZnTe substrate by Liquid Phase Epitaxy (LPE) in-house. As grown wafer is vacancy doped p-type with a carrier concentration of ~5×1015-1x1016 cm-3 and hole mobility of ~400cm2V-1s-1@80K. Planar n+/ν/p junction ~2-3µm deep is formed by B+ ion implantation and subsequent annealing; details are outlined in Chapter-4. Hall measurements and differential Hall measurements were used to find the carrier concentration, carrier mobility, resistivity of the wafer. The diodes are formed in the form of a 2D array along with various PEV’s for process characterization. Composition of Hg1-xCdxTe wafers used for the work is in the range of 0.27¬ 0.31 as determined by FTIR, corresponding to cutoff wavelength of 4.5-6.5µm. Junction depth and doping profile of the diodes after ion implantation was characterized by differential Hall technique. Transient minority carrier lifetime in fabricated MWIR n+/ν/p Hg1-xCdxTe (x=0.27) diodes were characterized using diode reverse-recovery technique. We prefer this method because it is a direct indicator of device as well as material quality post processing. By this time the device has undergone all the chemical/mechanical treatments and the measured lifetime is the cumulative of g-r mechanisms operative in bulk, space charge region and surface of diode. The value of lifetime extracted from the measured data lies in the range of 80-160ns. Variable temperature lifetime data was also extracted to determine the prevalent g-r process operative in the device. Diode dark I-V and junction C-V measurements were also made to correlate the observed behavior of the measured lifetime with g-r processes. Evidence of Auger suppression at room temperature is seen in the dark I-V characteristics via observation of negative differential resistance in the homo-junction Hg1-xCdxTe diodes. The experimental data is fitted using the numerical and analytical models developed. Based on this fitting, the current mechanisms limiting the dark current in these photodiodes are extracted. An improved analytical I-V model is reported by incorporating TAT and electric field enhanced Shockley-Read-Hall generation recombination process due to dislocations. Tunneling currents are fitted before and after the Auger suppression of carriers with energy level of trap (Et), trap density (Nt) and the doping concentrations of n+ and νregions as fitting parameters. Values of Et and Nt were determined as 0.78-0.80Eg and ~7-9×1014 cm-3 respectively in all cases. Doping concentration of νregion was found to exhibit non-equilibrium depletion from a value of 2×1016 to 4×1015 cm-3. Quantum efficiency of the diodes was found to ~25-30%. Note, that these are wafer level measurements on unpackaged device without backside AR coating. In addition to junction diodes, we present results on several PEV's such as VADA, MIS/MIM capacitors and TLM structures both at room and low temperature. Variable temperature measurements for a VADA tile and subsequent analysis provide evidence of g-r processes originating from defects, dislocations and dislocation loops, which are non-uniformly distributed across the Hg1-xCdxTe wafer and contributes to TAT current at high temperatures. MIS analysis yielded surface charge density lying between 3×1010-1×1011 cm-2 for ZnS/CdTe surface corresponding to a near flat band condition. Results of low and variable temperature measurements on the devices have also been shown to correlate it with the possibility of operating the device at mid temperatures such as 180-250K.
35

Simulation and growth of cadmium zinc telluride from small seeds by the travelling heater method

Roszmann, Jordan Douglas 08 June 2017 (has links)
The semiconducting compounds CdTe and CdZnTe have important applications in high-energy radiation detectors and as substrates for infrared devices. The materials offer large band gaps, high resistivity, and excellent charge transport properties; however all of these properties rely on very precise control of the material composition. Growing bulk crystals by the travelling heater method (THM) offers excellent compositional control and fewer defects compared to gradient freezing, but it is also much slower and more expensive. A particular challenge is the current need to grow new crystals onto existing seeds of similar size and quality. Simulations and experiments are used in this work to investigate the feasibility of growing these materials by THM without the use of large seed crystals. A new fixed-grid, multiphase finite element model was developed based on the level set method and used to calculate the mass transport regime and interface shapes inside the growth ampoule. The diffusivity of CdTe in liquid tellurium was measured through dissolution experiments, which also served to validate the model. Simulations of tapered THM growth find conditions similar to untapered growth with interface shapes that are sensitive to strong thermosolutal convection. Favourable growth conditions are achievable only if convection can be controlled. In preliminary experiments, tapered GaSb crystals were successfully grown by THM and large CdTe grains were produced by gradient freezing. Beginning with this seed material, 25 mm diameter CdTe and CdZnTe crystals were grown on 10 mm diameter seeds, and 65 mm diameter CdTe on 25 mm seeds. Unseeded THM growth was also investigated, as well as ampoule rotation and a range of thermal conditions and ampoule surface coatings. Outward growth beyond one or two centimeters was achieved only at small diameters and included secondary grains and twin defects; however, limited outward growth of larger seeds and agreement between experimental and numerical results suggest that tapered growth may be achievable in the future. This would require active temperature control at the base of the crystal and reduction of convection through thermal design or by rotation of the ampoule or applied magnetic fields. / Graduate / 0346 / 0794 / 0548 / jordan.roszmann@gmail.com
36

Herstellung und Charakterisierung periodisch strukturierter Dünnschichten für den Einsatz in optoelektronischen Bauteilen

Schumm, Benjamin 18 July 2013 (has links)
Transparente Elektroden finden breite Verwendung in unterschiedlichen kommerziellen Produkten. Dünnschichtsolarzellen basieren ebenso auf diesen Funktionsschichten wie Displays oder organische Leuchtdioden. Im Falle von Dünnschichtsolarzellen kann durch gezielte Einstellung der Oberflächentextur der transparenten Elektrode ein entscheidender Einfluss auf die erreichbare Effizienz genommen werden. Dabei wird eine Verlängerung der Weglänge des Lichtes im Absorbermaterial durch Mehrfachreflexionen angestrebt. Häufig werden dafür Schichten transparenter leitfähiger Oxide (TCO) gezielt texturiert. Eine weitere Möglichkeit zur Erzeugung transparenter Elektroden stellt die Verwendung feiner Metallgitter dar. Diese ermöglichen hohe Leitfähigkeiten im Bereich der Gitterstege und hohe Transparenz im Bereich zwischen den Stegen. In dieser Arbeit sollte ein auf nasschemischen Prozessen basierendes Verfahren entwickelt werden, mit dem es möglich ist, sowohl strukturierte TCO-Elektroden als auch Metallgitter unterschiedlicher Geometrien gezielt herzustellen. Die Leistungsfähigkeit der Elektroden sollte anhand der Integration in entsprechende Bauteile bewertet werden. Namentlich sollte dieser Prozess für Cd2SnO4 (engl. Cadmium Tin Oxide, CTO) als ein TCO-Material hoher Transparenz und Leitfähigkeit sowie für Silber und Kupfer als metallische Systeme anwendbar sein. Als zielführende Methode kam die Nanoprägelithographie (von engl. Nanoimprint Lithography, NIL) zum Einsatz. Dieses Verfahren erlaubt die schnelle, einfache und kostengünstige Herstellung strukturierter Oberflächen. Grundsätzlich wird dazu ein strukturierter Elastomerstempel in eine Schicht eines zu vernetzenden Materials gepresst. Während des Pressens findet die Vernetzung statt. Nach anschließender Separation von Stempel und Schicht resultiert eine strukturierte Oberfläche. Gängige Präkursorensysteme für anorganische Verbindungen, bei denen Vernetzungsprozesse ablaufen, stellen Sol-Gel-Methoden und sogenannte polymere Präkursoren dar. Für letztere werden Metallzitrate mit Ethylenglykol verestert, um ein vernetztes Polymer zu generieren. Nach thermischem Entfernen der Organik bleibt das Metalloxid zurück. Im Rahmen dieser Arbeit ist ein Präkursorensystem entwickelt worden, das Metallionen komplexiert, auf Glassubstrate beschichtet werden kann und eine thermische Polymerisation erlaubt. Aus dem erhaltenen polymeren Präkursor konnten die Zielverbindungen durch thermisches Zersetzen einerseits in Pulverform und andererseits über vorhergehende Schleuderbeschichtung in Form dünner Schichten erhalten werden. Im Falle des kubischen Cd2SnO4 wurde im Rahmen dieser Arbeit erstmals eine Nanopulver-Synthese mit phasenreinem Produkt aus flüssigem Präkursor beschrieben. Dafür stellten sich der Anteil der verwendeten organischen Bestandteile sowie die Zersetzungsgeschwindigkeit als entscheidende Einflussparameter heraus. Zudem wurden CTO Dünnschichten mit dem beschriebene Präkursor hergestellt. Eine optimale Brenntemperatur zur Erzeugung phasenreiner CTO-Schichten von 700 ‰ wurde ermittelt. Die Zersetzungsgeschwindigkeit (bzw. Aufheizrate) beeinflusste die Oberflächenmorphologie der erhaltenen Schichten maßgeblich. Eine schrittweise Zersetzung (100 ‰°C, 200 °C‰, Zieltemperatur) führte dabei in effizienter Weise zu kompakten Schichten. Diese zeigten sehr gute optische und elektronische Eigenschaften. So konnten etwa 300 nm dicke CTO-Schichten mit spezifischen Widerständen von ca. 1 • 10^(−5) Ohm m bei einer Transmission von etwa 80 % (inklusive Glassubstrat) erhalten werden. Derartige CTO-Schichten konnten erfolgreich als transparente Frontelektroden für a-Si Dünnschichtsolarzellen verwendet werden. Ein positiver Einfluss periodischer Linienstrukturen auf die Lichteinfangeigenschaften und den resultierenden Photostrom im Vergleich zu flachen CTO-Schichten wurde bestätigt. Auch für die Herstellung von CdTe-Dünnschichtsolarzellen konnten die CTO-Schichten erfolgreich eingesetzt werden. Die erreichten Effizienzen lagen jedoch lediglich im Bereich von 3 bis 3,6 %. Ein signifikanter Unterschied zwischen flachen und strukturierten Proben konnte nicht ausgemacht werden. Durch die reduzierenden Eigenschaften von Zitronensäure und Ethylenglykol gegenüber Ag+ und Cu2+ Ionen war es möglich, die Metalle in elementarer Form durch einfache thermische Behandlung des Präkursors zu erhalten. Während dieser Prozess für silberhaltige Systeme relativ einfach zu realisieren war, musste bei kupferhaltigen Proben die Bildung oxidischer Nebenphasen festgestellt werden. So war für Letzteres eine reduktive Nachbehandlung vollständig oxidierter Proben im Wasserstoffplasma zielführend und lieferte leitfähige Dünnschichten mit hohem Cu(0)-Anteil. Im Falle von Silber führte eine geeignete thermische Behandlung der Präkursorschicht zu dünnen, leitfähigen Silberschichten mit spezifischen Widerständen von ca. 6 • 10^(−8) Ohm m (Festkörper: ca.1 • 10^(−8) Ohm m). Die Übertragung des NIL-Prozesses gelang sowohl für silber- als auch kupferhaltige Systeme. Mit NIL-strukturierten Silberdünnschichten gelang so die Herstellung semitransparenter Elektroden mit spezifischen Widerständen von 2,2 • 10^(−7) Ohm m, welche in Elektrolumineszenzbauteilen verwendet wurden. Aufgrund der relativ niedrigen Temperaturen, die für die Zersetzung des Silberpräkursors nötig waren (ca. 250 ‰ ), war die Fertigung entsprechender Elektroden und Bauteile auch auf Polyimidfolien möglich. Insgesamt bleibt die Erkenntnis, dass NIL-strukturierte dünne Schichten erfolgreich in optoelektronische Bauteile integriert werden konnten. Variable Präkursorsysteme erlauben die Herstellung verschiedener Schichten und somit Anwendungen in unterschiedlichen Bauteilen. Polymere Präkursoren haben sich als geeignet für dieses Vorgehen erwiesen und können relativ einfach auf diverse oxidische Stoffsysteme übertragen werden. Gleichzeitig eignen sie sich zur Herstellung metallischer transparenter Elektroden durch NIL-Strukturierung, was insbesondere im Hinblick auf flexible Bauteile von Vorteil ist.

Page generated in 0.0593 seconds