• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 6
  • 6
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 85
  • 16
  • 12
  • 12
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The Role of TNF-alpha and NF-kappaB in Cardiomyopathies

Brown, Maria A. January 2009 (has links)
No description available.
32

Molecular adaptations of cardiac and skeletal muscles to endurance training in a canine model of sudden death

Moustafa, Moustafa Bayoumi 02 December 2005 (has links)
No description available.
33

Skeletal muscle adaptations in cachectic, tumor-bearing rats

Otis, Jeffrey Scott 09 April 2003 (has links)
Cancer cachexia is a debilitating, paraneoplastic syndrome commonly associated with late stage malignancy. It is estimated that ~25% of cancer-related deaths are due directly to complications arising from cachexia (Barton, 2001). Cachexia manifests as severe body wasting, primarily due to the loss of skeletal muscle mass. This study tested the hypothesis that muscle atrophy associated with cancer cachexia could be attenuated by using a unilateral, functional overload (FO) model applied concurrently with tumor development. To accomplish this, Morris hepatoma MH-7777 cells were implanted in adult female, Buffalo rats (n = 12) and allowed to incubate for 6 weeks. FO surgeries (n = 12) were performed five days prior to MH-7777 cell implantation. Over the course of six weeks, healthy, age, sex and strain-matched, vehicle-injected rats (n = 12) gained ~5% of body weight compared to tumor-bearing rats that lost ~6% of body weight when adjusted for tumor mass. Tumor-bearing animals experienced significant atrophy to gastrocnemius, tibialis anterior, extensor digitorum longus, plantaris and diaphragm muscles. FO successfully reversed plantaris muscle atrophy in cachectic, tumor-bearing rats (n=5). FO plantaris masses were ~24% larger than contralateral controls. However, this hypertrophic response was not as great as FO plantaris muscles from healthy, sham-operated controls (~44% larger than contralateral controls, n=5). FO plantaris muscles from tumor-bearing rats had ~1.5 fold increase in myonuclei/fiber ratios compared those of sham-operated, tumor-bearing controls (n = 6). Therefore, cancer cachexia did not prevent myonuclear accretion necessary for skeletal muscle hypertrophy. Little data exists on adaptations to myosin heavy chain (MHC) isoforms in cachectic skeletal muscle. Plantaris muscles from tumor-bearing rats displayed decreased percentages of MHC type I compared to plantaris muscles from vehicle-injected controls (7% vs. 3%, respectively). However, FO plantaris muscles from tumor-bearing rats had an increased percentage of MHC type I and decreased percentage of MHC type IIb compared to sham-operated tumor-bearing rats, adaptations commonly seen in trained muscles. Therefore, cancer cachexia did not prevent the capability of skeletal muscle to respond normally to hypertrophic stimuli. This study also attempted to characterize a mechanism responsible for the hypertrophic response, increased myonuclei/fiber ratio and transition toward a slower MHC profile in FO plantaris muscles from tumor-bearing rats. Recently, the Ca2+/calmodulin-dependent protein phosphatase, calcineurin, has been suggested as a critical factor regulating skeletal muscle growth and fiber-type dependent gene expression (Chin, 1998; Wu, 2000; Olson, 2000; Otis, 2001). The protein content of the catalytic subunit (CaNa) and the regulatory subunit (CaNb) of calcineurin were unchanged in plantaris muscles from tumor-bearing animals compared to healthy controls. Furthermore, total and specific (normalized to CaNa protein content) calcineurin phosphatase activity were not altered in any group. Therefore, calcineurin activity did not appear to be associated with the regulation of the morphological and physiological response of hypertrophying plantaris muscles in cachectic, tumor-bearing rats. Overall, this study indicated that atrophied plantaris muscles from tumor-bearing animals have a reduced capacity to hypertrophy potentially due to a decreased myonuclei/fiber ratio. Furthermore, it is unlikely that changes to mass and MHC isoform expression are associated with calcineurin phosphatase activity. / Ph. D.
34

Zum Einfluss von DYRK1A auf den aktivierten Calcineurin/NFAT-Signalweg und die Hypertrophie in Kardiomyozyten / The influence of DYRK1A on the activated Calcineurin/NFAT signaling pathway and hypertrophy in cardiomyocytes

Grau, Simon Philipp 11 January 2012 (has links)
No description available.
35

Consensus Statement on the Safety Profile of Topical Calcineurin Inhibitors

Bieber, Thomas, Cork, Michael, Ellis, Charles, Girolomoni, Giampiero, Groves, Richard, Langley, Richard, Luger, Thomas, Meurer, Michael, Murrell, Dédée, Orlow, Seth, Paller, Amy, de Prost, Yves, Puig, Lluís, Ring, Johannes, Saurat, Jean-Hilaire, Schwarz, Thomas, Shear, Neil, Stingl, Georg, Taieb, Alain, Thestrup-Pedersen, K. 28 February 2014 (has links) (PDF)
Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
36

Role of the plasma membrane calcium ATPase as a negative regulator of angiogenesis

Baggott, Rhiannon Rebecca January 2014 (has links)
Angiogenesis is the formation of new blood vessels from pre-existing ones. Unregulated angiogenesis is associated with several diseases such as diabetic retinopathy and tumour growth. Many signal transduction pathways have been implicated in the regulation of angiogenesis such as p38 mitogen-activated protein kinase (MAPK), phosphatidylinositol-3 kinase (PI3K), extracellular signal-related kinase 1/2 (Erk1/2) and of particular interest the calcineurin/nuclear factor of activated T-cell (NFAT) pathway. Inhibition of calcineurin activity by the drug cyclopsorin A (CsA) has been shown to inhibit processes required for successful angiogenesis such as in vitro cell migration, tube formation and additionally attenuates corneal angiogenesis in vivo. CsA is associated with severe side effects and therefore the identification of an endogenous regulator of this pathway would be beneficial. One possibility is the plasma membrane calcium ATPases (PMCAs). These high affinity calcium extrusion pumps have been shown to interact with calcineurin in mammalian cells and cardiomyocytes and down-regulate the calcineurin/NFAT pathway. This is hypothesised to be due to the interaction between the two proteins which maintains calcineurin in a low calcium micro-environment generated by the calcium removal function of the pump. Interestingly, PMCA4 has been shown to interact with calcineurin in endothelial cells. The aim of our study was to further our understanding of PMCA4s regulation of the calcineurin/NFAT pathway specifically in endothelial cells and establish if PMCA4 has a role in the regulation of angiogenesis. ‘Gain of function’ by adenoviral over-expression of PMCA4 and ‘loss of function’ by either si-RNA mediated knockdown of PMCA4 or isolation of PMCA4-/- MLEC were used as models. Over-expression of PMCA4 in HUVEC resulted in inhibition of the calcineurin/NFAT pathway with the opposite result occurring in the case of the knockout of PMCA4, identifying PMCA4 as a negative-regulator of the calcineurin/NFAT pathway in endothelial cells. Over-expression of PMCA4 significantly attenuated VEGF-induced protein and mRNA expression of the pro-angiogenic proteins RCAN1.4 and Cox-2, endothelial cell migration and in vitro and in vivo tube formation with the opposite result occurring in knockdown or knockout studies, confirming PMCA4 as a down-regulator of angiogenesis. Interestingly, over-expression or knockdown of PMCA4 had no effect on VEGF-induced HUVEC proliferation or Erk1/2 phopshorylation proposing PMCA4 may be a potential inhibitor of angiogenesis without compromising cell survival. Disruption of the interaction between PMCA4 and calcineurin by generation and ectopic expression of an adenovirus encoding the region of PMCA4 that interacts with calcineurin (428-651) (Ad-ID4) resulted in an increase in NFAT activity, RCAN1.4 protein expression and in vitro tube formation. These results identify the mechanism of PMCA4s inhibitory effect of the calcineurin/NFAT pathway and consequently angiogenesis is a result of the interaction between the two proteins. The novel findings of this study establish PMCA4 as a negative-regulator of the calcineurin/NFAT pathway in endothelial cells and angiogenesis. These results are far reaching and highlight a potential role for PMCA4 as a therapeutic target in a variety of diseases that are associated with pathological angiogenesis.
37

Role of Knr4 protein in Saccharomyces cerevisiae morphogenesis and sensitivity to Killer toxin K9 : localization versus Phosphorylation / Rôle de la protéine Knr4 dans la Morphogénèse et la Sensibilité à la toxine killer K9 chez Saccharomyces cerevisiae : localisation versus phosphorylation

Liu, Ran 04 May 2015 (has links)
La paroi de la levure Saccharomyces cerevisiae est une structure très dynamique composée de beta-glucanes, de mannanes et de chitine (polymère de N-acétylglucosamine). Elle peut s’adapter à l’état physiologique et aux changements morphologiques des cellules, ainsi qu’aux contraintes environnementales. Cette remarquable plasticité est assurée par l’intervention de différentes voies de régulation et de signalisation dont la voie CWI (Cell Wall Integrity) et la voie de la Calcineurine ou Protein Phosphatase 2B. La toxine killer K9 est une petite protéine sécrétée par la levure Hansenula mrakii. Cette toxine exerce son action létale sur les souches contrôles de S. cerevisiae mais pas sur des mutants du gène KNR4. Elle inhibe in vitro la beta-(1,3)-glucan syntase. Ce travail a dans un premier temps utilisé la Microscope à Force Atomique (AFM) et mis en évidence que la paroi de S. cerevisiae contrôle et mutant knr4 sont affectées de façon similaires par un traitement par la toxine K9. Dans un second temps, nous avons pu démontrer que la localisation cellulaire de Knr4 aux sites de croissance polarisée est nécéssaire pour l’action létale de la toxine K9 sur les cellules de S. cerevisiae.Knr4 fait partie d’une famille de protéines très conservées dans le domaine fongique, impliquées dans le contrôle de l’intégrité pariétale et la morphogenèse. Elle constitue un élément coordinateur pour la voie CWI et la voie de la Calcineurine. Notre travail a mis en évidence que la phosphorylation des résidus serine 200 et serine 203 de Knr4 joue un rôle dans ce mécanisme de coordination / The aim of my thesis was to study the fuction of Knr4 in the cell wall synthesis, morphogenesis, and related signaling pathways. The content of my thesis is mainly divided into three parts: The first part concerns our search to find out unknown partners of Knr4 and to investigate the cellular pathways required for localization of Knr4 protein. To that end, we decided to use a series of deletion mutants interrupted in genes related to morphogenesis and establishment of cellular polarity. We selected candidate genes from the Saccharomyces cerevisiae genome database (SGD, Stanford), using the keywords “Morphogenesis” and “Cell Polarity”. After selection and addition, 25 genes related to the morphogenesis and cell polarity were chosen for our Knr4 localization analysis. Through analysis of the results, we got 10 interesting mutants related to morphogenesis and polarity in which knr4 protein localization was affected: bem2Δ, pcl1Δ, pcl2Δ, rrd1Δ, spa2Δ, tpd3Δ, bem1Δ, bnI1Δ, yck1Δ and bud6Δ, and two additional mutants pph21Δ related to the tpd3Δ and cna1Δ involved in the calcinerin pathway. The second part deals with a mutational analysis of in vivo phosphorylated residues of Knr4 in the function and localization the protein, as well as in the modulation of calcineurin activity and CWI pathway. We found that S200S203 phosphorylation mutants cannot rescue viability of a double mutant bck1Δknr4Δ, while they can rescue slt2Δknr4Δ. In addition, S200S203 phosphorylation mutants behave as the absence of Knr4 towards suppression of lethality caused by an hyperactivated Mkk1 allele. Also we found that the knr4with KNR4S200AS203A mutant can results in hyperactivation of the Calcineurin pathway compared to control situation. So serin 200 and serin 203 may be involved in the cross-talking with the calcineurin pathway and CWI pathway. The third part is the study of K9 killer toxin’s strong cytocidal activity against sensitive yeast strains, including Saccharomyces cerevisiae. Treatment with this toxin results in the formation of pores at the surface of the cells, and more specifically at places where cell wall synthesis is the most active, namely at the tip of growing buds or mating projections. Yeast cells treated with K9 toxin then die by releasing cytoplasm and cellular materials from these pores. In the yeast S. cerevisiae, Knr4 protein localizes at the sites of polarized growth (bud tips, shmoo tips), which are also the sites where the toxin forms pores in the cell wall. Mutants defective in KNR4 gene are remarkably resistant to this toxin. In this study, we analyzed for the first time the biophysical effects of K9 on the yeast cell wall using Atomic Force Microscopy (AFM), a cutting edge technology that allows measuring the nanomechanical properties of living yeast cells, and their alterations by various drugs. To this end, we measured the effects of K9 toxin on the nanomechanical properties of the cell wall of S. cerevisiae wild-type cells and mutants deleted for KNR4 gene, at the short (2 h) and long term (20 h). Our results reveal an important cell wall remodeling occurring in wild-type cells already after 2 hours and only visible in knr4 mutant after 20 hours of treatment. Moreover, we investigated the role of Knr4 protein in the cells sensitivity towards the toxin. We were able to show that the presence of the N-terminal domain of Knr4 protein, which is required for its correct cellular localization at the bud tip during cell cycle, is essential for the toxin K9 wild-type sensitivity. In addition, a series of deletion mutants from the YKO collection in which the Knr4 cellular localization is also lost display a reduced sensitivity to the K9 toxin. Taken together, these results shed light on the importance of the proper localization of Knr4 protein at sites of intensive cell wall growth for the wild-type cells sensitivity to K9 killer toxin.
38

mTOR Inhibitors and Calcineurin Inhibitors Do Not Affect Adhesion Molecule Expression of Human Macro- and Microvascular Endothelial Cells

Lehle, Karla, Schreml, Stephan, Kunz-Schughart, Leoni A., Rupprecht, Leopold, Birnbaum, Dietrich E., Schmid, Christof, Preuner, Jürgen G. 27 February 2014 (has links) (PDF)
We examined the effect of cyclosporin A, tacrolimus, sirolimus and everolimus on the cell growth, viability, proliferation, expression of cellular adhesion molecules (CAM) and leukocyte (PBMC) binding of human macrovascular (coronary artery, saphenous vein) and microvascular endothelial cells (EC). Tacrolimus did not affect EC integrity, growth or expression of CAM. Exclusively, EC from the coronary arteries showed a reduced cellular growth (about 30%) under cyclosporin A and tacrolimus treatment. In contrast, treatment with mTOR inhibitors reduced EC proliferative activity by about 40%, independently of the EC origin. No induction of apoptosis (caspase-3/7 activity) or cytotoxicity (MTS test) was observed. Long-term treatment with high concentrations of sirolimus and everolimus did not enhance the expression of CAM. Stimulation with tumor necrosis factor significantly increased the expression of CAM, independently of the drugs used. None of the mTOR inhibitors influenced the tumor necrosis factor-induced expression of CAM, whereas adhesion of PBMC increased significantly, as described by other papers. In summary, neither calcineurin inhibitors nor mTOR inhibitors activate human micro- and macrovascular EC. Therefore, the investigated drugs are unlikely to contribute to EC activation during transplant-associated vasculopathy. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
39

Einfluss des Aktin-bindenden Proteins Synaptopodin-1 auf die Prognose des Pankreaskarzinoms / Impact of the actin-binding protein Synaptopodin-1 on pancreatic cancer's prognosis

Rommel, Anna Friederike 08 January 2019 (has links)
No description available.
40

mTOR Inhibitors and Calcineurin Inhibitors Do Not Affect Adhesion Molecule Expression of Human Macro- and Microvascular Endothelial Cells

Lehle, Karla, Schreml, Stephan, Kunz-Schughart, Leoni A., Rupprecht, Leopold, Birnbaum, Dietrich E., Schmid, Christof, Preuner, Jürgen G. January 2008 (has links)
We examined the effect of cyclosporin A, tacrolimus, sirolimus and everolimus on the cell growth, viability, proliferation, expression of cellular adhesion molecules (CAM) and leukocyte (PBMC) binding of human macrovascular (coronary artery, saphenous vein) and microvascular endothelial cells (EC). Tacrolimus did not affect EC integrity, growth or expression of CAM. Exclusively, EC from the coronary arteries showed a reduced cellular growth (about 30%) under cyclosporin A and tacrolimus treatment. In contrast, treatment with mTOR inhibitors reduced EC proliferative activity by about 40%, independently of the EC origin. No induction of apoptosis (caspase-3/7 activity) or cytotoxicity (MTS test) was observed. Long-term treatment with high concentrations of sirolimus and everolimus did not enhance the expression of CAM. Stimulation with tumor necrosis factor significantly increased the expression of CAM, independently of the drugs used. None of the mTOR inhibitors influenced the tumor necrosis factor-induced expression of CAM, whereas adhesion of PBMC increased significantly, as described by other papers. In summary, neither calcineurin inhibitors nor mTOR inhibitors activate human micro- and macrovascular EC. Therefore, the investigated drugs are unlikely to contribute to EC activation during transplant-associated vasculopathy. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.

Page generated in 0.041 seconds