Spelling suggestions: "subject:"calcium sulfoaluminate"" "subject:"alcium sulfoaluminate""
1 |
Development of novel composite cement systems for the encapsulation of aluminium from nuclear wastesMcCague, Colum January 2015 (has links)
Currently in the UK, composite blends of Portland cement (PC) and blastfurnace slag (up to 90%) are commonly used for the encapsulation of low and intermediate level wastes. The high volume replacement of PC is considered necessary in order to to reduce the high heat generation resulting from cement hydration in 500 litre waste packages. While suited to the majority of waste streams, the high pH environment in such systems (usually around 12.5 -13), will cause the corrosion of certain waste metals such as aluminium. Since aluminium is only passive between pH4 - 8.5, the use of an alternative low-pH cement system could serve to reduce/inhibit the corrosion. However, before such cements can be considered, two main research problems must be addressed, as follows: (1) quantitative evaluation of alternative cement systems based on their corrosion performance with aluminium; (2) high heat generation due to the rapid rate of hydration. The research in this thesis was thus divided into two strands, as follows: (1) The design and development of a novel, scientifically robust testing facility for the quantitative monitoring of aluminium corrosion in cement pastes; (2) the development of novel cement composites based on weakly alkaline calcium sulfoaluminate (CSA) cement for the encapsulation of aluminium from nuclear wastes. The output from this research is considered to be of interest to the UK nuclear industry.
|
2 |
Calcium Sulfoaluminate Cement Concrete for Prestressed Bridge Girders: Prestressing Losses, Bond, and Strength BehaviorMarkosian, Nicholas 01 May 2019 (has links)
Calcium sulfoaluminate (CSA) cement was used to cast a prestressed voided deck slab bridge girder. The rapid-set properties of CSA cement allowed the initial concrete strength to reach the required 4300 psi needed in order to cut the prestressing strands 6.5 hours after casting. Prestress losses were monitored long-term using vibrating wire strain gages cast into the concrete at the level of the prestressing strands and the data was compared to the American Association of State Highway and Transportation Officials Load and Resistance Factor Design (AASHTO LRFD) predictions for prestress losses. AASHTO methods for prestress loss calculation were overestimated compared to the vibrating wire strain gage data. Material testing was performed to quantify material properties including compressive strength, tensile strength, static and dynamic elastic modulus, creep, and drying and autogenous shrinkage. The material testing results were compared to AASHTO predictions for creep and shrinkage losses.
The bridge girder was tested at midspan and a distance 1.25 times the depth of the beam from the face of the support until failure. Midspan testing consisted of a crack reopening test to solve for the effective prestress in the girder and a test until failure. The crack reopen effective prestress was compared to the AASHTO prediction and AASHTO appeared to be effective in predicting losses based on the crack reopen data. The midspan failure was a shear failure, as accurately predicted by AASHTO. The 1.25d test resulted in a bond failure, which was accurately predicted by the AASHTO bond model for prestressed concrete. Funding for this project was provided by The Mountain Plains Consortium.
|
3 |
INFLUENCE OF FERRITE PHASE IN ALITE-CALCIUM SULFOALUMINATE CEMENTSDuvallet, Tristana Y 01 January 2014 (has links)
Since the energy crisis in 1970’s, research on low energy cements with low CO2-emissions has been increasing. Numerous solutions have been investigated, and the goal of this original research is to create a viable hybrid cement with the components of both Ordinary Portland cement (OPC) and calcium sulfoaluminate cement (CSAC), by forming a material that contains both alite and calcium sulfoaluminate clinker phases. Furthermore, this research focuses on keeping the cost of this material reasonable by reducing aluminum requirements through its substitution with iron. The aim of this work would produce a cement that can use large amounts of red mud, which is a plentiful waste material, in place of bauxite known as an expensive raw material.
Modified Bogue equations were established and tested to formulate this novel cement with different amounts of ferrite, from 5% to 45% by weight. This was followed by the production of cement from reagent chemicals, and from industrial by-products as feedstocks (fly ash, red mud and slag). Hydration processes, as well as the mechanical properties, of these clinker compositions were studied, along with the addition of gypsum and the impact of a ferric iron complexing additive triisopropanolamine (TIPA). To summarize this research, the influence of the addition of 5-45% by weight of ferrite phase, was examined with the goal of introducing as much red mud as possible in the process without negatively attenuate the cement properties.
Based on this PhD dissertation, the production of high-iron alite-calcium sulfoaluminate-ferrite cements was proven possible from the two sources of raw materials. The hydration processes and the mechanical properties seemed negatively affected by the addition of ferrite, as this phase was not hydrated entirely, even after 6 months of curing. The usage of TIPA counteracted this decline in strength by improving the ferrite hydration and increasing the optimum amount of gypsum required in each composition. The mechanical data were equivalent to OPC strengths for some compositions with 25% ferrite.
This preliminary work constitutes the first research phase of this novel cement and requires additional research for its improvement. Topics for additional research are identified in this dissertation.
|
4 |
The effects of impure water sources on the early-age properties of calcium sulfoaluminate cementsLong, Wendy 13 December 2019 (has links)
One of the benefits of calcium sulfoaluminate (CSA) cements is that these materials gain strength rapidly, where strength development is often measured in hours instead of days. This property makes these materials desirable for use in temporary, non-reinforced repairs of roadways, airfields, and navigable locks. The rapid repair of these infrastructure elements is critical to transporting supplies into regions devastated by disaster. In these austere environments, potable water may not be available in sufficient quantities to make vital repairs, and the use of impure water in the production of CSA cement-based concrete would be advantageous. However, the hydration products formed by CSA cement are substantially different from those formed by portland cement and may react differently to impurities that water sources may contain. This Thesis investigates the impact of various salts and impure water sources on the early-age strength development of commercially-available CSA cement-based concrete.
|
5 |
Etude de l’hydratation des ciments sulfo-alumineux par des solutions de borate de sodium : de la spéciation du bore au retard à l'hydratation / Investigating the hydration of calcium sulfoaluminate cements by sodium borate solution - : from boron speciation to hydratation delayChampenois, Jean-Baptiste 23 November 2012 (has links)
Dans le circuit primaire des réacteurs nucléaires à eau pressurisée, le bore participe au contrôle des réactions de fission. Le traitement de cette solution génère des déchets aqueux contenant une forte concentration en bore (de 1 à 3 mol/L). Le conditionnement de ces déchets à l'aide d'un ciment silico-calcique est compliqué par le fort pouvoir retardateur des ions borate sur l'hydratation du liant. Un traitement des déchets à la chaux est nécessaire pour précipiter les ions borate sous forme d'hexahydroborite. Cette stratégie, si elle limite le retard d'hydratation, ne le supprime pas. Par ailleurs, l'hexahydroborite est instable en milieu cimentaire et se convertit dans le temps en boroaluminate de calcium. Une autre approche pourrait consister à utiliser un ciment sulfoalumineux bélitique à forte teneur en ye'elimite. Ce liant présente en effet l'avantage de former en quantité importante des phases de type AFm et/ou AFt lors de son hydratation, phases qui peuvent incorporer des ions borate dans leur structure.Au cours de ce travail, l'hydratation de ciments sulfoalumineux par des solutions de borate de sodium a été étudiée au jeune âge et à plus long terme (sur une durée de 2 ans) dans l'objectif de préciser l'influence d'un ensemble de paramètres (pH du déchet, concentration en bore, taux de gypse du ciment) sur la vitesse d'hydratation du liant, la nature des hydrates formés, et les propriétés du matériau obtenu (résistance mécanique, stabilité dimensionnelle). Pour ce faire, une démarche analytique, procédant par complexification progressive des systèmes étudiés, a été mise en œuvre. Ainsi ont été successivement abordées la spéciation du bore en solution alcaline, l'étude des phases précipitant au sein des systèmes {CaO, B2O3, Na2O, H2O}, {CaO, B2O3, Al2O3, H2O} et {CaO, Al2O3, B2O3, SO3, H2O}, puis celle des pâtes de ciment gâchées avec une solution boratée simulant le déchet. L'approche expérimentale a été complétée par des modélisations thermodynamiques s'appuyant sur une base de données spécialement développée pour les besoins de l'étude.Il apparaît que le gypse joue un rôle primordial dans le contrôle de la réactivité du ciment. L'ajout de gypse fixe, par un mécanisme indirect, le pH de la solution interstitielle à une valeur proche de 11, ce qui favorise la précipitation transitoire d'un composé boraté faiblement cristallisé, l'ulexite. La dissolution des phases anhydres du ciment est alors fortement ralentie jusqu'à l'épuisement du gypse, conduisant ainsi à des retards de prise considérables. En l'absence de gypse, le retard à l'hydratation est de plus faible amplitude. Dans ces conditions, le pH de la solution interstitielle atteint des valeurs plus élevées, ce qui permet de déstabiliser rapidement l'ulexite. A plus long terme, les ions borate sont incorporés au sein d'une phase de type AFt, en solution solide avec les ions sulfate. Les résultats obtenus permettent de conclure que ce sont les ciments sulfo-alumineux contenant une faible teneur en gypse qui sont les plus adaptés au conditionnement de solutions à forte concentration en bore. / In the primary circuit of pressurized water reactors, boron helps controlling the fission reactions. The treatment of this solution produces aqueous low-level or intermediate-level and short lived radioactive with a high boron concentration (up to 1 to 3 mol/L). Stabilization/solidification of such wastes with calcium silicate cement is complicated by the strong retarding effect of borate ions on cement hydration. A calcium hydroxide addition is required to precipitate borate ions into hexahydroborite. With this approach, the hydration delay is limited, but not suppressed. Besides, hexahydroborite is unstable in the cement paste and is progressively converted into a hydrated calcium boroaluminate phase. Another strategy may consist in using belite calcium sulfoaluminate cement with high ye'elimite content. During hydration, this binder forms indeed large amounts of AFm and/or AFt phases which can incorporate borate ions into their structure.In this work, hydration of calcium sulfoaluminate cement by borated solutions was investigated at early age, and over a 2-year period, in order to determine the influence of a set of parameters (boron concentration and pH of the waste, gypsum content of the cement) on the hydration rate of the binder, on the phase assemblage formed, and on the properties of the resulting material (mechanical strength, volume change). An analytical approach was adopted, based on a progressive increase in the complexity of the investigated systems. The focus was successively placed on the speciation of boron in alkaline solution, on the study of the phases formed within the {CaO, B2O3, Na2O, H2O}, {CaO, B2O3, Al2O3, H2O} and {CaO, Al2O3, B2O3, SO3, H2O} systems, and on the characterization of cement pastes prepared with a borate solution which mimicked the waste. The experimental approach was completed by thermodynamic modelling using a database specially developed for the needs of the study. Gypsum appears to play a key role in controlling the reactivity of cement. The gypsum addition sets, by an indirect mechanism, the interstitial solution pH at a value close to 11, which promotes the precipitation of a poorly crystallized borated compound, ulexite. Dissolution of the anhydrous phases is strongly slowed down until the exhaustion of gypsum, and major delays are observed. Without any gypsum, the hydration delay is shorter. Under these conditions, the pore solution pH reaches higher values after mixing. Ulexite is consequently quickly destabilized. Borate anions are then incorporated into a mixed borate/sulphate AFt type phase. It appears that calcium sulfoaluminate cements with low gypsum contents should be recommended to solidify borated solutions.
|
6 |
Formulation et caractérisation de matériaux à base de liants hydrauliques utilisés dans les emballages de transport et de stockage de matières radioactives / Formulation and characterization of hydraulic binder based materials used for stockage and transport casks containing nuclear materialsGrandjean, Jérémie 28 February 2018 (has links)
ROBATEL Industries conçoit et fabrique des emballages pour matières fortement radioactives. Des matériaux de protection neutronique et thermique (PNT) sont utilisés dans ces emballages afin d’assurer la capture des neutrons et de limiter l’augmentation de la température des matières radioactives en cas d’incendie. Ces PNT sont constitués d’une matrice cimentaire ou de plâtre auxquels sont ajoutées des charges minérales ou organiques. Une charge minérale, la colemanite, permet la capture des neutrons grâce à sa teneur élevée en bore, après que l’hydrogène contenu dans les PNT les ait ralentis.Le premier enjeu de cette thèse a été de mettre au point des méthodes d’analyse élémentaire afin de caractériser l’homogénéité chimique des PNT, qui est cruciale, notamment pour le bore. Une technique de mise en solution et deux techniques de dosages ont ainsi été développées. Une autre partie importante de la thèse concerne la caractérisation des propriétés thermiques et mécaniques des PNT. D’un point de vue thermique, des mesures de chaleur de réaction, de capacité calorifique et de conductivité thermique ont été menées pour déterminer la quantité de chaleur (enthalpie) absorbée par le matériau en cas d’incendie. D’un point de vue mécanique, des essais de compression et de flexion ainsi que des essais ultrasonores ont été réalisés afin d’évaluer les valeurs des contraintes à la rupture et les modules d’élasticité des PNT. Au-delà de ces caractérisations, l’amélioration des formulations des PNT existantes et surtout la mise au point de nouvelles formulations sont au coeur de ce travail. Deux plans de mélange ont ainsi été réalisés afin d’enrichir les PNT en bore et en hydrogène tandis qu’un autre a permis l’augmentation de la fluidité d’un PNT grâce à l’ajout d’un superplastifiant. La dernière partie de la thèse a concerné l’étude de nouveaux ciments, les sulfoalumineux, qui présentent des caractéristiques intéressantes étant donné que leurs hydrates sont riches en hydrogène. Pour ces trois nouvelles familles de PNT à base de sulfoalumineux, le retard de prise induit par le bore a été limité. / ROBATEL Industries company designs and products packages for highly radioactive materials. Neutron and thermal protection materials (PNT) are used in those packages to catch neutrons and to limit the increase of temperature due to radioactive materials in case of fire. These PNT are composed of a cement or a gypsum-based matrix with mineral or organic fillers. Once the neutrons have been slowed down by the hydrogen contained in the PNT, a mineral filler named colemanite enables the neutron capture thanks to its high content of boron.The first goal of this thesis is to develop analytical chemistry techniques to check the chemical homogeneity of the PNT, which is crucial, particularly for boron. A dissolution method and two determination techniques have been developed. Another important topic in this thesis is characterization of thermal and mechanical properties. Thermal characterizations include heat of reaction, heat capacity and thermal conductivity measurements to determine the total heat absorbed by the PNT in case of fire. Mechanical characterizations include compression, bending and ultrasonic tests in order to evaluate stress to rupture and elastic moduli of PNT. Beyond the characterizations, the aim of this thesis is to improve pre-existing formulas of PNT and most importantly to propose new formulas. Two mixture designs have been carried out to increase the boron and the hydrogen concentrations of PNT. Another mixture design allowed enhancing the fluidity of a PNT using a superplasticizer. The last part of the thesis deals with the study of new cements called sulfoaluminous that show interesting properties because their hydration products are rich in hydrogen. For these three new PNT families, the increase of the setting time of cement due to boron has been restricted.
|
7 |
Novel and Sustainable Cementitious Systems: Improving Calcium Sulfoaluminate Cement and Bacterial Concrete PropertiesAcarturk, Birgul Cansu 07 December 2022 (has links)
No description available.
|
8 |
Influence des ions lithium et borate sur l'hydratation de ciments sulfo-alumineux : application au conditionnement de résines échangeuses d'ions boratées / Influence of lithium and boron ions on calcium sulfoaluminate cement hydration : application for the conditioning of boron ion exchange resinsDhoury, Mélanie 10 November 2015 (has links)
Dans les réacteurs nucléaires à eau pressurisée, une solution d'acide borique de pH contrôlé par ajout de lithine est injectée dans le circuit primaire. Le bore joue le rôle de neutrophage et participe au contrôle des réactions de fission. La solution du circuit primaire est épurée par passage sur colonnes de résines échangeuses d'ions. Ces résines sont périodiquement renouvelées et constituent un déchet de faible activité. Outre des radionucléides, elles contiennent majoritairement des ions borate et lithium. Elles sont actuellement conditionnées dans une matrice organique avant stockage en site de surface. Une évolution du procédé est envisagée, avec remplacement de la matrice organique par une matrice minérale. Cette thèse évalue les potentialités des ciments sulfo-alumineux pour le conditionnement de résines boratées en présence de lithium. Ces liants présentent en effet l'avantage de former des hydrates capables d'insérer les ions borate dans leur structure, et leur hydratation est moins retardée que celle des ciments silico-calciques conventionnels. Une démarche analytique, procédant par complexification progressive des systèmes étudiés, est mise en œuvre. Ainsi, l'hydratation de ciments sulfo-alumineux à forte teneur en ye'elimite est-elle successivement étudiée en présence (i) de sels de lithium, (ii) d'hydroxyde de lithium et de borate de sodium, et (iii) d'hydroxyde de lithium et de résines boratées. L'approche expérimentale est complétée par des simulations thermodynamiques s'appuyant sur une base de données développée pour les besoins de l'étude. Il apparaît que les ions lithium accélèrent l'hydratation du ciment sulfo-alumineux en diminuant la durée de la période d'inertie thermique. Le mécanisme mis en jeu implique la précipitation d'un hydroxyde mixte d'aluminium et de lithium. Au contraire, le borate de sodium ralentit l'hydratation du ciment sulfo-alumineux en augmentant la durée de la période d'inertie thermique. Une espèce riche en bore et sodium, l'ulexite, précipite transitoirement dès le début de l'hydratation. En sa présence, la dissolution de la ye'elimite reste lente. Lors de l'ajout simultané d'hydroxyde de lithium et de borate de sodium dans la solution de gâchage, les mécanismes observés pour chacune des espèces considérées séparément se superposent. Un troisième processus vient s'ajouter dans le cas d'un ciment non gypsé : le lithium favorise la formation initiale d'une phase AFm boratée qui disparaît au profit d'une phase AFt boratée lorsque l'hydratation s'accélère. Les résultats obtenus permettent in fine de proposer une première formulation d'enrobage de résines boratées dont les propriétés sont compatibles avec les exigences requises pour une matrice de conditionnement sur la durée de l'étude. / In pressurized water reactors, a solution of boric acid, the pH of which is controlled by the addition of lithium hydroxide, is injected in the primary circuit. Boron acts as a neutron moderator and helps controlling the fission reactions. The primary coolant is purified by flowing through columns of ion exchange resins. These resins are periodically renewed and constitute a low-level radioactive waste. In addition to radionuclides, they mainly contain borate and lithium ions. They are currently encapsulated in an organic matrix before being stored in a near-surface repository. An evolution of the process is considered, involving the replacement of the organic matrix by a mineral one.In this PhD study, the potential of calcium sulfoaluminate cements (CSAC) to solidify / stabilize borated resins in the presence of lithium is investigated. These binders have the advantage to form hydrates which can incorporate borate ions in their structure, and their hydration is less retarded than that of Portland cement.An analytical approach is adopted, based on a progressive increase in the complexity of the investigated systems. Hydration of ye'elimite-rich CSAC is thus successively investigated in the presence of (i) lithium salts, (ii) lithium hydroxide and sodium borate, and (iii) lithium hydroxide and borated ion exchange resins. The experimental investigation is supplemented by thermodynamic modelling using a database specially developed for the needs of the study.Lithium ions are shown to accelerate CSAC hydration by decreasing the duration of the period of low thermal activity. The postulated mechanism involves the precipitation of lithium-containing aluminum hydroxide. On the contrary, sodium borate retards CSAC hydration by increasing the duration of the period of low thermal activity. Ulexite, a poorly crystallized mineral containing sodium and borates, transiently precipitates at early age. As long as ulexite is present, dissolution of ye'elimite is strongly slowed down. When sodium borate and lithium hydroxide are simultaneously introduced in the mixing solution, these two mechanisms are superimposed. With a gypsum-free cement, a third process is additionally observed: lithium promotes the initial precipitation of a borated AFm phase which is later converted into a borated AFt phase when hydration accelerates.Finally, based on the achieved results, a cement-based formulation is designed for the encapsulation of borated resins. Its properties fulfill the requirements for a conditioning matrix over the duration of the study.
|
9 |
Synthesis of portland cement and calcium sulfoaluminate-belite cement for sustainable development and performanceChen, Irvin Allen 01 June 2010 (has links)
Portland cement concrete, the most widely used manufactured material in the world, is made primarily from water, mineral aggregates, and portland cement. The production of portland cement is energy intensive, accounting for 2% of primary energy consumption and 5% of industrial energy consumption globally. Moreover, Portland cement manufacturing contributes significantly to greenhouse gases and accounts for 5% of the global CO2 emissions resulting from human activity. The primary objective of this research was to explore methods of reducing the environmental impact of cement production while maintaining or improving current performance standards. Two approaches were taken, 1.) incorporation of waste materials in portland cement synthesis, and 2.) optimization of an alternative environmental friendly binder, calcium
sulfoaluminate-belite cement. These approaches can lead to less energy consumption, less emission of CO2, and more reuse of industrial waste materials for cement manufacturing. In the portland cement part of the research, portland cement clinkers conforming to the compositional specifications in ASTM C 150 for Type I cement were successfully synthesized from reagent-grade chemicals with 0% to 40% fly ash and 0% to 60% slag incorporation (with 10% intervals), 72.5% limestone with 27.5% fly ash, and 65% limestone with 35% slag. The synthesized portland cements had similar early-age hydration behavior to commercial portland cement. However, waste materials significantly affected cement phase formation. The C3S–C2S ratio decreased with increasing amounts of waste materials incorporated. These differences could have implications on proportioning of raw materials for cement production when using waste materials. In the calcium sulfoaluminate-belite cement part of the research, three calcium sulfoaluminate-belite cement clinkers with a range of phase compositions were successfully synthesized from reagent-grade chemicals. The synthesized calcium sulfoaluminate-belite cement that contained medium C4A3 S and C2S contents showed good dimensional stability, sulfate resistance, and compressive strength development and was considered the optimum phase composition for calcium sulfoaluminate-belite cement in terms of comparable performance characteristics to portland cement. Furthermore, two calcium sulfoaluminate-belite cement clinkers were successfully synthesized from natural and waste materials such as limestone, bauxite, flue gas desulfurization sludge, Class C fly ash, and fluidized bed ash proportioned to the optimum calcium sulfoaluminate-belite cement synthesized from reagent-grade chemicals. Waste materials composed 30% and 41% of the raw ingredients. The two calcium sulfoaluminate-belite cements synthesized from natural and waste materials showed good dimensional stability, sulfate resistance, and compressive strength development, comparable to commercial portland cement. / text
|
10 |
Approche performantielle et microstructurale de la durabilité de bétons à base de ciments sulfoalumineux-bélitiques ferriques / Microstructural and performance-based approach of the durability of belite-ye’elimite-ferrite cements based concretesSchmitt, Emmanuel 20 October 2014 (has links)
Les ciments sulfoalumineux (CSA) peuvent être une solution à l’amélioration de l’impact environnemental des bétons, grâce aux faibles consommations énergétiques et émissions de CO2 lors de leur fabrication. Leurs propriétés expansives, de rapidité de prise et de montée en résistance participent également à l’intérêt grandissant dans les domaines de la construction et de la préfabrication en béton pour ce type de liant. Toutefois, la durabilité des bétons sulfoalumineux reste encore méconnue ou discutée, notamment en milieux acides et face à la corrosion des armatures, en ambiance marine et par carbonatation. Les travaux présentés dans cette thèse se proposent ainsi d’étudier et de comparer la durabilité face à ces attaques, de bétons sulfoalumineux à celle de bétons de référence à base de CEM I et de CEM III/B. Ils s’appuient sur des caractérisations performantielles (indicateurs de durabilité, essais performantiels en conditions accélérées ou naturelles) et microstructurales (phases solides, porosité). Au préalable, l’application des caractérisations sus-citées aux bétons sulfoalumineux est vérifiée et discutée. La bonne résistance des bétons sulfoalumineux aux milieux acides est observée lors d’essais de lixiviation dynamique, à température et pH régulés. L’étude de la pénétration des chlorures (migration en régime permanent et transitoire, isothermes de fixation, exposition en zone de marnage) et de la carbonatation (naturelle et accélérée) de bétons à base de 8 ciments sulfoalumineux de laboratoire différents a permis d’établir des moyens d’améliorer leur durabilité potentielle. Ces moyens ont été appliqués à la fabrication d’un ciment industriel performant, dont la bonne durabilité reste toutefois à confirmer définitivement en conditions réelles. / Calcium sulfoaluminate (CSA) cements can be a solution to improve the environmental impact of concrete, thanks to the lower energy consumption and CO2 emission during their production. Their expansive, fast setting and rapid hardening properties contribute to the growing interest of engineers for concrete construction and prefabrication. However, the durability of sulfoaluminate concretes is not clearly assessed yet, especially in acidic and marine environments, as well as carbonation and chloride induced rebars corrosion. Thus, the aim of this thesis is to study and compare the durability, related to these attacks, of concretes made with CSA cements to ordinary Portland and GGBS cements based reference concretes. This study is founded on microstructural (solid phases, porosity) and performancial (durability indicators, natural and accelerated tests) characterization. Beforehand, the application of these characterizations to CSA concretes is verified and discussed. These show a good resistance to acidic environments when submitted to dynamic leaching tests at pH 3 and 5. The study of chloride ingress (steady and non-steady state migration, binding isotherms and tidal zone exposition) and carbonation (natural and accelerated) in concretes of 8 different laboratory CSA cements enabled us to find achievable means to improve their potential durability. These means were applied to the production of a performant industrial CSA cement, whose good durability has still to be assessed on field conditions.
|
Page generated in 0.0662 seconds