Spelling suggestions: "subject:"calculus off variations."" "subject:"calculus oof variations.""
141 |
Problèmes de transport optimal avec pénalisation en gradient / Optimal transport problems with gradient penalizationLouet, Jean 02 July 2014 (has links)
Le problème du transport optimal, originellement introduit par Monge au 18ème siècle, consiste à minimiser l'énergie nécessaire au déplacement d'une masse dont la répartition est donnée vers une autre masse dont la répartition est elle aussi donnée; mathématiquement, cela se traduit par : trouver le minimiseur de l'intégrale de c(x,T(x)) (où c est le coût de transport de x vers T(x)) parmi toutes les applications T à mesure image prescrite.Cette thèse est consacrée à l'étude de problèmes variationnels similaires où l'on fait intervenir la matrice jacobienne de la fonction de transport, c'est-à-dire que le coût dépend de trois variables c(x,T(x),DT(x)) ; il s'agit typiquement de rajouter l'intégale de |DT(x)|^2 à la fonctionnelle afin d'obtenir une pénalisation Sobolev. Ce type de problème trouve ses motivations en mécanique des milieux continus, élasticité incompressible ou en analyse de forme et appelle d'un point de vue mathématique une approche totalement différente de celle du problème de transport usuel.Les questions suivantes sont envisagées :- bonne définition du problème, notamment de l'énergie de Dirichlet, via les espaces de Sobolev par rapport à une mesure, et résultats d'existence de minimiseurs ;- caractérisation de ces minimiseurs : optimalité du transport croissant sur la droite réelle, et approche du type équation d'Euler-Lagrange en dimension quelconque ;- sélection d'un minimiseur via une procédure de pénalisation du type Gamma-convergence (l'énergie de Dirichlet est mutipliée par un petit paramètre) lorsque le coût de transport est le coût de Monge donné par la distance, pour lequel l'application de transport optimale n'est pas unique ;- autres approches du problème et perspectives : formulation dynamique du type Benamou-Brenier, et formulation duale similaire à celle de Kantorovitch dans le cas du problème du transport optimal usuel. / The optimal transportation problem was originally introduced by Monge in the 18th century; it consists in minimizing the total energy of the displacement of a given repartition of mass onto another given repartition of mass. This is mathematically expressed by: find the minimizer of the integral of c(x,T(x)) (where c(x,T(x)) is the cost to send x onto T(x)) among the maps T with prescribed image measure.This thesis is devoted to similar variational problems, which involve the Jacobian matrix of the transport map, meaning that the cost depends on three variables c(x,T(x),DT(x)); we typically add the Dirichlet energy to the transport functional in view to obtain a Sobolev-type penalization. This kind of constraints finds its motivations in continuum mechanics, incompressible elasticity or shape analysis, and a quite different mathematical approach than in the usual theory of optimal transportation is needed.We consider the following questions:- proper definition of the problem, in particular of the Dirichlet energy, thanks to the theory of Sobolev spaces with respect to a measure, and existence results;- characterizations of these minimizers: optimality of the monotone transport map on the real line, and Euler-Lagrange-like approach in any dimension;- selection of a minimizer via a Gamma-convergence-like penalization procedure (we multiply the Dirihlet energy with a vanishing positive parameter) where the transport cost is the Monge cost given by the distance (for which the optimal transport map is not unique);- other related problems and perspectives: dynamic Benamou-Brenier-like formulation, and dual Kantorovich-like formulation.
|
142 |
Selection mechanisms for microstructures and reversible martensitic transformationsDella Porta, Francesco M. G. January 2018 (has links)
The work in this thesis is inspired by the fabrication of Zn<sub>45</sub>Au<sub>30</sub>Cu<sub>25</sub>. This is the first alloy undergoing ultra-reversible martensitic transformations and closely satisfying the cofactor conditions, particular conditions of geometric compatibility between phases, which were conjectured to influence reversibility. With the aim of better understanding reversibility, in this thesis we study the martensitic microstructures arising during thermal cycling in Zn<sub>45</sub>Au<sub>30</sub>Cu<sub>25</sub>, which are complex and different in every phase transformation cycle. Our study is developed in the context of continuum mechanics and nonlinear elasticity, and we use tools from nonlinear analysis. The first aim of this thesis is to advance our understanding of conditions of geometric compatibility between phases. To this end, first, we further investigate cofactor conditions and introduce a physically-based metric to measure how closely these are satisfied in real materials. Secondly, we introduce further conditions of compatibility and show that these are nearly satisfied by some twins in Zn<sub>45</sub>Au<sub>30</sub>Cu<sub>25</sub>. These might influence reversibility as they improve compatibility between high and low temperature phases. Martensitic phase transitions in Zn<sub>45</sub>Au<sub>30</sub>Cu<sub>25</sub> are a complex phenomenon, especially because the crystalline structure of the material changes from a cubic to a monoclinic symmetry, and hence the energy of the system has twelve wells. There exist infinitely many energy-minimising microstructures, limiting our understanding of the phenomenon as well as our ability to predict it. Therefore, the second aim of this thesis is to find criteria to select physically-relevant energy minimisers. We introduce two criteria or selection mechanisms. The first involves a moving mask approximation, which allows one to describe some experimental observations on the dynamics, while the second is based on using vanishing interface energy. The moving mask approximation reflects the idea of a moving curtain covering and uncovering microstructures during the phase transition, as appears to be the case for Zn<sub>45</sub>Au<sub>30</sub>Cu<sub>25</sub>, and many other materials during thermally induced transformations. We show that the moving mask approximation can be framed in the context of a model for the dynamics of nonlinear elastic bodies. We prove that every macroscopic deformation gradient satisfying the moving mask approximation must be of the form 1 + a(x) ⊗ n(x), for a.e. x. With regards to vanishing interface energy, we consider a one-dimensional energy functional with three wells, which simplifies the physically relevant model for martensitic transformations, but at the same time highlights some key issues. Our energy functional admits infinitely many minimising gradient Young measures, representing energy-minimising microstructures. In order to select the physically relevant ones, we show that minimisers of a regularised energy, where the second derivatives are penalised, generate a unique minimising gradient Young measure as the perturbation vanishes. The results developed in this thesis are motivated by the study of Zn<sub>45</sub>Au<sub>30</sub>Cu<sub>25</sub>, but their relevance is not limited to this material. The results on the cofactor conditions developed here can help for the understanding of new alloys undergoing ultra-reversible transformations, and as a guideline for the fabrication of future materials. Furthermore, the selection mechanisms studied in this work can be useful in selecting physically relevant microstructures not only in Zn<sub>45</sub>Au<sub>30</sub>Cu<sub>25</sub>, but also in other materials undergoing martensitic transformations, and other phenomena where pattern formation is observed.
|
143 |
Lattice structures with pivoted beams : Homogenization and nonlinear elasticity results / Structures en treillis avec poutres pivotantes : homogénéisation et résultats d'élasticité non-linéaireDella Corte, Alessandro 15 December 2017 (has links)
Cette thèse est consacrée à la modélisation des structures fibreuses avec des milieuxcontinus généralisés. Dans l’Introduction, l'état de l'art concernant les milieuxcontinus généralisée et applications aux structures fibreuses sont décrits et lesproblèmes ouverts pertinents sont mis en évidence. Dans le Chapitre 1 et 2, uneprocédure d'homogénéisation rigoureuse basée sur des arguments de Gammaconvergenceest appliquée à une structure en treillis et à un model de poutrediscrétisé. Dans le Chapitre 3, un traitement variationnel est utilisé pour formuler unapproche favorable du point de vue numérique. Dans le Chapitre 4 sont discutées lesrésultats expérimentaux concernant le comportement de la structure dans différentstypes de déformation. Cela à motivé les études effectuées dans le Chapitre 5, ou lesMéthodes directes de calcul des variations sont appliquées à poutres d’Euler engrandes déformations. / This thesis focuses on the mathematical modeling of fibrous structures having somepeculiar properties (high strength-to-weight ratio and very good toughness infracture), whose mechanical behavior escapes from standard Cauchy elasticity. Inparticular, it addresses cases in which the presence of a microstructure, consisting ofregularly spaced pivoted beams, entails effects that are well described by generalizedcontinuum models, i.e. models in which the deformation energy density depends notonly on the gradient of the placement but also on the second (and possibly higher)gradients of it. In the Introduction, the state of the art concerning generalizedcontinua and their applications for the description of fibrous structures is describedand some relevant open problems are highlighted. In Chapter 1 and 2 a rigoroushomogenization procedure based on Gamma-convergence arguments is performedfor a lattice (truss-like) structure and for a discrete 1D system (Hencky-type beammodel). In Chapter 3, a variational treatment is employed to formulate acomputationally convenient approach. In Chapter 4 some experimental resultsconcerning the behavior of the structure in various kinds of deformation arediscussed. This motivated the investigation performed in Chapter 5, in which DirectMethods of Calculus of Variations are applied to Euler beams in large deformationsunder distributed load.
|
144 |
Sur le comportement effective, l'évolution de microstructure et la stabilité macroscopique des composite élastomères.Lopez-Pamies, Oscar 20 October 2006 (has links) (PDF)
Les composites élastomères sont actuellement utilisés dans de nombreuses applications commerciales et ont montré de grandes promesses pour l'utilisation dans les nouvelles technologies. Cela soulève la pratique, ainsi que théorique nécessaire pour comprendre le lien entre la microstructure sous-jacente de composites en élastomère et de leurs propriétés mécaniques et physiques, et comment celui-ci peut être améliorée avec des changements dans l'ancienne. Dans ce contexte, l'objectif principal de cette thèse est le développement d'une analyse, le cadre homogénéisation non linéaire pour déterminer la réponse globale des composites élastomères soumis à des déformations finies. Les comptes-cadre pour l'évolution de la microstructure sous-jacente, ce qui entraîne des changements dans la géométrie finie induite par la charge appliquée. Ce point est essentiel que l'évolution de la microstructure peut avoir un assouplissement significatif géométrique (ou raidissage) effet sur la réponse globale du matériau, qui, à son tour, peut conduire à l'élaboration éventuelle d'instabilités macroscopiques. Le concept principal derrière la méthode d'homogénéisation non linéaire proposé est la construction de principes variationnels appropriés en utilisant l'idée d'un "portail composite linéaire», qui a finalement permettre la conversion des estimations disponibles homogénéisation linéaire dans les estimations analytiques pour la grande déformation de réponse global de l' non linéaire des composites en élastomère. Cette thèse comprend des applications de la théorie proposée pour les différentes classes des élastomères renforcés et poreux aléatoire et des microstructures périodiques. Une analyse complète du comportement efficace, l'évolution de la microstructure et le développement d'instabilités macroscopiques est prévu pour toutes ces applications.
|
145 |
A Study of Variable Thrust, Variable Specific Impulse Trajectories for Solar System ExplorationSakai, Tadashi 07 December 2004 (has links)
A study has been performed to determine the advantages and disadvantages of variable thrust and variable specific impulse (Isp) trajectories for solar system exploration.
There have been several numerical research efforts for variable thrust, variable Isp, power-limited trajectory optimization problems. All of these results conclude that variable thrust, variable Isp (variable specific impulse, or VSI) engines are superior to constant thrust, constant Isp (constant specific impulse, or CSI) engines. However, most of these research efforts assume a mission from Earth to Mars, and some of them further assume that these planets are circular and coplanar. Hence they still lack the generality.
This research has been conducted to answer the following questions:
- Is a VSI engine always better than a CSI engine or a high thrust engine for any mission to any planet with any time of flight considering lower propellant mass as the sole criterion?
- If a planetary swing-by is used for a VSI trajectory, is the fuel savings of a VSI swing-by trajectory better than that of a CSI swing-by or high thrust swing-by trajectory?
To support this research, an unique, new computer-based interplanetary trajectory calculation program has been created. This program utilizes a calculus of variations algorithm to perform overall optimization of thrust, Isp, and thrust vector direction along a trajectory that minimizes fuel consumption for interplanetary travel. It is assumed that the propulsion system is power-limited, and thus the compromise between thrust and Isp is a variable to be optimized along the flight path. This program is capable of optimizing not only variable thrust trajectories but also constant thrust trajectories in 3-D space using a planetary ephemeris database. It is also capable of conducting planetary swing-bys.
Using this program, various Earth-originating trajectories have been investigated and the optimized results have been compared to traditional CSI and high thrust trajectory solutions. Results show that VSI rocket engines reduce fuel requirements for any mission compared to CSI rocket engines. Fuel can be saved by applying swing-by maneuvers for VSI engines, but the effects of swing-bys due to VSI engines are smaller than that of CSI or high thrust engines.
|
146 |
Shooting method based algorithms for solving control problems associated with second order hyperbolic PDEsLuo, Biyong. January 2001 (has links)
Thesis (Ph. D.)--York University, 2001. Graduate Programme in Mathematics. / Typescript. Includes bibliographical references (leaves 114-119). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://wwwlib.umi.com/cr/yorku/fullcit?pNQ66358.
|
147 |
Multiplicidade de soluções para sistemas gradientes semilineares ressonantes / Multiplicity of solutions for semilinear resonance gradient systemsSilva, Edcarlos Domingos da 05 November 2009 (has links)
Orientadores: Djairo Guedes de Figueiredo, Francisco Odair Vieira de Paiva / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-13T06:21:00Z (GMT). No. of bitstreams: 1
Silva_EdcarlosDomingosda_D.pdf: 993704 bytes, checksum: d68d4e58a916f7d2428f76207a8cb4da (MD5)
Previous issue date: 2009 / Resumo: Nesta tese lidamos com três classes de sistemas gradientes ressonantes. A primeira classe é um sistema com ressonância do tipo Landesman-Lazer. A segunda classe é um sistema fortemente ressonante enquanto a terceira classe é um sistema com ressonância no infinito e na origem. Analisamos as questões de existência e multiplicidade de soluções em cada uma das classes mencionadas. Para obtermos os nossos principais resultados aplicamos alguns métodos variacionais, tais como, teoremas Min-Max e minimização. Além disso, usamos a Teoria de Morse para distinguirmos soluções dados por métodos variacionais distintos. / Abstract: In this thesis we deal with three classes of gradient elliptic systems with resonance. The first class is a resonant system of Landesman-Lazer type. The second class is a system of strong resonance type while the third class is a system with resonance at
infinity and at origin. We are concerned about the questions of existence and multiplicity of solutions in each of the classes mentioned. To obtain our main results we apply variational methods, such as, Min-max theorems and minimization. Moreover, we use Morse Theory to distinguish the solutions given by different variational methods. / Doutorado / Doutor em Matemática
|
148 |
Etude d'un modèle de champ moyen en électrodynamique quantique / Study of a mean-field model in quantum electrodynamicsSok, Jérémy 08 July 2014 (has links)
Les modèles de champ moyen en QED apparaissent naturellement dans la modélisation du nuage électronique des atomes lourds. Cette modélisation joue un rôle croissant en physique et chimie quantique, les effets relativistes ne pouvant pas être négligés pour ces atomes. En physique quantique relativiste, le vide est un milieu polarisable, susceptible de réagir à la présence de champ électromagnétique.On se place dans le cadre du modèle variationnel de Bogoliubov-Dirac-Fock (BDF) qui est une approximation de champ moyen de la QED sans photon (en particulier, les interactions considérées sont purement électrostatiques).Il est à noter que pour donner un sens au modèle BDF, il est nécessaire d'introduire une régularisation ultra-violette. Il se produit un phénomène de renormalisation de charge due à la polarisation du vide : la charge de l'électron observée dépend de la charge « nue » de l'électron et du paramètre de régularisation. On étudie rigoureusement ce phénomène ainsi que le problème de la renormalisation de la masse. Cette dernière est en lien avec l'existence d'un état fondamental pour le système d'un électron dans le vide, en l'absence de tout champ extérieur. En revanche, on montre l'absence de minimiseurs dans le cas de deux électrons.Enfin, on exhibe des points critiques de l'énergie BDF, interprétés comme des états excités du vide. On met en évidence le positronium, système métastable d'un électron et de son antiparticule le positron, ainsi que le dipositronium, molécule métastable constituée de deux électrons et de deux positrons.Les méthodes utilisées sont variationnelles (concentration-compacité, lemme de Borwein et Preiss). / In QED, mean-field models appear in the modelling of the electron clouds of heavy atoms. This modelling plays a increasing role in physics and in quantum chemistry: relativistic effects cannot be neglected in these atoms. In relativistic quantum physics the vacuum is a polarizable medium that can react to the presence of an electromagnetic field.We consider the so-called Bogoliubov-Dirac-Fock (BDF) model, a variational model which is a mean-field approximation of no-photon QED (in particular the interactions are purely electrostatic).We point out that an ultraviolet regularisation is necessary to properly define the BDF model. The vacuum polarisation leads to a \emph{renormalisation} phenomenon, the "observed" charge of the electron depends on its "bare" charge and the regularisation parameter. We rigorously study both the problem of charge renormalisation and mass renormalisation. This last one is linked to the existence of ground state in the case of an electron in the vacuum, without any external field. In contrast, we show there is no ground state in the case of two electrons.Finally we exhibit some critical points of the BDF energy which are interpreted as vacuum excited states. In particular, there are the positronium (a metastable system constituted by an electron and its antiparticle called the positron) and the dipositronium (a metastable molecule constituted by two electrons and two positrons).The methods that we use are variational (concentration-compactness, Borwein and Preiss's Lemma).
|
149 |
Existencia e multiplicidade de soluções para a Equação de Schrodinger não-linear em Rn / Existence and multiplicity of solutions for the non-linear Schrodinger Equation in RnMalavazi, Mazílio Coronel, 1983- 16 February 2007 (has links)
Orientador: Francisco Odair Vieira de Paiva, Aloisio Freiria Neves / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-08T02:49:07Z (GMT). No. of bitstreams: 1
Malavazi_MazilioCoronel_M.pdf: 786706 bytes, checksum: 9e4d9aae3bd0fdd46d7adf64ce8958ef (MD5)
Previous issue date: 2007 / Resumo: Nesta dissertação obtemos resultados de multiplicidade de soluções fracas não triviais para o problema -Du + V (x)u = f (x; u); x 2 RN; onde V é contínua, f é C1, com f (x; 0) = 0 e f é assintoticamente linear. Utilizamos métodos variacionais e a teoria de grupos críticos, para obtermos e distinguirmos as soluções. Apresentamos também resultados de existência de solução não trivial para o problema -Du + V (x)u = f (u); x 2 RN; onde V e f são funções contínuas. Utilizamos as técnicas de concentração de compacidade e de aproximação do domínio por subconjuntos limitados, para obtermos a solução / Abstract: In this dissertation we get resulted of multiplicity of not trivial weak solutions for the problem -Du + V (x)u = f (x; u); x 2 RN; where V is continuous, f is C1, with f (x; 0) = 0 and f is asymptotically linear. We use variationals methods and the theory of critical groups, to get and to distinguish the solutions. We also present results of existence of not trivial solution for the problem -Du + V (x)u = f (u); x 2 RN; where V and f are continuous functions. We use the techniques of concentration of compactness and approximation of the domain for bounded subsets, to get the solution / Mestrado / Mestre em Matemática
|
150 |
Návrh optimalizované vrtule pro bezpilotní prostředky typu multicopter / Design of an optimized multicopter propellerZeman, Petr January 2019 (has links)
Výdrž a účinnost multicopterů jsou z velké části ovlivněny výběrem pohonného systému, zejména pak vrtulí. Avšak u malých bezpilotních prostředků, které většinu času stráví ve visu (např. multicoptery), pracují vrtule při nízkých Reynoldsových číslech, případně i v režimu odtržení. Tyto problémy a efekty spojené s rotací jsou řešeny pomocí korekcí aerodynamických koeficientů a aplikovány na vírovou teorii. Tento přístup vede k významnému zvýšení přesnosti výpočtu leteckých vrtulí. Nicméně pro nulovou rychlost nabíhajícího proudu mají tyto korekce tendenci nadhodnocovat hodnoty tahu vrtule. Pro snížení výpočetní náročnosti a času nezbytného k získání potřebných aerodynamických vlastností pro různá Reynoldsova a Machova čísla jsou použity neuronové sítě. Celý proces je implementován do prostředí MATLAB (včetně grafického rozhraní, neuronových sítí a adaptivních algoritmů) a validován na pěti různých vrtulích k prokázání, že vypočtené výkony vrtulí se shodují s experimentálními daty. Variační počet byl vybrán jako metoda pro návrh optimalizované vrtule, jelikož s jeho využitím lze navrhnout vrtuli s maximálním tahem pro zadaný výkon. Pro ověření zvoleného přístupu byla navrhnuta optimalizovaná vrtule, jejíž koeficient tahu je vyšší než odpovídající vrtule, se kterou je srovnávána, při zachování stejné hodnoty koeficientu výkonu.
|
Page generated in 0.1721 seconds