Spelling suggestions: "subject:"calculus off variations."" "subject:"calculus oof variations.""
181 |
MODELISATION MATHEMATIQUE ET SIMULATION NUMERIQUE DU DRAPE D'UN TEXTILEFare, Nadjombe 26 June 2002 (has links) (PDF)
L'objectif de ce travail est d'étudier la dé<br />formation d'un tissu posé sur un support bi- ou tri-dimensionnel et soumis à<br />son propre poids.<br />Dans la première partie, nous établissons les équations<br />d'équilibre de ce problème dans le cas général et<br />introduisons deux modèles mathématiques. Le premier est un<br />modèle membranaire non-linéaire, dont l'analyse mathématique<br />conduit au calcul de l'enveloppe quasi-convexe de la densité<br />d'énergie associée. Le deuxième modèle (modèle<br />membrane-flexion non-linéaire) est obtenu en ajoutant un terme<br />régularisant à une fonctionnelle énergie non coercive. Nous<br />prouvons l'existence d'au moins une solution de ce problème de<br />minimisation, en utilisant les techniques du Calcul des Variations. Enfin,<br />nous établissons l'existence de solutions pour le problème de<br />drapé tri-dimensionnel.<br />La seconde partie est consacrée à la résolution numérique des diffé%<br />rents modèles élaborés dans la première partie, au moyen d'une méthode ité%<br />rative de descente couplée avec une méthode multigrille, afin d'accélérer la<br />convergence de l'algorithme. Nous montrons que le problème discret admet au<br />moins une solution. Enfin, nous prouvons la convergence théorique d'une<br />sous-suite de solutions discrètes vers une solution du problème continu,<br />moyennant une hypothèse de densité.
|
182 |
Variational models in martensitic phase transformations with applications to steelsMuehlemann, Anton January 2016 (has links)
This thesis concerns the mathematical modelling of phase transformations with a special emphasis on martensitic phase transformations and their application to the modelling of steels. In Chapter 1, we develop a framework that determines the optimal transformation strain between any two Bravais lattices and use it to give a rigorous proof of a conjecture by E.C. Bain in 1924 on the optimality of the so-called Bain strain. In Chapter 2, we review the Ball-James model and related concepts. We present some simplification of existing results. In Chapter 3, we pose a conjecture for the explicit form of the quasiconvex hull of the three tetragonal wells, known as the three-well problem. We present a new approach to finding inner and outer bounds. In Chapter 4, we focus on highly compatible, so called self-accommodating, martensitic structures and present new results on their fine properties such as estimates on their minimum complexity and bounds on the relative proportion of each martensitic variant in them. In Chapter 5, we investigate the contrary situation when self-accommodating microstructures do not exist. We determine, whether in this situation, it is still energetically favourable to nucleate martensite within austenite. By constructing different types of inclusions, we find that the optimal shape of an inclusion is flat and thin which is in agreement with experimental observation. In Chapter 6, we introduce a mechanism that identifies transformation strains with orientation relationships. This mechanism allows us to develop a simpler, strain-based approach to phase transformation models in steels. One novelty of this approach is the derivation of an explicit dependence of the orientation relationships on the ratio of tetragonality of the product phase. In Chapter 7, we establish a correspondence between common phenomenological models for steels and the Ball-James model. This correspondence is then used to develop a new theory for the (5 5 7) lath transformation in low-carbon steels. Compared to existing theories, this new approach requires a significantly smaller number of input parameters. Furthermore, it predicts a microstructure morphology which differs from what is conventionally believed.
|
183 |
Variable selection and structural discovery in joint models of longitudinal and survival dataHe, Zangdong January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Joint models of longitudinal and survival outcomes have been used with increasing frequency in clinical investigations. Correct specification of fixed and random effects, as well as their functional forms is essential for practical data analysis. However, no existing methods have been developed to meet this need in a joint model setting. In this dissertation, I describe a penalized likelihood-based method with adaptive least absolute shrinkage and selection operator (ALASSO) penalty functions for model selection. By reparameterizing variance components through a Cholesky decomposition, I introduce a penalty function of group shrinkage; the penalized likelihood is approximated by Gaussian quadrature and optimized by an EM algorithm. The functional forms of the independent effects are determined through a procedure for structural discovery. Specifically, I first construct the model by penalized cubic B-spline and then decompose the B-spline to linear and nonlinear elements by spectral decomposition. The decomposition represents the model in a mixed-effects model format, and I then use the mixed-effects variable selection method to perform structural discovery. Simulation studies show excellent performance. A clinical application is described to illustrate the use of the proposed methods, and the analytical results demonstrate the usefulness of the methods.
|
184 |
Stabilised finite element approximation for degenerate convex minimisation problemsBoiger, Wolfgang Josef 19 August 2013 (has links)
Infimalfolgen nichtkonvexer Variationsprobleme haben aufgrund feiner Oszillationen häufig keinen starken Grenzwert in Sobolevräumen. Diese Oszillationen haben eine physikalische Bedeutung; Finite-Element-Approximationen können sie jedoch im Allgemeinen nicht auflösen. Relaxationsmethoden ersetzen die nichtkonvexe Energie durch ihre (semi)konvexe Hülle. Das entstehende makroskopische Modell ist degeneriert: es ist nicht strikt konvex und hat eventuell mehrere Minimalstellen. Die fehlende Kontrolle der primalen Variablen führt zu Schwierigkeiten bei der a priori und a posteriori Fehlerschätzung, wie der Zuverlässigkeits- Effizienz-Lücke und fehlender starker Konvergenz. Zur Überwindung dieser Schwierigkeiten erweitern Stabilisierungstechniken die relaxierte Energie um einen diskreten, positiv definiten Term. Bartels et al. (IFB, 2004) wenden Stabilisierung auf zweidimensionale Probleme an und beweisen dabei starke Konvergenz der Gradienten. Dieses Ergebnis ist auf glatte Lösungen und quasi-uniforme Netze beschränkt, was adaptive Netzverfeinerungen ausschließt. Die vorliegende Arbeit behandelt einen modifizierten Stabilisierungsterm und beweist auf unstrukturierten Netzen sowohl Konvergenz der Spannungstensoren, als auch starke Konvergenz der Gradienten für glatte Lösungen. Ferner wird der sogenannte Fluss-Fehlerschätzer hergeleitet und dessen Zuverlässigkeit und Effizienz gezeigt. Für Interface-Probleme mit stückweise glatter Lösung wird eine Verfeinerung des Fehlerschätzers entwickelt, die den Fehler der primalen Variablen und ihres Gradienten beschränkt und so starke Konvergenz der Gradienten sichert. Der verfeinerte Fehlerschätzer konvergiert schneller als der Fluss- Fehlerschätzer, und verringert so die Zuverlässigkeits-Effizienz-Lücke. Numerische Experimente mit fünf Benchmark-Tests der Mikrostruktursimulation und Topologieoptimierung ergänzen und bestätigen die theoretischen Ergebnisse. / Infimising sequences of nonconvex variational problems often do not converge strongly in Sobolev spaces due to fine oscillations. These oscillations are physically meaningful; finite element approximations, however, fail to resolve them in general. Relaxation methods replace the nonconvex energy with its (semi)convex hull. This leads to a macroscopic model which is degenerate in the sense that it is not strictly convex and possibly admits multiple minimisers. The lack of control on the primal variable leads to difficulties in the a priori and a posteriori finite element error analysis, such as the reliability-efficiency gap and no strong convergence. To overcome these difficulties, stabilisation techniques add a discrete positive definite term to the relaxed energy. Bartels et al. (IFB, 2004) apply stabilisation to two-dimensional problems and thereby prove strong convergence of gradients. This result is restricted to smooth solutions and quasi-uniform meshes, which prohibit adaptive mesh refinements. This thesis concerns a modified stabilisation term and proves convergence of the stress and, for smooth solutions, strong convergence of gradients, even on unstructured meshes. Furthermore, the thesis derives the so-called flux error estimator and proves its reliability and efficiency. For interface problems with piecewise smooth solutions, a refined version of this error estimator is developed, which provides control of the error of the primal variable and its gradient and thus yields strong convergence of gradients. The refined error estimator converges faster than the flux error estimator and therefore narrows the reliability-efficiency gap. Numerical experiments with five benchmark examples from computational microstructure and topology optimisation complement and confirm the theoretical results.
|
185 |
Contributions au calcul des variations et au principe du maximum de Pontryagin en calculs time scale et fractionnaire / Contributions to calculus of variations and to Pontryagin maximum principle in time scale calculus and fractional calculusBourdin, Loïc 18 June 2013 (has links)
Cette thèse est une contribution au calcul des variations et à la théorie du contrôle optimal dans les cadres discret, plus généralement time scale, et fractionnaire. Ces deux domaines ont récemment connu un développement considérable dû pour l’un à son application en informatique et pour l’autre à son essor dans des problèmes physiques de diffusion anormale. Que ce soit dans le cadre time scale ou dans le cadre fractionnaire, nos objectifs sont de : a) développer un calcul des variations et étendre quelques résultats classiques (voir plus bas); b) établir un principe du maximum de Pontryagin (PMP en abrégé) pour des problèmes de contrôle optimal. Dans ce but, nous généralisons plusieurs méthodes variationnelles usuelles, allant du simple calcul des variations au principe variationnel d’Ekeland (couplé avec la technique des variations-aiguilles), en passant par l’étude d’invariances variationnelles par des groupes de transformations. Les démonstrations des PMPs nous amènent également à employer des théorèmes de point fixe et à prendre en considération la technique des multiplicateurs de Lagrange ou encore une méthode basée sur un théorème d’inversion locale conique. Ce manuscrit est donc composé de deux parties : la Partie 1 traite de problèmes variationnels posés sur time scale et la Partie 2 est consacrée à leurs pendants fractionnaires. Dans chacune de ces deux parties, nous suivons l’organisation suivante : 1. détermination de l’équation d’Euler-Lagrange caractérisant les points critiques d’une fonctionnelle Lagrangienne ; 2. énoncé d’un théorème de type Noether assurant l’existence d’une constante de mouvement pour les équations d’Euler-Lagrange admettant une symétrie ; 3. énoncé d’un théorème de type Tonelli assurant l’existence d’un minimiseur pour une fonctionnelle Lagrangienne et donc, par la même occasion, d’une solution pour l’équation d’Euler-Lagrange associée (uniquement en Partie 2) ; 4. énoncé d’un PMP (version forte en Partie 1, version faible en Partie 2) donnant une condition nécessaire pour les trajectoires qui sont solutions de problèmes de contrôle optimal généraux non-linéaires ; 5. détermination d’une condition de type Helmholtz caractérisant les équations provenant d’un calcul des variations (uniquement en Partie 1 et uniquement dans les cas purement continu et purement discret). Des théorèmes de type Cauchy-Lipschitz nécessaires à l’étude de problèmes de contrôle optimal sont démontrés en Annexe. / This dissertation deals with the mathematical fields called calculus of variations and optimal control theory. More precisely, we develop some aspects of these two domains in discrete, more generally time scale, and fractional frameworks. Indeed, these two settings have recently experience a significant development due to its applications in computing for the first one and to its emergence in physical contexts of anomalous diffusion for the second one. In both frameworks, our goals are: a) to develop a calculus of variations and extend some classical results (see below); b) to state a Pontryagin maximum principle (denoted in short PMP) for optimal control problems. Towards these purposes, we generalize several classical variational methods, including the Ekeland’s variational principle (combined with needle-like variations) as well as variational invariances via the action of groups of transformations. Furthermore, the investigations for PMPs lead us to use fixed point theorems and to consider the Lagrange multiplier technique and a method based on a conic implicit function theorem. This manuscript is made up of two parts : Part A deals with variational problems on time scale and Part B is devoted to their fractional analogues. In each of these parts, we follow (with minor differences) the following organization: 1. obtaining of an Euler-Lagrange equation characterizing the critical points of a Lagrangian functional; 2. statement of a Noether-type theorem ensuring the existence of a constant of motion for Euler-Lagrange equations admitting a symmetry;3. statement of a Tonelli-type theorem ensuring the existence of a minimizer for a Lagrangian functional and, consequently, of a solution for the corresponding Euler-Lagrange equation (only in Part B); 4. statement of a PMP (strong version in Part A and weak version in Part B) giving a necessary condition for the solutions of general nonlinear optimal control problems; 5. obtaining of a Helmholtz condition characterizing the equations deriving from a calculus of variations (only in Part A and only in the purely continuous and purely discrete cases). Some Picard-Lindelöf type theorems necessary for the analysis of optimal control problems are obtained in Appendices.
|
186 |
Berechnungsmodelle zur Beschreibung der Interaktion von bewegtem Sägedraht und IngotLorenz, Michael 25 February 2014 (has links) (PDF)
Die vorliegende Arbeit widmet sich der Aufgabe makroskopische Berechnungsmodelle zur Beschreibung des Drahtsägens zu erarbeiten. Ziel ist es, die wesentlichen Effekte abzubilden und den Einfluss von Prozessparametern auf die Dynamik des Systems zu bestimmen. Ein zentraler Punkt ist die Modellierung des bewegten Sägedrahtes. Durch die dem Kontinuum an den Auflagern aufgeprägte Führungsbewegung sind einerseits die Randbedingungen und andererseits ortsfest auf den Draht wirkende Lasten nichtmateriell. Die korrekte kinematische Beschreibung dieses Sachverhaltes ist essentielle Grundlage für die spätere Anwendung des Prinzips von HAMILTON. Durch die Führungsbewegung, die Formulierung der Kontaktkräfte als Folgelasten und durch explizit zeitabhängige Systemparameter ergibt sich ein kompliziertes Systemverhalten. Die dargestellten Berechnungsergebnisse umfassen Studien zu stationären Lagen, die Berechnung von Eigenfrequenzen, Stabilitätsnachweise des dynamischen Grundzustandes, die Bestimmung von Zeitlösungen und die Simulation des Materialabtrages beim Einschnitt. / The aim of the present thesis is to generate macroscopic models to describe the wire sawing process. The principal purpose is to illustrate basic effects and to investigate the influence of important process parameters relating to the dynamics of the system. A fundamental point is the modeling of the moving wire. Because of the axially movement of the continuum the boundary conditions and spatial acting loads are non-material. The precise kinematical description of this issue is the pre-condition for the correct evaluation of HAMILTON’s principle to characterize the dynamics of the system. The resultant complex system behavior is a consequence of the movement of the wire, of the formulation of the contact forces as follower loads and of explicitly time-dependent model parameters. The results of research contain studies of steady state equilibrium solutions and the proof of their LJAPUNOW stability, the calculation of eigenfrequencies, steady state time solutions under harmonically oscillating contact forces and the simulation of the material removal during the cutting process.
|
187 |
Berechnungsmodelle zur Beschreibung der Interaktion von bewegtem Sägedraht und IngotLorenz, Michael 09 December 2013 (has links)
Die vorliegende Arbeit widmet sich der Aufgabe makroskopische Berechnungsmodelle zur Beschreibung des Drahtsägens zu erarbeiten. Ziel ist es, die wesentlichen Effekte abzubilden und den Einfluss von Prozessparametern auf die Dynamik des Systems zu bestimmen. Ein zentraler Punkt ist die Modellierung des bewegten Sägedrahtes. Durch die dem Kontinuum an den Auflagern aufgeprägte Führungsbewegung sind einerseits die Randbedingungen und andererseits ortsfest auf den Draht wirkende Lasten nichtmateriell. Die korrekte kinematische Beschreibung dieses Sachverhaltes ist essentielle Grundlage für die spätere Anwendung des Prinzips von HAMILTON. Durch die Führungsbewegung, die Formulierung der Kontaktkräfte als Folgelasten und durch explizit zeitabhängige Systemparameter ergibt sich ein kompliziertes Systemverhalten. Die dargestellten Berechnungsergebnisse umfassen Studien zu stationären Lagen, die Berechnung von Eigenfrequenzen, Stabilitätsnachweise des dynamischen Grundzustandes, die Bestimmung von Zeitlösungen und die Simulation des Materialabtrages beim Einschnitt.:1 Einleitung
1.1 Technische Problemstellung und Motivation der Arbeit
1.2 Literaturübersicht
1.3 Thema und Gliederung der Arbeit
2 Theoretische Grundlagen
2.1 Notation und mathematische Grundlagen
2.2 Kinematische Grundlagen der Kontinuumsmechanik
2.2.1 Konfiguration und Betrachtungsweisen
2.2.2 Verformungskinematik
2.2.3 Zeitableitungen
2.3 Variationsrechnung
2.3.1 Grundlagen
2.3.2 Verallgemeinerte Variationen
2.4 Kinetik / Prinzip von HAMILTON
2.5 Diskretisierung von Feldproblemen
2.6 Stabilität stationärer Lösungen
2.6.1 Grundlagen der kinetischen Stabilitätstheorie
2.6.2 Erste Methode von LJAPUNOW
2.6.3 Stabilitätsbetrachtung für bewegte Kontinua
2.7 Zeitlösung
2.7.1 Homogene Lösung der Störungsdifferentialgleichungen
2.7.2 Partikuläre Lösung der Störungsdifferentialgleichungen
3 Mechanisches Modell und Modellvarianten
3.1 Kinematik des Drahtes in LAGRANGE-Koordinaten
3.2 Kinematik des Drahtes in EULER-Koordinaten
3.3 Modell I
3.3.1 Variationsformulierung und Feldgleichungen
3.3.2 Ortsdiskretisierung der Variationsformulierung
3.3.3 Stationäre Lage, Stabilitätsuntersuchung und Zeitlösung
3.4 Modell II
3.4.1 Variationsformulierung und Feldgleichungen
3.4.2 Ortsdiskretisierung der Variationsformulierung
3.4.3 Stationäre Lage, Stabilitätsuntersuchung und Zeitlösung
3.5 Numerische Umsetzung
3.6 Berechnungsergebnisse
3.6.1 Stationäre Lagen
3.6.2 Eigenfrequenzen
3.6.3 Stabilitätsuntersuchungen
3.6.4 Zeitlösungen
4 Ankopplung des Ingot und Modellierung des Materialabtrages
4.1 FE- Modell des Gesamtblocks
4.1.1 Bestimmung der mechanischen Eigenschaften des Ingot
4.1.2 Berechnungsergebnisse
4.2 Strukturmechanisches Modell des Gesamtblocks und Ankopplung an den Sägedraht
4.3 Variationsformulierungen der gekoppelten Gesamtsysteme unter Berücksichtigung des Materialabtrages
4.3.1 Gesamtmodell I
4.3.2 Gesamtmodell II
4.4 Simulation des Schnittvorganges
5 Zusammenfassung / Ausblick
6 Verzeichnisse
6.1 Literaturverzeichnis
6.1.1 Allgemeine Literatur
6.1.2 Literatur zum Thema Drahtsägen
6.1.3 Literatur zum Thema bewegte Kontinua
Anhang / The aim of the present thesis is to generate macroscopic models to describe the wire sawing process. The principal purpose is to illustrate basic effects and to investigate the influence of important process parameters relating to the dynamics of the system. A fundamental point is the modeling of the moving wire. Because of the axially movement of the continuum the boundary conditions and spatial acting loads are non-material. The precise kinematical description of this issue is the pre-condition for the correct evaluation of HAMILTON’s principle to characterize the dynamics of the system. The resultant complex system behavior is a consequence of the movement of the wire, of the formulation of the contact forces as follower loads and of explicitly time-dependent model parameters. The results of research contain studies of steady state equilibrium solutions and the proof of their LJAPUNOW stability, the calculation of eigenfrequencies, steady state time solutions under harmonically oscillating contact forces and the simulation of the material removal during the cutting process.:1 Einleitung
1.1 Technische Problemstellung und Motivation der Arbeit
1.2 Literaturübersicht
1.3 Thema und Gliederung der Arbeit
2 Theoretische Grundlagen
2.1 Notation und mathematische Grundlagen
2.2 Kinematische Grundlagen der Kontinuumsmechanik
2.2.1 Konfiguration und Betrachtungsweisen
2.2.2 Verformungskinematik
2.2.3 Zeitableitungen
2.3 Variationsrechnung
2.3.1 Grundlagen
2.3.2 Verallgemeinerte Variationen
2.4 Kinetik / Prinzip von HAMILTON
2.5 Diskretisierung von Feldproblemen
2.6 Stabilität stationärer Lösungen
2.6.1 Grundlagen der kinetischen Stabilitätstheorie
2.6.2 Erste Methode von LJAPUNOW
2.6.3 Stabilitätsbetrachtung für bewegte Kontinua
2.7 Zeitlösung
2.7.1 Homogene Lösung der Störungsdifferentialgleichungen
2.7.2 Partikuläre Lösung der Störungsdifferentialgleichungen
3 Mechanisches Modell und Modellvarianten
3.1 Kinematik des Drahtes in LAGRANGE-Koordinaten
3.2 Kinematik des Drahtes in EULER-Koordinaten
3.3 Modell I
3.3.1 Variationsformulierung und Feldgleichungen
3.3.2 Ortsdiskretisierung der Variationsformulierung
3.3.3 Stationäre Lage, Stabilitätsuntersuchung und Zeitlösung
3.4 Modell II
3.4.1 Variationsformulierung und Feldgleichungen
3.4.2 Ortsdiskretisierung der Variationsformulierung
3.4.3 Stationäre Lage, Stabilitätsuntersuchung und Zeitlösung
3.5 Numerische Umsetzung
3.6 Berechnungsergebnisse
3.6.1 Stationäre Lagen
3.6.2 Eigenfrequenzen
3.6.3 Stabilitätsuntersuchungen
3.6.4 Zeitlösungen
4 Ankopplung des Ingot und Modellierung des Materialabtrages
4.1 FE- Modell des Gesamtblocks
4.1.1 Bestimmung der mechanischen Eigenschaften des Ingot
4.1.2 Berechnungsergebnisse
4.2 Strukturmechanisches Modell des Gesamtblocks und Ankopplung an den Sägedraht
4.3 Variationsformulierungen der gekoppelten Gesamtsysteme unter Berücksichtigung des Materialabtrages
4.3.1 Gesamtmodell I
4.3.2 Gesamtmodell II
4.4 Simulation des Schnittvorganges
5 Zusammenfassung / Ausblick
6 Verzeichnisse
6.1 Literaturverzeichnis
6.1.1 Allgemeine Literatur
6.1.2 Literatur zum Thema Drahtsägen
6.1.3 Literatur zum Thema bewegte Kontinua
Anhang
|
188 |
Distributed Algorithms for Multi-robot AutonomyZehui Lu (18953791) 02 July 2024 (has links)
<p dir="ltr">Autonomous robots can perform dangerous and tedious tasks, eliminating the need for human involvement. To deploy an autonomous robot in the field, a typical planning and control hierarchy is used, consisting of a high-level planner, a mid-level motion planner, and a low-level tracking controller. In applications such as simultaneous localization and mapping, package delivery, logistics, and surveillance, a group of autonomous robots can be more efficient and resilient than a single robot. However, deploying a multi-robot team by directly aggregating each robot's planning hierarchy into a larger, centralized hierarchy faces challenges related to scalability, resilience, and real-time computation. Distributed algorithms offer a promising solution for introducing effective coordination within a network of robots, addressing these issues. This thesis explores the application of distributed algorithms in multi-robot systems, focusing on several essential components required to enable distributed multi-robot coordination, both in general terms and for specific applications.</p>
|
Page generated in 0.1352 seconds