• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 7
  • 1
  • Tagged with
  • 27
  • 12
  • 11
  • 10
  • 9
  • 8
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Étude du rôle de la CaMKII dans le processus d'exocytose des récepteurs AMPA

Audet, Benoît. 24 April 2018 (has links)
La plasticité synaptique, qui permet l'apprentissage et la mémoire, s'exprime par des changements dans la force de transmission de signal passant par les neurotransmetteurs. La modulation de la quantité de récepteurs au glutamate de type « AMPA » disponibles dans le compartiment post-synaptique est un des moyens que possède le neurone pyramidal de modifier sa réponse à un stimulus. Les mécanismes régissant ce mécanisme de plasticité ne sont pas très bien compris, mais nous savons toutefois que l'enzyme CaMKII joue un rôle important à plusieurs niveaux dans le processus. Par exemple, la CaMKII joue un rôle dans l'immobilisation des récepteurs AMPA dans les synapses de neurones de l'hippocampe en culture, suite à un protocole (appelé « cLTP) qui mène à la Potentialisation à Long Terme de ces synapses et à l'augmentation de leur contenu en récepteurs AMPA. J'ai testé l'hypothèse que la CaMKII contribue également à augmenter le niveau d'expression membranaire des récepteurs AMPA dans les neurones. Pour ce faire, j'ai procédé à des mesures d'imagerie optique de la livraison des récepteurs AMPA à la membrane plasmique par un processus d'exocytose des réserves intracellulaires du récepteur. Cette mesure exploite la microscopie vidéo à fluorescence ainsi que le transfert de gène d'une protéine fluorescente couplée au récepteur, dont la fluorescence n'apparait que lorsque les récepteurs arrivent à la surface. En bloquant l'activité de la CaMKII avec des outils pharmacologiques ou génétiques, j'ai observé une diminution importante dans la fréquence d'exocytose des récepteurs AMPA, ce qui confirme l'hypothèse qu'elle joue un rôle important dans ce processus. Toutefois, lors d'une stimulation de type cLTP, je n'ai pas observé d'augmentation dans la fréquence d'apparition des événements d'exocytose des récepteurs. Ces résultats indiquent que malgré le rôle de la CaMKII dans l'augmentation de l'exocytose des récepteurs AMPA, ces derniers ne sont pas davantage livrés à la membrane durant un protocole de cLTP, suggérant que seule l'immobilisation des récepteurs joue un rôle prépondérant dans l'augmentation des récepteurs AMPA à la synapse durant la LTP. Il sera cependant important d'étudier davantage pourquoi la CaMKII promeut l'exocytose des récepteurs AMPA, sans que ce processus soit augmenté durant la LTP.
12

Imagerie en molécules uniques de la diffusion des récepteurs au glutamate dans les synapses et leur implication dans la plasticité synaptique

Labrecque, Simon 19 April 2018 (has links)
Le récepteur AMPA (rAMPA) est un sous-type de récepteur au glutamate responsable de la majorité de la transmission synaptique excitatrice rapide dans le système nerveux central. L'apport de nouveaux récepteurs à la membrane par exocytose et la redistribution des rAMPA aux sites postsynaptiques ont été proposés comme des mécanismes de potentialisation à long terme (LTP) de la transmission synaptique, un modèle cellulaire impliqué dans l'apprentissage et la mémoire. Les preuves directes qui soutiennent ces hypothèses sont manquantes et les mécanismes moléculaires qui régulent l'apport des rAMPA à la membrane et le traffic aux synapses sont peu connus. Afin d'étudier les mécanismes de la redistribution des rAMPA aux synapses, nous avons mis en place une technique d'imagerie de molécules uniques à haute résolution. Nous fournissons une preuve directe que l'activation locale de la sous-unité α de la protéine kinase II (αCaMKII) déclenche l'immobilisation rapide des rAMPA aux sites synaptiques. De plus, nous avons trouvé que la phosphorylation de la sous-unité auxiliaire des rAMPA, la stargazine, est requise pour l'immobilisation aux synapses par la liaison à la protéine d'échafaudage synaptique, la PSD-95. Aussi, dans une seconde étude, nous avons montré les rôles distincts des isoformes a et βCaMKII sur la mobilité des rAMPA dans des conditions de transmission basale et de stimulation menant à la plasticité synaptique. Nos études apportent une vision supplémentaire sur le mécanisme à la base de la LTP. Pour étudier l'apport de nouveaux rAMPA à la membrane, à l'aide des récepteurs fusionnés à des protéines fluorescentes sensibles au pH, nous avons mesuré les événements unitaires d'insertion de GluA1 à la membrane postsynaptique. Nous montrons des résultats qui suggèrent que la CaMKII régule l'exocytose des rAMPA. Nos travaux apportent une meilleure compréhension des mécanismes permettant à une enzyme importante pour la mémoire, la CaMKII, de réguler la potentialisation synaptique, via l'apport accrue de rAMPA par exocytose et pas leur piégeage accru aux synapses. / The AMPA receptor (AMPAR) is a subtype of glutamate receptor responsible for the majority of fast excitatory synaptic transmission in the central nervous system. The addition of new receptors to the membrane by exocytosis and redistribution of AMPARs at the postsynaptic site have been proposed as mechanisms of long-term potentiation (LTP) of synaptic transmission, a cellular model of learning and memory. Direct evidence supporting these predictions is missing and the molecular mechanisms that regulate the contribution of AMPARs in the membrane traffic at synapses are poorly understood. To study the mechanisms of redistribution of AMPARs at synapses, we developed a high resolution single molecule imaging technique. We provide direct evidence that local activation of α subunit of the Ca2+/calmodulin protein kinase II (αCaMKII) triggers the rapid immobilization of AMPARs to synaptic sites. In addition, we found that phosphorylation of the auxiliary subunit of AMPARs, stargazine, is required for immobilization at synapses by binding to the synaptic scaffolding protein, PSD-95. Also, in a second study, we have highlighted the distinct contributions of two different isoforms α and β of CaMKII under conditions of basal transmission and following stimuli that induce synaptic plasticity. Our studies provide new insights on the mechanism underlying LTP. To study the contribution of new receptors to the membrane, we use receptors fused to pH-sensitive fluorescent proteins, we measured the discrete exocytic fusion events of GluA1 to the postsynaptic membrane. We provide evidence that CaMKII regulates the process of AMPAR exocytosis. Our experiments contribute to the understanding of how CaMKII, an important enzyme in memory, can regulate the increased delivery of AMPARs at synapses during synaptic potentiation, via their increased exocytosis and post-synaptic trapping.
13

Role of Calpain in synaptic potentiation : link with CaMKII and Ca²⁺ signaling

Sehgal, Kapil 13 June 2022 (has links)
La potentialisation synaptique dans les neurones d'hippocampes repose sur l'activation du récepteur NMDA (NMDAR) et l'influx de Ca²⁺. Des changements dans le Ca²⁺ cytosolique sont détectés par des effecteurs tels que la calpaïne et la protéine kinase II Ca²⁺/calmoduline-dépendante (CaMKII), transformant ces informations en signaux qui induisent une potentialisation synaptique. Une fois activée par l'influx de Ca²⁺, la calpaïne clive de nombreuses protéines cytosoliques, récepteurs et protéines d'échafaudage, remodelant ainsi la structure synaptique, ainsi que l'activité et/ou la dynamique de nombreuses protéines. Le rôle de la calpaïne au cours du processus de plasticité synaptique a été documenté, mais le mécanisme moléculaire est loin d'être clair. Dans cette étude, nous avons examiné le lien possible entre la calpaïne et CaMKII dans la médiation de la potentialisation à long terme (LTP). Nous avons utilisé des inhibiteurs pharmacologiques de la calpaïne pour interférer avec son activation lors de la potentialisation synaptique induite chimiquement dans des cultures dissociées d'hippocampe de rat. Nous avons d'abord confirmé que l'activité de la calpaïne est essentielle pour l'induction de la LTP dans les cultures neuronales dissociées. Nous montrons que l'activité de la calpaïne est essentielle pour de nombreux processus moléculaires importants pour la LTP. L'inhibition de l'activité de la calpaïne a bloqué la phosphorylation de ERK et l'insertion des récepteurs synaptiques AMPA; deux processus régulés par CaMKII impliqués dans la potentialisation synaptique. De plus, nous montrons que la calpaïne est essentielle pour l'autophosphorylation de CaMKII en utilisant un anticorps contre pCaMKII (Thr286). En mesurant le temps de vie par fluorescence (FLIM) avec un capteur basé sur le transfert d'énergie par résonance de fluorescence (FRET) (Camui) de l'activation de CaMKII, nous montrons que l'inhibition de la calpaïne empêche le changement dépendant de l'activité de la conformation de l'holoenzyme CaMKII et donc l'activation de la kinase. Nous avons aussi utilisé l'imagerie time-lapse et avons découvert que la translocation CaMKII post-synaptique dépendante de l'activité est diminuée par les inhibiteurs de la calpaïne. De plus, nous avons mesuré les taux de diffusion de CaMKII par SPT-PALM en utilisant CaMKII-meos2 et les résultats indiquent que l'inhibition de la calpaïne empêche la diminution dépendante de l'activité de la mobilité de l'holoenzyme. Nos résultats montrent clairement que les inhibiteurs de la calpaïne affectent la dynamique de CaMKII. Cela suggère que la calpaïne affecte directement CaMKII ou agit en amont de CaMKII. En effectuant des expériences dans des cellules HEK qui n'ont pas de CaMKII endogène, nous avons démontré que la calpaïne n'affecte pas directement CaMKII. Nous avons émis l'hypothèse que la calpaïne joue un rôle dans le processus de plasticité en amont de CaMKII. Nous avons étudié l'influx Ca²⁺ dépendant de l'activité en utilisant l'imagerie GCaMP6 et nos résultats indiquent que l'activité de la calpaïne est essentielle pour cette l'augmentation de Ca²⁺. En disséquant davantage la voie de signalisation, utilisant différents protocoles de stimulation (dépolarisation synaptique ou globale), nous montrons que la calpaïne affecte l'afflux de Ca²⁺ dépendant de NMDA et non l'influx de Ca²⁺ dépendant de la dépolarisation. Ainsi, notre étude montre que la calpaïne joue un rôle essentiel dans la LTP d'une manière dépendante du NMDAR et que l'inhibition de la calpaïne interfère dans les premières étapes de la signalisation médiée par le Ca²⁺ conduisant à l'induction du LTP. En discutant de ces résultats, nous fournissons des résultats préliminaires qui peuvent nous éclairer au niveau de l'impact de l'inhibition pharmacologique de la calpaïne sur la fonction des récepteurs NMDA. / Synaptic potentiation in hippocampal neurons relies on NMDA receptor (NMDAR) activation and Ca²⁺ influx. Changes in cytosolic Ca²⁺ are detected by effectors such as calpain and Ca²⁺/calmodulin-dependent protein kinase II (CaMKII), transforming this information into signals inducing synaptic potentiation. Once activated by Ca²⁺ influx, calpain cleaves many cytosolic proteins, receptors, and scaffolding proteins, thereby remodeling the synaptic structure, as well as the activity and/or dynamics of many proteins. The role of calpain during the synaptic plasticity process has been documented, but the molecular mechanism is far from clear. In this study, we examined the possible link between calpain and CaMKII in the mediation of Long Term Potentiation (LTP). We used pharmacological inhibitors of calpain to interfere with its activation during chemically induced synaptic potentiation in rat hippocampal dissociated cultures. We first confirmed that calpain activity is essential for LTP induction in dissociated neuronal cultures. We show that calpain activity is essential for many molecular processes important for LTP. Inhibition of calpain activity blocked ERK phosphorylation and insertion of synaptic AMPA receptors - two CaMKII-regulated processes involved in synaptic potentiation. Further, we show that calpain is essential for CaMKII autophosphorylation by using an antibody against pCaMKII (Thr286). By performing Fluorescence Lifetime Imaging (FLIM) with a fluorescence resonance energy transfer (FRET)-based sensor (Camui) of CaMKII activation, we show that calpain inhibition prevents activity-dependent change in the conformation of the CaMKII holoenzyme and thus the activation of the kinase. We further used time-lapse imaging and found that activity-dependent post-synaptic CaMKII translocation is decreased by calpain inhibitors. Furthermore, we measured diffusion rates of CaMKII by SPT-PALM using CaMKII-meos2 and the results indicate that calpain inhibition prevents the activity-dependent decrease in the mobility of the holoenzyme. Our results clearly show that calpain inhibitors affect CaMKII dynamics. This suggests that either calpain affects CaMKII directly or is upstream to CaMKII. By performing experiments in HEK cells that do not have endogenous CaMKII, we demonstrated that calpain does not affect CaMKII directly. We hypothesized that calpain plays a role in the plasticity process at an upstream level to CaMKII. We investigated activity-dependent Ca²⁺ influx using GCaMP6 imaging and our results indicate that calpain activity is essential for this increase in Ca²⁺. Further dissecting the pathway, using different stimulation protocols (synaptic or global depolarisation), we show that calpain affects NMDA-dependent Ca²⁺ influx and not the depolarisation dependent Ca²⁺ influx. Thus, our study shows that calpain plays an essential role in LTP in an NMDAR dependent manner and that inhibiting calpain interferes in the early steps of Ca²⁺- mediated signaling leading to LTP induction. In discussing these results, we provide preliminary results that may shed light on the impact of pharmacological inhibition of calpain on NMDA receptor function.
14

Développement d’une méthode de simulation multi-échelle pour l’étude des grandes transformations dans les protéines

Dupuis, Lilianne 12 1900 (has links)
Les films de simulations qui accompagnent le document ont été réalisés avec Pymol. / Les protéines accomplissent leur fonction dans la cellule grâce à leur faculté de changer de forme. Chaque classe de protéines peut se caractériser par une structure spécia- lisée partagée par ses membres avec un certain degré de variabilité. Tel est le cas des protéines à motifs mains-EF, qui se transforment en liant et déliant l ’ion calcium. Ce motif permet à la Troponin C de s’ouvrir et se refermer afin de moduler le mécanisme de contraction des fibres musculaires. Un mécanisme similaire permet à la Calmoduline de gérer l’activité de divers canaux cellulaires. Les techniques de simulations numériques peuvent aider à comprendre les trajectoires de ces transformations. Le projet principal de cette thèse consistait à développer une méthode informatique multi-échelle permettant de simuler des mouvements complexes à l’intérieur d ’une protéine. La représentation multi-échelle développée peut changer et s’adapter en cours de simulation. La méthode, ART holographique, explore l’espace en générant des basculements d’ensembles atomiques, selon des champs de force atomistiques non biaisés indiquant à tout moment comment les ensembles doivent pivoter. La méthode réduit le calcul des fluctuations locales mais conserve une représentation spatiale complète. La représentation multi-échelle est combinée à une technique de recherche de passages de transition énergétiquement favorables, ART nouveau, qui conduit la trajectoire moléculaire d ’étape en étape. Appliquée à plusieurs protéines, dont la Calmodulin et la Troponin C, ART holographique génère des trajectoires de transformation entre des conformations distantes de celles-ci, déjà connues grâce aux techniques de RMN ou de cristallographie. L’usage d ’une représentation spatiale complète tout au long de la simulation favorise le discernement de certains détails des mécanismes. Le rôle, l’ordre d ’intervention, ainsi que la coopérativité de certains résidus et structures impliqués dans le mécanisme des paires main-EF ont été explorés plus en détail et un état intermédiaire est proposé. / Proteins accomplish their function inside cells by means of conformational changes. Each protein class may be characterized by a specialized structure shared by its members with some variability. EF-hands proteins present a special motif which transforms itself while binding or unbinding the calcium ion. This structure allows Troponin C domains to open and close as it modulates the muscular fibers contraction. A similar mechanism allow Calmodulin to manage the activity of a diversity of protein channels. Computational techniques may help discover how these transformations occur. The main project of this thesis was the development of a multi-scale computational method for the simulation of complex motions inside a protein. The multi-scale approach is designed to adapt and change all along the simulation. The method, holographic ART, explore conformational space by generating swiveling and rotation of atomic ensembles, leaded by non biased atomistic forcefields. This determines at each step the overall motion, keeping a complete spatial representation, but with minimal local fluctuations computation. The multi-scale representation is combined with a unbiased open ended algorithm for identifying transitions states, ART nouveau, which guides the molecular trajectory from state to state. Applied to several proteins, the method was able to generate transforma- tion trajectories between distant conformations known from NMR and crystallography techniques. The use of a complete spatial representation throughout the simulation allows the method to capture atomistic details of each event. The purpose, the intervention order, as well as cooperativity between some residues and sub-structures involved in the EF-hand pair mechanism have been explored more in detail and an intermediate state is proposed.
15

Analyse du contrôle allostérique et prédiction de structure pour une toxine de pathogène : l'apport des simulations de dynamique moléculaire

Selwa, Edithe 25 September 2012 (has links) (PDF)
La protéine CyaA est un facteur de virulence majeur de Bordetella pertussis, impliqué dans la maladie de la coqueluche. Le domaine catalytique AC de CyaA est directement transféré dans la cellule hôte eucaryote, où il est activé comme adénylcyclase par la calmoduline, une protéine ubiquitaire et sensible aux ions calcium. Ainsi, AC transforme l'ATP en AMPc de manière incontrôlée, ce qui conduit à des dérèglements cellulaires. Seule la structure de AC complexé à la calmoduline chargée d'ions calcium avait été résolue par cristallographie aux rayons X. À partir de cette structure, des simulations de dynamique moléculaire de AC libre, et en complexe avec la calmoduline nous ont permis de caractériser l'effet de la calmoduline et des ions calcium sur la plasticité conformationnelle du complexe. Les tendances conformationelles de AC libre ont aussi été étudiées. L'analyse conjointe des influences énergétiques et des liaisons hydrogène a révélé un réseau d'interactions entre AC et la calmoduline, dans lequel trois résidus clés, susceptibles de jouer un rôle allostérique sur l'activité de l'adénylcyclase ont été modifiés par mutagenèse dirigée. Ces tests expérimentaux ont conduits à la mise en évidence d'une région allostérique qui assure la communication de l'information de transition conformationnelle entre le site de fixation de la calmoduline et le site catalytique. Une exploration conformationnelle plus approfondie de AC à l'état non-lié a été entreprise par une méthode innovante de dynamique accélérée par la température (TAMD). Elle nous a conduit à la prédiction de conformations échantillonnées de AC dans son état libre. Ces prédictions pourraient être utilisées à l'avenir pour stabiliser l'état libre et faciliter l'étude expérimentale de sa structure
16

Développement d’une méthode de simulation multi-échelle pour l’étude des grandes transformations dans les protéines

Dupuis, Lilianne 12 1900 (has links)
Les protéines accomplissent leur fonction dans la cellule grâce à leur faculté de changer de forme. Chaque classe de protéines peut se caractériser par une structure spécia- lisée partagée par ses membres avec un certain degré de variabilité. Tel est le cas des protéines à motifs mains-EF, qui se transforment en liant et déliant l ’ion calcium. Ce motif permet à la Troponin C de s’ouvrir et se refermer afin de moduler le mécanisme de contraction des fibres musculaires. Un mécanisme similaire permet à la Calmoduline de gérer l’activité de divers canaux cellulaires. Les techniques de simulations numériques peuvent aider à comprendre les trajectoires de ces transformations. Le projet principal de cette thèse consistait à développer une méthode informatique multi-échelle permettant de simuler des mouvements complexes à l’intérieur d ’une protéine. La représentation multi-échelle développée peut changer et s’adapter en cours de simulation. La méthode, ART holographique, explore l’espace en générant des basculements d’ensembles atomiques, selon des champs de force atomistiques non biaisés indiquant à tout moment comment les ensembles doivent pivoter. La méthode réduit le calcul des fluctuations locales mais conserve une représentation spatiale complète. La représentation multi-échelle est combinée à une technique de recherche de passages de transition énergétiquement favorables, ART nouveau, qui conduit la trajectoire moléculaire d ’étape en étape. Appliquée à plusieurs protéines, dont la Calmodulin et la Troponin C, ART holographique génère des trajectoires de transformation entre des conformations distantes de celles-ci, déjà connues grâce aux techniques de RMN ou de cristallographie. L’usage d ’une représentation spatiale complète tout au long de la simulation favorise le discernement de certains détails des mécanismes. Le rôle, l’ordre d ’intervention, ainsi que la coopérativité de certains résidus et structures impliqués dans le mécanisme des paires main-EF ont été explorés plus en détail et un état intermédiaire est proposé. / Proteins accomplish their function inside cells by means of conformational changes. Each protein class may be characterized by a specialized structure shared by its members with some variability. EF-hands proteins present a special motif which transforms itself while binding or unbinding the calcium ion. This structure allows Troponin C domains to open and close as it modulates the muscular fibers contraction. A similar mechanism allow Calmodulin to manage the activity of a diversity of protein channels. Computational techniques may help discover how these transformations occur. The main project of this thesis was the development of a multi-scale computational method for the simulation of complex motions inside a protein. The multi-scale approach is designed to adapt and change all along the simulation. The method, holographic ART, explore conformational space by generating swiveling and rotation of atomic ensembles, leaded by non biased atomistic forcefields. This determines at each step the overall motion, keeping a complete spatial representation, but with minimal local fluctuations computation. The multi-scale representation is combined with a unbiased open ended algorithm for identifying transitions states, ART nouveau, which guides the molecular trajectory from state to state. Applied to several proteins, the method was able to generate transforma- tion trajectories between distant conformations known from NMR and crystallography techniques. The use of a complete spatial representation throughout the simulation allows the method to capture atomistic details of each event. The purpose, the intervention order, as well as cooperativity between some residues and sub-structures involved in the EF-hand pair mechanism have been explored more in detail and an intermediate state is proposed. / Les films de simulations qui accompagnent le document ont été réalisés avec Pymol.
17

La régulation des protéines plastidiales par la calmoduline / The regulation of plastidial proteins by calmodulins

Dell'Aglio, Elisa 29 November 2013 (has links)
La calmoduline (CaM) est une protéine modulatrice de la réponse cellulaire chez les eucaryotes composée de quatre domaines de liaison au calcium et d'une hélice centrale flexible. Elle peut interagir avec d'autres protéines en présence de calcium, entraînant l'activation et l'inhibition d'enzymes, l'ouverture de canaux membranaires et modulant le trafic intracellulaire. L'identification de protéines parternaires de la CaM requière la mise au point de techniques permettant de mesurer les paramètres de la liaison pour un grand nombre de protéines dans des conditions variables mimant l'environnement cellulaire (par exemple en présence de ligands ou d'autres protéines). Le premier objectif de cette thèse a été de développer une technique de mesure des interactions CaM-parternaire reposant sur des mesures d'anisotropie de fluorescence. Les tests ont été ensuite utilisés pour caractériser de manière quantitative l'interaction préalablement mise en évidence de deux protéines chloroplastiques (NADK2 et Tic32) avec la CaM. Afin d'identifier d'autres cibles chloroplastiques de la CaM nous avons alors effectué une analyse à haut-débit en couplant une purification par affinité à des analyses protéomiques. La validation des interactions a été réalisée grâce à l'utilisation de méthodes biochimiques complémentaires. Nous avons ensuite focalisé notre attention sur la protéine ceQORH dont la très forte affinité pour la CaM a pu être confirmée. Nos résultats fournissent par ailleurs de nouveaux éléments pour la compréhension de ces interactions. Afin de vérifier la présence de CaM ou de CaM-like (CML) dans le chloroplaste nous avons utilisé une approche biochimique et protéomique. Nous avons d'autre part étudié la localisation de CMLs potentiellement chloroplastiques fusionnées à la GFP dans des protoplastes d'Arabidopsis. A ce jour ces deux approches ne nous ont pas permis d'identifier ce type de protéines dans le chloroplaste. / Calmodulin (CaM) is an important modulator of cell responses of eukaryotes. This protein is composed of four calcium (Ca2+)-binding sites and a flexible central helix. CaM can interact with other proteins in a Ca2+-dependent way. This leads to a wide variety of effects, such as activation/inhibition of enzymes, opening of membrane channels and regulation of protein trafficking. The identification of high-affinity CaM targets requires techniques allowing the study of the CaM-binding parameters of a large number of protein, and in several conditions mimicking the cell environment (e.g. presence of ligands or other proteins). The first objective of this PhD was to develop flexible and quantitative assays of CaM-partners interactions based on measurements of fluorescence anisotropy. these tests were used to perform a quantitative characterization of the interaction between CaM and two previously identified targets located in Arabidopsis chloroplast (NADK2 and Tic32). We then performed a high-throughput analysis (CaM-affinity chromatography coupled with mass spectrometry) in order to detect new potential plastidial CaM targets. We validated our approach with several biochemical techniques. We finally focused our attention on the ceQORH protein, whose high CaM affinity was confirmed by several tests. Our results confirm the Ca2+-dependent CaM affinity of NADK2, Tic32 and ceQORH and provide new elements for understanding the effects of these interactions. In addition, in order to verify the presence of CaMs or CaM-like proteins in the chloroplast, we used a biochemical and proteomic approach. We also studied the intracellular localization of some putative plastidial CMLs tagged with GFP in Arabidopsis protoplasts. For the moment, these approaches did not allow identifying such proteins in the chloroplast.
18

Études biophysiques des propriétés et des interactions entre trois protéines impliquées dans la maladie d’Alzheimer : récepteur des oestrogènes α, Calmoduline et FKBP52 / Biophysical studies of properties and interaction of three proteins involved in Alzheimer's disease : estrogen receptor α, calmodulin and FKBP52

Belnou, Mathilde 20 October 2017 (has links)
Nous nous sommes intéressés à plusieurs protéines impliquées dans la maladie d’Alzheimer, notamment la protéine FKBP52, la calmoduline et le ROα. Nous nous sommes attachés à apporter quelques éléments de réponse quant à la formation d'un éventuel hétérocomplexe ROα/Ca4CaM/FKBP52. Dans une première partie, nous avons voulu étudier quelques bases moléculaires de l'interaction entre FKBP52 et la Ca4CaM, afin de mieux comprendre la pertinence biologique de cette affinité. Après avoir produit différents domaines de la protéine FKBP52 et la Ca4CaM, différentes techniques d’interaction protéine/protéine ont été utilisées. L'approche protéique de ce travail a été confortée par une approche peptidique. Elles ont permis de cibler le troisième domaine comme lieu de l’interaction. Pour la première fois, il a été totalement attribué par RMN et les sites concernés par l’interaction ont pu être discriminés. Par ailleurs, il a été montré que le premier domaine de FKBP52 pouvait interagir intermoléculairement avec ROα, par un motif en coude β de type II. Le ROα est un facteur de transcription dont l'activité dépend d'un certain nombre de coactivateurs parmi lesquels Ca4CaM. Le peptide issu de la séquence de recrutement de la calmoduline au sein du ROα (séquence 298-310) a fait l’objet au sein du groupe de nombreuses publications. Il a été montré que ce peptide possédait un caractère amyloïde. Bien qu’il n’existe aucun lien apparent entre cette caractéristique et une quelconque pathologie associée, la cinétique de formation des fibres issues de ce peptide dans différentes conditions de pH et de concentrations a été étudiée. / We are interested in several proteins involved in the Alzheimer disease, in particular the FKBP52, calmodulin and ERα. We have provided some answers concerning the formation of a possible ROα/Ca4CaM/FKBP52 heterocomplex. In a first part, we wanted to study the molecular basis of the interaction between FKBP52 and Ca4CaM, to better understand the biological relevance of this affinity. After producing different domains of the FKBP52 protein and Ca4CaM, various techniques such as ITC, SPR, fluorescence or NMR were used. The protein approach of this work was supported by a peptide based study. These approaches have made it possible to target the third domain as the place of interaction. For the first time, the TPR domain was assigned by NMR spectroscopy and the sequences involved in the interaction could be discriminated. Furthermore, it was shown that the first domain of FKBP52 could interact intermolecularly with the ROα, by a type II β-turn motif. ROα is a transcription factor whose activity depends on a number of coactivators including Ca4CaM. The peptide resulting from the recruitment sequence of calmodulin within ROα (sequence 298-310) has been the subject of numerous publications within the group. It has been shown that this peptide has an amyloid character. Although there is no apparent link between this feature and any associated pathology, the kinetics of fiber formation from this peptide under different pH and concentration conditions has been studied.
19

Implication des calcium/calmoduline-dépendente kinase kinases et du facteur neurotrophique BDNF dans le mécanisme d'action des antidépresseurs

Vinet, Jonathan 12 April 2018 (has links)
La dépression est un trouble de l’humeur qui affecte environ 15% de la population mondiale et qui peut être déclenché par de nombreux facteurs incluant le stress. De plus, un débalancement de l’axe Hypothalmo-hypophyso-surrénalien est présent chez plusieurs patients dépressifs. À l’heure actuelle, les antidépresseurs se révèlent être le moyen le plus efficace pour traiter cette maladie. Les antidépresseurs exercent leur fonction thérapeutique principalement en activant le facteur de transcription CREB via la voie de signalisation AMPc-dépendante. Cette activation résulte en une augmentation de la transcription de certains gènes impliqués dans la protection et la survie cellulaire tel que BDNF. Or CREB peut aussi être activé par la voie de signalisation du calcium. Les travaux rapportés dans cette thèse traitent de la possible implication de protéines de la voie du calcium, plus particulièrement la CaMKKα et la CaMKKβ, dans le mécanisme d’action des antidépresseurs. Dans un premier temps, nous avons clôné l’ARNm de la CaMKKβ de la souris et avons étudié la distribution de l’expression génique des CaMKKs dans le système nerveux central de la souris. Ceci nous a permis de constater qu’elles étaient exprimées fortement dans les régions impliquées dans la dépression. Dans la deuxième phase des travaux, nous avons utilisé l’approche par hybridation in situ pour étudier l’effet d’un traitement chronique aux antidépresseurs sur l’expression génique des CaMKKs. De plus, nous avons utilisé une souris transgénique possédant une dysfonction des récepteurs aux glucocorticoïdes (GR) et servant comme modèle neuroendocrine de la dépression. L’analyse des différents degrés d’expression de l’ARNm des CaMKKs et de BDNF montre que différentes régions réagissent au traitement aux antidépresseurs ou au dysfonctionnement des GR. Parmi celles-ci, le cortex préfrontal et l’hippocampe se révèlent particulièrement intéressants par leur implication dans la dépression. L’ensemble de nos résultats nous permet de proposer que la voie de signalisation du calcium soit également une cible des antidépresseurs. / Major depression is a mood disorder that affect 15% of the population and that can be caused by various factors, including stress. Hypothalamo-pituiary-adrenal axis hyperactivity is present in a majority of depressive patients. Antidepressant drugs are the best therapy that exists to treat depression. They exert their therapeutic action by activating the AMPc signaling pathway and the transcription factor CREB, which leads to an increase in the transcription of genes implicated in cell protection and surviving, like BDNF. CREB can also be activated by the calcium-signaling pathway. This thesis reports the possible implication of the CaMKKα and CaMKKβ in the mechanism of action of antidepressants. We first cloned the mRNA of the mouse CaMKKβ and described the distribution of both CaMKKs in the mouse central nervous system. They were strongly expressed in brain regions that are implicated in major depression. Next, we used in situ hybridization to study the effect of chronic antidepressant treatment on the gene expression of the CaMKKs. Moreover, we used a transgenic mouse characterized by a dysfunction of the glucocorticoid receptors (GR) as a neuroendocrine model of depression. The analysis of the different levels of expression of the CaMKKs and BDNF shows that different brain areas react to antidepressants or to GR dysfunction. For instance, prefrontal cortex and hippocampus are of particular importance due to their implication in depression. Our results suggest that the calcium siganling pathway might be a target of antidepressant drugs.
20

Calmodulin/KCa3.1 channel interactions as determinant to the KCa3.1 Ca2+ dependent gating : theoretical and experimental analyses

Morales, Patricia 02 1900 (has links)
Differentes études ont montré que la sensibilité au Ca2+ du canal KCa3.1, un canal potassique indépendant du voltage, était conférée par la protéine calmoduline (CaM) liée de façon constitutive au canal. Cette liaison impliquerait la région C-lobe de la CaM et un domaine de $\ikca$ directement relié au segment transmembranaire S6 du canal. La CaM pourrait égalment se lier au canal de façon Ca2+ dépendante via une interaction entre un domaine de KCa3.1 du C-terminal (CaMBD2) et la région N-lobe de la CaM. Une étude fut entreprise afin de déterminer la nature des résidus responsables de la liaison entre le domaine CaMBD2 de KCa3.1 et la région N-lobe de la CaM et leur rôle dans le processus d'ouverture du canal par le Ca2+. Une structure 3D du complexe KCa3.1/CaM a d'abord été générée par modélisation par homologie avec le logiciel MODELLER en utilisant comme référence la structure cristalline du complexe SK2.2/CaM (PDB: 1G4Y). Le modèle ainsi obtenu de KCa3.1 plus CaM prévoit que le segment L361-S372 dans KCa3.1 devrait être responsable de la liaison dépendante du Ca2+ du canal avec la région N-lobe de la CaM via les résidus L361 et Q364 de KCa3.1 et E45, E47 et D50 de la CaM. Pour tester ce modèle, les résidus dans le segment L361-S372 ont été mutés en Cys et l'action du MTSET+ (chargé positivement) et MTSACE (neutre) a été mesurée sur l'activité du canal. Des enregistrements en patch clamp en configuration ``inside-out`` ont montré que la liaison du réactif chargé MTSET+ au le mutant Q364C entraîne une forte augmentation du courant, un effet non observé avec le MTSACE. De plus les mutations E45A et E47A dans la CaM, ont empêché l'augmentation du courant initié par MTSET+ sur le mutant Q364C. Une analyse en canal unitaire a confirmé que la liaison MTSET+ à Q364C cause une augmentation de la probabilité d'ouverture de KCa3.1 par une déstabilisation de l'état fermé du canal. Nous concluons que nos résultats sont compatibles avec la formation de liaisons ioniques entre les complexes chargés positivement Cys-MTSET+ à la position 364 de KCa3.1 et les résidus chargés négativement E45 et E47 dans la CaM. Ces données confirment qu'une stabilisation électrostatique des interactions CaM/KCa3.1 peut conduire à une augmentation de la probabilité d'ouverture du canal en conditions de concentrations saturantes de Ca2+. / The Ca2+ sensitivity of the voltage-insensitive calcium activated potassium channel of intermediate conductance KCa3.1 is conferred by calmodulin (CaM) constitutively bound to the membrane-proximal region of the channel intracellular C-terminus. A study was performed to investigate the nature of the residues involved in the CaM/KCa3.1 interactions and determine how these interactions could modulate the channel gating properties. A 3D-structure of the KCa3.1/CaM complex was first generated by homology modeling with MODELLER using as template the crystal structure of SK2.2/CaM complex (PDB: 1G4Y). The resulting structural model of KCa3.1 plus CaM predicts that the segment L361-S372 in KCa3.1 should be responsible for the Ca2+-dependent binding of the channel to the CaM-N lobe, with residues L361 and Q364 facing residues E45, E47 and D50 of CaM. To test this model residues in L361-S372 segment were substituted by Cys and the action of MTSET+ (positive charged) and MTSACE (neutral charged) measured on channel activity. Inside-out patch clamp recordings showed that the binding of the charged MTSET+ reagent to the Q364C mutant resulted in a strong current increase, an effect not seen with the neutral MTSACE. The mutations E45A and E47A in CaM prevented the current increase initiated by MTSET+ on the Q364C mutant. A single channel analysis confirmed that the binding of MTSET+ to Q364C caused an increase in the channel open probability by a destabilization of the channel closed state. Altogether, our results are compatible with the formation of ionic bonds between the positively charged Cys-MTSET+ complex at position 364 in KCa3.1 and the negatively charged E45 and E47 residues in CaM, and confirm that an electrostatic stabilization of the CaM/KCa3.1 interactions can lead to an increase in the channel open probability at saturating Ca2+.

Page generated in 0.2894 seconds