• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 29
  • 22
  • 5
  • 4
  • 4
  • 4
  • 1
  • 1
  • Tagged with
  • 176
  • 39
  • 36
  • 36
  • 36
  • 31
  • 24
  • 24
  • 24
  • 21
  • 21
  • 21
  • 20
  • 18
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The first observation of ϓ(1S) pair production and Hadron calorimetry upgrade at CMS

Haytmyradov, Maksat 01 May 2017 (has links)
This dissertation dicusses two topics; the cross section measurement of ϓ(1S) meson pair production [1] and simulation studies of High Granularity Calorimetry (HGCal). The first part of the dissertation is dedicated for the analysis of ϓ(1S) meson pair production and measurement of its cross section. The data for this analysis were collected by the CMS experiment at Large Hadron Collider (LHC) at a center-of-mass energy of 8 TeV and correspond to an integrated luminosity of 20.7 fb −1 . Simultaneous production of two ϓ(1S) mesons is observed for the first time with 38 events, corresponding to a local significance exceeding five standard deviations from the expected combinatorial background b-quark decays. Both ϓ(1S) candidates are fully reconstructed via their decays to μ + μ − . The fiducial acceptance of the detector is measured from the simulation and is defined by an absolute Υ(1S) rapidity smaller than 2.0. To minimize the model-dependence, the acceptance and efficiency corrections are calculated on an event-by-event basis using measured ϓ meson and muon momenta. The fiducial cross section of ϓ(1S) meson production, assuming both ϓ(1S) mesons decay isotropically, is measured to be 68.8 ± 12.7 (stat) ± 7.4 (syst) ± 2.8 (B) pb, where the third uncertainty comes from the uncertainty in the branching fraction of ϓ(1S) decays to μ + μ − . Different assumptions about ϓ productions imply modifications to the cross section ranging from −38% to +36%. Cross section measurement of ϓ pair production will provide better understanding of the parton vstructure of proton and enhance precision of existing particle production models. LHC is planning to increase luminosity and energy of colliding protons. Due to accumulated radiation damage and to improve detector performance CMS experiment is expected to undergo upgrade plans. Hadron calorimeter is among them, and it is planned to be replaced with better performance high granularity calorimetry (HGCal). HGCal needs to be integrated with existing components of CMS and its smooth functioning is essential. The second part of the dissertation describes simulation studies performed to validate readiness of HGCal for the Phase II upgrade.
22

Measurement of the response of the central ATLAS calorimeter to pions with energy in the range 3-250 GeV. Calibration of the hadronic calorimeter photomultipliers using a laser system.

Febbraro, R. 10 December 2009 (has links) (PDF)
ATLAS est l'une des quatre expériences installées au CERN, dans le cadre du projet LHC (Large Hadron Collider). Ce document présente une étude de la calibration des photomultiplicateurs (PM) du calorimètre hadronique d'ATLAS avec un système laser et une analyse de la réponse en énergie des calorimètres d'ATLAS à des pions chargés d'énergie comprise entre 3 et 250 GeV. L'étude débute par la description de la calibration des PM du calorimètre hadronique. Les résultats produits à l'issue de l'analyse ont démontré que le système est très performant. Nous sommes capables de mesurer la stabilité avec une précision de 0.2%. Cette mesure est en accord avec la valeur attendue. L'analyse de la réponse des calorimètres est divisée en deux parties. On s'intéresse à la réponse des calorimètres aux pions des haute énergie (20-250 GeV). L'étude se termine avec l'analyse de la réponse basse énergie (3-9 GeV)
23

A Flow Calorimetric Study of Adsorption of Dibenzothiophene, Naphthalene and Quinoline on Zeolites

Thomas, John Keir 15 May 2008 (has links)
The purpose of this work is to develop a reliable procedure for determination of liquid phase heats of adsorption via a flow calorimetric technique. The second objective is to study heats of adsorption of target sulfur compounds on potential desulfurization sorbents. Thirdly, we strive to relate the data obtained to the properties of both the sorbent and sorbates studied. Finally, the ultimate goal of this research is to use the data obtained to develop a high capacity selective adsorbent for the desulfurization of diesel fuel. Liquid phase flow adsorption experiments were conducted on sodium-Y zeolite (NaY), nickel exchanged NaY zeolite (NiY) and cesium-exchanged NaY zeolite (CsY). The solutions used in calorimetric experiments included naphthalene in n-hexadecane (C16), dibenzothiophene (DBT) in C16, and quinoline in C16. These solutions were used to model the adsorption of aromatic, sulphur-containing and nitrogen-containing compounds in diesel fuel, respectively. Additional experiments were conducted using equimolar concentrations of all three species in C16 to examine competitive adsorption behaviour of the mixture. During heat flow experiments, effluent samples were collected and analysed to obtain breakthrough curves for the systems. Heat of adsorption data were obtained via flow microcalorimetry using a novel procedure developed by this group. In this study, some experiments were conducted to examine the repeatability and utility of this new method. Characterization experiments were also conducted including BET surface area analysis, X-Ray diffraction (XRD) analysis and Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES) analysis to determine the properties of the sorbents. These properties were then related to data obtained in flow adsorption calorimeter experiments. A detailed discussion on the development of a novel method for determination of liquid phase heats of adsorption is presented. Analysis of calculation results using this new method show good repeatability relative to the previous method used. Equilibrium adsorption relationships are developed using the Langmuir adsorption model, and these results are compared to flow adsorption results obtained from the calorimeter. Results indicate that in terms of desulfurization capability, NaY appeared to be the best sorbent. Heats of adsorption were only moderate on NaY, indicating that regeneration of the sorbent would not be difficult, and NaY had the highest sulfur capacity of the sorbents studied. This result was not in agreement with literature results, and it is proposed that the discrepancy is the result of disruption of the crystalline structure of our sorbents during the modification process. Recommendations are presented for ongoing work, including important calorimeter experiments, modifications for improvement of experimental procedure and apparatus, additional sorbent characterization for elucidation of adsorption mechanisms, and finally experiments for verification and further validation of our innovative experimental technique.
24

A Flow Calorimetric Study of Adsorption of Dibenzothiophene, Naphthalene and Quinoline on Zeolites

Thomas, John Keir 15 May 2008 (has links)
The purpose of this work is to develop a reliable procedure for determination of liquid phase heats of adsorption via a flow calorimetric technique. The second objective is to study heats of adsorption of target sulfur compounds on potential desulfurization sorbents. Thirdly, we strive to relate the data obtained to the properties of both the sorbent and sorbates studied. Finally, the ultimate goal of this research is to use the data obtained to develop a high capacity selective adsorbent for the desulfurization of diesel fuel. Liquid phase flow adsorption experiments were conducted on sodium-Y zeolite (NaY), nickel exchanged NaY zeolite (NiY) and cesium-exchanged NaY zeolite (CsY). The solutions used in calorimetric experiments included naphthalene in n-hexadecane (C16), dibenzothiophene (DBT) in C16, and quinoline in C16. These solutions were used to model the adsorption of aromatic, sulphur-containing and nitrogen-containing compounds in diesel fuel, respectively. Additional experiments were conducted using equimolar concentrations of all three species in C16 to examine competitive adsorption behaviour of the mixture. During heat flow experiments, effluent samples were collected and analysed to obtain breakthrough curves for the systems. Heat of adsorption data were obtained via flow microcalorimetry using a novel procedure developed by this group. In this study, some experiments were conducted to examine the repeatability and utility of this new method. Characterization experiments were also conducted including BET surface area analysis, X-Ray diffraction (XRD) analysis and Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES) analysis to determine the properties of the sorbents. These properties were then related to data obtained in flow adsorption calorimeter experiments. A detailed discussion on the development of a novel method for determination of liquid phase heats of adsorption is presented. Analysis of calculation results using this new method show good repeatability relative to the previous method used. Equilibrium adsorption relationships are developed using the Langmuir adsorption model, and these results are compared to flow adsorption results obtained from the calorimeter. Results indicate that in terms of desulfurization capability, NaY appeared to be the best sorbent. Heats of adsorption were only moderate on NaY, indicating that regeneration of the sorbent would not be difficult, and NaY had the highest sulfur capacity of the sorbents studied. This result was not in agreement with literature results, and it is proposed that the discrepancy is the result of disruption of the crystalline structure of our sorbents during the modification process. Recommendations are presented for ongoing work, including important calorimeter experiments, modifications for improvement of experimental procedure and apparatus, additional sorbent characterization for elucidation of adsorption mechanisms, and finally experiments for verification and further validation of our innovative experimental technique.
25

Measurement of the Double Helicity Asymmetry in Inclusive π0 Production in Polarized Proton-Proton Collision at Center of Mass Energy of 510 GeV.

Guragain, Hari 17 December 2015 (has links)
One of the biggest quests in nuclear and particle physics in the last three decades is to unravel the spin structure of hadrons like protons and neutrons. Spin not only plays a central role in the strong force connecting the elementary constituents of matter, but is also responsible for many of its fundamental properties including the magnetic moment which defines the magnetic properties, the different phases in low temperature physics, and the stability of the universe in general. The origin of the spin of particles like protons and neutrons, which make up to 99.9% of the visible universe, has been the focus of experimental and theoretical efforts. Experiments at European Muon Collaboration (EMC) found that our knowledge of how the spin of the nucleon is derived from its elementary constituents is naive, and our interpretations are not valid. This was termed the spin crisis, an outstanding puzzle for more than three decades and is still not solved. Deciphering the spin puzzle requires knowing the spin of elementary constituents of these particles, quarks and gluons. One of the major objectives of the Relativistic Heavy Ion Collider (RHIC) spin program at Brookhaven National Laboratory is the measurement of the gluon helicity contribution to the proton spin via measuring the double helicity asymmetry (ALL) in various channels. In Pioneering High Energy Nuclear Interaction eXperiment (PHENIX) we measure ALL in π0 meson production. The π0 meson is reconstructed through its di-photon decay channel. The photons are detected by the PHENIX Electromagnetic Calorimeter, which consists of lead glass and lead scintillator detectors and covers a rapidity of |η|< 0.35 and azimuthal angle of 180°. In this dissertation, the results of ALLin π0 production from the data collected in 2013 at center of mass energy = 510 GeV are presented. In 2013, the total integrated luminosity is 150 pb-1 which is almost ten times the total luminosity recorded in 2009 at center of mass energy = 200 GeV. Due to the increase in the center of mass energy and integrated luminosity, these measurements cover the Bjorken x range down to ~0.01. A non-zero ALL result is observed that is consistent with positive gluon polarization in the probed kinematics.
26

Determination of intrinsic material flammability properties from material tests assisted by numerical modelling

Steinhaus, Thomas January 2010 (has links)
Computational Fluid Dynamics (CFD) codes are being increasingly used in the field of fire safety engineering. They provide, amongst other things, velocity, species and heat flux distributions throughout the computational domain. The various sub-models associated with these have been developed sufficiently to reduce the errors below 10%-15%, and work continues on reducing these errors yet further. However, the uncertainties introduced by using material properties as an input for these models are considerably larger than those from the other sub-models, yet little work is being done to improve these. Most of the data for these material properties comes from traditional (standard) tests. It is known that these properties are not intrinsic, but are test-specific. Thus, it can be expected that the errors incurred when using these in computations can be significant. Research has been held back by a lack of understanding of the basic factors that determine material flammability. The term “flammability” is currently used to encompass a number of definitions and “properties” that are linked to standardised test methodologies. In almost all cases, the quantitative manifestations of “flammability” are a combination of material properties and environmental conditions associated with the particular test method from which they were derived but are not always representative of parameters linked intrinsically with the tested material. The result is that even the best-defined parameters associated with flammability cannot be successfully introduced into fire models to predict ignition or fire growth. The aim of this work is to develop a new approach to the interpretation of standard flammability tests in order to derive the (intrinsic) material properties; specifically, those properties controlling ignition. This approach combines solid phase and gas modelling together with standard tests using computational fluid dynamics (CFD), mass fraction of flammable gases and lean flammability limits (LFL). The back boundary condition is also better defined by introducing a heat sink with a high thermal conductivity and a temperature dependant convective heat transfer coefficient. The intrinsic material properties can then be used to rank materials based on their susceptibility to ignition and, furthermore, can be used as input data for fire models. Experiments in a standard test apparatus (FPA) were performed and the resulting data fitted to a complex pyrolysis model to estimate the (intrinsic) material properties. With these properties, it should be possible to model the heating process, pyrolysis, ignition and related material behaviour for any adequately defined heating scenario. This was achieved, within bounds, during validation of the approach in the Cone Calorimeter and under ramped heating conditions in the Fire Propagation Apparatus (FPA). This work demonstrates that standard flammability and material tests have been proven inadequate for the purpose of obtaining the “intrinsic” material properties required for pyrolysis models. A significant step has been made towards the development of a technique to obtain these material properties using test apparatuses, and to predict ignition of the tested materials under any heating scenario. This work has successfully demonstrated the ability to predict the driving force (in-depth temperature distribution) in the ignition process. The results obtained are very promising and serve to demonstrate the feasibility of the methodology. The essential outcomes are the “lessons learnt”, which themselves are of great importance to the understanding and further development of this technique. One of these lessons is that complex modelling in conjunction with current standard flammability test cannot currently provide all required parameters. The uncertainty of the results is significantly reduced when using independently determined parameters in the model. The intrinsic values of the material properties depend significantly on the accuracy of the model and precision of the data.
27

Usando um calorímetro isoperibólico no laboratório didático de uma forma diferente / Using an isoperibol calorimeter at didactical laboratory in a different way

Vigatto, Larissa Orsini Barbin 17 August 2018 (has links)
Orientador: Jose de Alencar Simoni / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-17T04:21:02Z (GMT). No. of bitstreams: 1 Vigatto_LarissaOrsiniBarbin_M.pdf: 14150659 bytes, checksum: 02fc34917d3011406f67a3467bf11347 (MD5) Previous issue date: 2010 / Resumo: Esse trabalho consiste na utilização de um calorímetro isoperibólico em laboratório didático de química no nível superior, para se estudar aspectos mais amplos de alguns processos, que não os energéticos. Como se sabe, o calorímetro é o principal instrumento da primeira lei da termodinâmica e, como tal, presta-se, normalmente, para se obter a variação de energia de fenômenos físicos e químicos como entalpias de dissolução, combustão, neutralização, etc. Nesse projeto, utilizou-se esse instrumento em estudos da cinética de reações químicas, determinação de entalpias de vaporização, entalpias de reações eletroquímicas e estudos de reações oscilantes. O calorímetro utilizado é do tipo isoperibólico e já se encontra em operação no laboratório de Físico-Química do Instituto de Química da Unicamp há um longo tempo. Estudou-se a cinética da reação entre MnO4 e C2O4 em meio ácido, sendo observado que a reação e autocatalisada por Mn. O valor da constante cinética k = 10,4 L mol s determinado por essa técnica mostrou-se concordante com o valor obtido por espectrofotometria k =10,6 L mol s. Também foi estudada a cinética da reação de decomposição de H2O2 por I e o resultado mostrou uma dependência de primeira ordem em relação ao H2O2 e um valor de constante de velocidade k = 6,64 10 s concordante com o da literatura, obtido por outra técnica. Num outro estudo, determinou-se a entalpia da reação eletroquímica de uma solução aquosa de KI, obtendo-se o valor de DH = 247 kJ mol, valor esse, concordante com o da literatura que e de 245 kJ mol. Também foi realizada a reação eletroquímica de uma solução aquosa de sulfato de cobre utilizando-se eletrodos de cobre; os resultados permitiram evidenciar a validade de lei de Hess. Outro experimento observado foi o de reações oscilantes do tipo Belousov-Zhabotinsky. O estudo mostrou ser possivel explorar essa reação de uma forma didática bastante interessante. No entanto, algumas etapas da reação mostraram resultados de difícil acesso e pouca reprodutibilidade. Também foi explorado nesse projeto o uso da primeira lei (calorimetria) e da segunda lei (medidas de pressão de vapor) na determinação da entalpia de vaporização de alguns líquidos como água e etanol. Os resultados mostram que a utilização concomitante dessas duas técnicas leva a resultados concordantes entre si, que permitem ao aluno observar a consistência interna entre a primeira e a segunda lei da termodinâmica / Abstract: This work consists of utilizing an isoperibol calorimeter in educational laboratories of the chemistry college undergraduate course to study unusual aspects of some processes, in addiction to the energetic. As you know, the calorimeter is the main instrument of the first thermodynamic law and, normally, is used to obtain the variation of energy in physical and chemical phenomenon, such as enthalpies of dissolution, combustion, neutralization and other reactions. In this project, the calorimeter was used to study the kinetics of chemical reactions, determining the enthalpies of vaporization, the enthalpies of electrochemical reactions and oscillatory reactions. The instrument used is an isoperibol calorimeter and it has already been in use in the Physical-Chemistry Laboratory of the Unicamp Chemistry Institute for a long time. The study of the kinetic of reactions between MnO4 and C2O4 inside an acid environment showed that the reaction is autocatalyzed by Mn. Through this technique, it was possible to determinate that k = 10,4 L mol s and this value is almost the same obtained by spectrophotometry k = 10,6 L mol s. The kinetic of a decomposition reaction was studied also, and the result showed a dependency of the first order in relation to H2O2 and a value of velocity's constant k = 6,64 10 s concordant with the literature that was obtained through another technique. In another study, the enthalpy of an electrochemical reaction of a wet solution of KI was determinate in DH = 247 kJ mol, and this is concordant with the literature, DH = 245 kJ mol. Another reaction studied was the electrochemical reaction of a wet solution of copper sulfate using copper electrodes, and the results showed evidence, giving validity to the Hess law. Another experiment studied oscillatory reactions of the Belousov-Zhabotinsky type and showed it possible to explore this reaction in a very interesting educational way. In general, some reaction Ls steps showed results of hard access and low reproduction. Also studied in this project was the use of the first law (calorimetry) and the second law (measures of vapor pressure) in determining the vaporization enthalpy of some liquids as water and ethanol. The results show that the use of these two techniques, at the same time, lead to concordant results that permit the student to observe the relation between the first and the second thermodynamic laws / Mestrado / Físico-Química / Mestre em Química
28

Test and Developments of Crystals for a High-Resolution Electromagnetic Calorimeter for PANDA

Ohlsson, Sophie January 2004 (has links)
No description available.
29

Calibration of the Electromagnetic Calorimeter of the ATLAS Experiment and Application to the Measurement of (BE)H Boson Couplings in the Diphoton Channel with Run 2 Data of the LHC. / Etalonnage du calorimètre électromagnétique de l’expérience ATLAS et application à la mesure des couplages du boson de (Brout-Englert-)Higgs dans le canal diphoton dans le cadre du Run 2 du LHC.

Goudet, Christophe 26 September 2017 (has links)
La découverte du boson de Higgs en 2012 a été un des principaux succès du run 1 du LHC. Une ère de mesures de précision a alors débuté à la recherche de déviations par rapport au Modèle Standard (MS), qui seraient des indices quant à la physique au-delà du MS.Ce manuscrit s'intéresse en premier lieu à l'étalonnage du calorimètre électromagnétique de l'expérience ATLAS. L'étape finale de cet étalonnage utilise la distribution en masse du boson Z pour corriger l'énergie mesurée des électrons et des photons. Des recommandations pour le démarrage du run 2 ont été produites afin de fournir des constantes de correction pour aux premières analyses. Les corrections utilisant les données du run 2 ont également été mesurées. Les performances de l'étalonnage du run 1 ont été atteintes puis améliorées : l'incertitude systématique sur le terme constant de la résolution du calorimètre électromagnétique, dominante pour la mesure des couplages du boson de Higgs au run 1, a été divisée par 3. La mesure des couplages du boson de Higgs consiste en la mesure de la forme du signal résonnant sur un bruit de fond décroissant. Cette mesure est effectuée de manière corrélée entre différentes catégories, optimisées pour différents modes de production à travers l'identification d'objets produits avec le boson de Higgs. Les résultats ont été obtenus à partir de 36 fb$^{-1}$ de données récoltées en 2015 et 2016 à une énergie de $sqrt{s}$=13 TeV. Le rapport ($mu$) de la mesure de la section efficace inclusive du boson de Higgs sur sa valeur dans le MS a été mesuré. Aucune déviation significative par rapport au MS n'a été observée. $$mu = 0.99 pm 0.14$$Les rapports des principaux modes de production ont également été mesurés :$$mu_{ggH} = 0.80 pm 0.18$$$$mu_{VBF} = 2.1 pm 0.66$$$$mu_{VH} = 0.7 pm 0.85$$$$mu_{ttH+tH} = 0.5 pm 0.62$$ / The discovery of the Higgs boson was a major success of the run 1 of the LHC. The era of precision measurements began as any deviation from the expected Standard Model value would be a direct hint of new physics beyond the standard model. This thesis has a first focus on the calibration of the electromagnetic calorimeter of the ATLAS experiment. The final step of this calibration uses the knowledge of the line shape of the Z boson in order to correct the measured energy of electrons and photons. Recommendations for the beginning of run 2 have been given to provide calibration constants for early analyses. Run 2 calibration constants have been computed and the performances of run 1 have been reached and improved : the systematic uncertainty on the resolution constant term of the electromagnetic calorimeter, which was dominant for the Higgs boson couplings measurement at run 1, has been divided by a factor 3.The measurement of the H boson couplings consists in measuring the shape of the resonant signal over a smooth decreasing background in categories optimized for various processes, by tagging the objects produced in association with the Higgs boson. The results are based on 36 fb$^{-1}$ of data recorded in 2015 and 2016 at $sqrt{s}$=13 TeV. The ratio of the measured production cross-sections of the Higgs boson over the SM expected value ($mu$) has been measured. No significant deviation with respect to the SM has been observed.$$mu = 0.99 pm 0.14$$The ratios of the main production processes have also been measured:$$mu_{ggH} = 0.80 pm 0.18$$$$mu_{VBF} = 2.1 pm 0.66$$$$mu_{VH} = 0.7 pm 0.85$$$$mu_{ttH+tH} = 0.5 pm 0.62$$
30

Simulating cable fires in Fire Dynamics Simulator : Based on small scale testing in cone calorimeter

Zacharoff, Hugo January 2021 (has links)
In a society increasingly more influenced by technology and electricity, electrical and computer cables will play a more vital role in humans’ everyday life. With an increasing number of cables being introduced into society, the risk of fires caused by or involving cables will increase and become a more common danger to property and human lives. The fire properties of cables are tested according to Standard EN 50399 where vertically mounted cables are exposed to a burner for 20 minutes. The present work consists of running simulations imitating the conditions of Standard EN 50399 for testing cables using a Computational Fluid Dynamics program called Fire Dynamic Simulator (FDS). The general idea was to test the material in small-scale and running simulations to verify how well simulated values corresponded to values from actual testing, providing a potential less costly method of predicting the correct Euroclass in the development phase of new cables. During a visit at RISE in Borås, material for testing and a script previously used for testing a module of EN 50399 in FDS were obtained from previous work. The FDS script was later altered by adjusting the meshes inside the model in an effort to reduce simulation time. This was done by prioritizing smaller grid cells in high activity areas and using large grid cells in low activity areas. To verify the function of the model on the current version 7.5.0 of the FDS software, simulations were run empty without modelling the cables. To validate the FDS-model, temperatures were measured at four heights using a resemble of plate thermometers and the results were compared to older temperature measurements from an actual experiment using plate thermometers in the apparatus used at RISE when testing in the EN 50399 apparatus. To obtain the material data necessary for FDS, the material used as cable sheeting (surrounding the conductive metal core) molded into thin square plates were tested using a cone calorimeter at Luleå University of Technology. Two tests were conducted at irradiance levels of 50 and 25 kW/m2 where heat release rate was measured. Thenceforth followed 14 repeated tests at varying irradiance levels with the sole purpose of measuring time to ignition. In total 16 experiments were conducted, of which ten resulted in ignition, four of which did not ignite after exposure for 20 minutes and two which were interrupted due to swelling of the sample. After testing in the cone calorimeter, a critical irradiance level and ignition temperature of the material were verified using a theory presented by Janssens (1991). Two ramps – a controlled way of determining the materials heat release over time in FDS – were created based on the two tests at different irradiance levels. Using these new parameters simulations recreating the scenario for testing according to EN 50399 were run using FDS. Three simulations were run, testing different ramps and different implementations of the cables. The results proved it difficult to achieve the same heat release rate for cables simulated using FDS as heat released rate measured at experiments. With the simulations results at hand, in combination with uncertainties regarding material data it became clear the material had proven more difficult then anticipated. A possible reason for the big gap in heat release rate between simulations and experimental values could be considered to be the high ignition temperature given as material input for the cable in FDS.

Page generated in 0.0443 seconds