Spelling suggestions: "subject:"canales dde sodio"" "subject:"canales dee sodio""
1 |
Tráfico de los canales de sodio activados por voltaje hacia la membrana axonal en un modelo de daño de nervio ciáticoDíaz Ubilla, Macarena Francisca January 2017 (has links)
Memoria para optar al título de Bioquímico / Las neuronas son células que permiten la conducción nerviosa mediante potenciales de acción. Para lograr esto, evolucionaron y desarrollaron una proyección altamente especializada llamada axón, en la cual se concentran canales iónicos de membrana que permiten el flujo de iones. Los canales de sodio activados por voltaje (Nav) son los canales iónicos que permiten la generación y propagación de los potenciales de acción. En el caso de los axones mielinizados, estos se concentran en el segmento inicial del axón y en los nodos de Ranvier, constricciones simétricas de la vaina de mielina donde se regenera el potencial de acción. Su abundancia y distribución a lo largo del axón no son fijas, sino que varían durante procesos como desarrollo y regeneración axonal. Se sabe que los axones son capaces de sintetizar proteínas localmente. A la fecha se ha reportado que la síntesis axonal de proteínas se ve aumentada en respuesta a daño axonal. Sin embargo, se desconoce si proteínas de membrana también son sintetizadas y traficadas localmente. En este contexto se ha reportado un aumento de Nav luego de daño axonal.
El objetivo de este trabajo es establecer si la síntesis axonal de proteínas y la ruta secretoria local contribuyen a reestablecer los niveles de Nav en nodos de Ranvier luego de daño axonal.
Para evaluar esto, se utilizó un modelo de daño axonal generado a partir de la transección de nervio ciático de rata. Se inhibió la síntesis y ruta secretoria axonal mediante la aplicación in vivo de cicloheximida (CHX) y brefeldina A (BFA) respectivamente. Ambos fármacos fueron inyectados independientemente en el nervio transectado. Se evaluó su efecto sobre la abundancia y distribución de Nav mediante inmunofluorescencia y western blot.
En primer lugar, se corroboró que el daño axonal produce un aumento de los Nav en los nodos de Ranvier. Esta sobreexpresión de los canales de sodio activados por voltaje producto de daño axonal es bloqueada al inhibir la síntesis y ruta secretoria axonal con herramientas farmacológicas. Estos datos sugieren la existencia de una ruta biosintética y de tráfico axonal capaz de mediar el rápido aumento de Nav en procesos de regeneración axonal / Neurons are highly polarized cells that evolved to transmit nerve impulses. To achieve this function, they developed a process called the axon that concentrates ion channels. Voltage gated sodium channels (Nav) are responsible for generating and propagating action potentials. In myelinated axons, these proteins are concentrated at the axon initial segment (AIS) and at the nodes of Ranvier. Nodes are symmetric constrictions of the myelin sheath where action potentials are regenerated. The availability and distribution of Nav are plastic, meaning they change during developmental stages or regeneration. It is currently known that axonal protein synthesis in enhanced in response to axonal injury. However, it is still unknown whether local protein synthesis controls the abundance of membrane proteins in the axon and if Nav are subject to this regulation. The aim of this work is to study if Nav upregulation after axonal injury is related with axonal protein synthesis and the axonal secretory route.
To evaluate this, we used an axonal injury model generated from the transection of the rat sciatic nerve. Local synthesis and the function of the axonal secretory route were inhibited in vivo using cycloheximide (CHX) or brefeldin A (BFA) respectively. Both drugs were injected in the nerve right after transection. The effect on Nav was evaluated by immunofluorescence and western blot.
First, we corroborated that axonal injury enhances Nav at nodes of Ranvier. This upregulation disappears when axonal protein synthesis or the local secretory route were inhibited. Our data suggest the existence of an axonal synthetic and trafficking route capable of mediating the fast Nav upregulation during axonal regeneration / ICM, número de proyecto P09-015-F; Fondecyt, 1140617
|
2 |
Generación de nuevos modelos y búsqueda de modificadores para el Síndrome de Dravet en Drosophila MelanogasterTapia González, Andrea 05 September 2022 (has links)
[ES] El síndrome de Dravet es una epilepsia severa rara causada por mutaciones en el gen SCN1A, el cual codifica para la proteína Nav1.1, subunidad α de los canales de sodio regulados por voltaje. En esta tesis se ha generado mediante recombinación homóloga, una nueva mutación en el gen para que hemos denominado paraKO, el cual cumple la misma función en Drosophila melanogaster. Estas moscas han mostrado un fenotipo epiléptico inducido por altas temperaturas, y muerte súbita en el caso de las crisis de larga duración. También se han observado alteraciones musculares en ensayos de geotaxis negativa, vuelo y locomoción. Del mismo modo, han presentado problemas cognitivos como la ansiedad y dificultades en el aprendizaje. El uso de imanes como terapia contra el fenotipo epiléptico ha tenido buenos resultados retrasando la aparición de las crisis y disminuyendo su duración y la cantidad de moscas que las padecen. El perfil metabolómico de las cabezas de estas moscas mostró un incremento en la concentración de aminoácidos, succinato y lactato, alteraciones que se pueden relacionar con la epilepsia y la disfunción mitocondrial. El neurotransmisor GABA, principal implicado en el síndrome de Dravet, mostró niveles superiores en el modelo generado. El análisis electrofisiológico de las corrientes de sodio de las motoneuronas aCC en estadío de larva señaló aumentos en las corrientes persistentes de sodio y su ratio con las transitorias, lo cual podría justificar las crisis epilépticas. Además, la excitabilidad y el tamaño de estas células fueron menores. Todos estos cambios presentes en los mutantes KO generados hacen de estas moscas un buen modelo para estudio de la epilepsia en general, y del síndrome de Dravet en particular. Este modelo ofrece nuevas herramientas para entender la patofisiología de la enfermedad y la búsqueda de biomarcadores y tratamientos. Finalmente la búsqueda de modificadores genéticos a través de ensayos de supervivencia, tiempo de recuperación a crisis y vuelo empleando el modelo parabss1 obtuvo buenos resultados con los genes nAchRα4 y KCNQ. El gen toy por el contrario resultó ser intensificador. La variabilidad en los resultados obtenidos en este apartado cuestiona la manera de llevar a cabo este tipo de estudios en modelos animales y pacientes del síndrome de Dravet. / [CA] La síndrome de Dravet és una epilèpsia severa rara causada por mutacions en el gen SCN1A, el qual codifica para la proteïna Nav1.1, subunitat α dels canals de sodi regulats por voltatge. En aquesta tesis s'ha generat, mitjançant recombinació homòloga, una nova mutació en el gen para, anomenada paraKO, el qual té la mateixa funció en Drosophila melanogaster. Aquestes mosques han mostrat un fenotip epilèptic induït por altes temperatures, y mort súbdita en el cas de les crisis de llarga duració. També s'han observat alteracions musculars en assajos de geotaxis negativa, vol y locomoció. De la mateixa manera, han presentat problemes cognitius como l'ansietat i dificultats en l'aprenentatge. L'ús d'imants com teràpia contra el fenotip epilèptic ha tingut bons resultats endarrerint l'aparició de les crisis i disminuint la seua durada i la quantitat de mosques que les pateixen. El perfil metabolòmic dels caps d'aquestes mosques mostrà increments en la concentració d'aminoàcids, succinat i lactat, alteracions les quals es poden relacionar amb l'epilèpsia y la disfunció mitocondrial. El neurotransmissor GABA, principal implicat en la síndrome de Dravet, mostrà nivells superiores en el model generat. L'anàlisi electrofisiològic de las corrents de sodi de les motoneurones aCC en estadi de larva assenyalà augments en les corrents persistents de sodi y el seu ràtio amb las transitòries, lo qual podria justificar las crisis epilèptiques. A més a més, l'excitabilitat y el tamany d'aquestes cèl·lules va ser menor. Todos aquests canvis presents en els mutants KO generats fan d'aquestes mosques un model per a l'estudi de l'epilèpsia en general, i de la síndrome de Dravet en particular. Aquest model ofereix noves ferramentes per a entendre la patofisiología de la malaltia i la recerca de biomarcadors y tractaments. Finalment la recerca de modificadors genètics a través d'assajos de supervivència, temps de recuperació a crisis y vol mitjançant el model parabss1 va obtindre bons resultats amb els gens nAchRα4 y KCNQ. El gen toy pel contrari resultà ser intensificador. La variabilitat en els resultats obtinguts en aquest apartat qüestiona la manera de fer aquest tipus d'estudis en models animals i pacients de la síndrome de Dravet. / [EN] Dravet syndrome is a severe rare epileptic disease caused by mutations in the SCN1A gene coding for the Nav1.1 protein, a voltage-gated sodium channel alpha subunit. In this thesis we have made a new mutation in a gene called paraKO through homologous recombination, the single Drosophila melanogaster gene encoding this type of protein. These flies showed a heat-induced seizing phenotype, and sudden death in long term seizures. In addition to seizures, neuromuscular alterations were observed in climbing, flight and locomotion tests. Moreover, they also manifested some cognitive alterations such as anxiety and difficulties in learning. Using magnets as a therapy for epileptic phenotype, seizures start was delayed, and its duration and the quantity of flies affected was lower.
Metabolomic profile of these flies' brains showed an increase in the amount of aminoacids, succinate and lactate, alterations that could be related with epilepsy and mitochondrial dysfunction. GABA, the main neurotransmitter involved in Dravet syndrome, was higher in the paraKO model. Electrophysiological sodium current analysis from aCC motoneurons in larvae stage revealed an increase in persistent currents and their ratio with transients, which is a symptom for epileptic seizures. Cell size and excitability were lower in these cells too. All these changes in the paralytic knock-out flies indicate that this is a good model for epilepsy and specifically for Dravet syndrome. This model could be a new tool to understand the pathophysiology of the disease and to find biomarkers, genetic modifiers and new treatments.
Finally, a search for genetic modifiers through survival, recuperation time and flight using parabss1 flies obtained good results with nAchR¿4 y KCNQ. Otherwise, toy gene was an enhancer. However, variability observed in these type of assays dispute how modifiers search is made with model animals and Dravet syndrome patients. / Tapia González, A. (2022). Generación de nuevos modelos y búsqueda de modificadores para el Síndrome de Dravet en Drosophila Melanogaster [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/186189
|
Page generated in 0.0784 seconds