• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 2
  • 2
  • Tagged with
  • 24
  • 24
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The therapeutic/anti-carcinogenic effect of cord blood stem cells-derived exosomes in malignant melanoma

Naeem, Parisa January 2022 (has links)
Malignant melanoma is an invasive type of skin cancer with high mortality rates, if not detected promptly. The mortality trends are generally linked to multiple dysplastic nevi, positive family history, genetic susceptibility and phenotypic features including fair skin, freckles, numerous atypical nevi, light coloured hair and eyes, inability to tan and prolonged exposure to ultraviolet radiation B (UVB). To date, the major anti-cancer therapeutics for melanoma include surgery, chemotherapy, radiotherapy, and immunotherapy. Recently, extracellular vesicles, especially exosomes, have been highlighted for their therapeutic benefits in numerous chronic diseases such as cancer. Exosomes display multifunctional properties, including inhibition of cancer cell proliferation and initiation of apoptosis. Hence, this study aimed to evaluate the genotoxicity and cytotoxicity of cord blood stem cell-derived (CBSC) exosomes on 6 samples of peripheral blood lymphocytes taken from healthy individuals and melanoma patients and on 3 samples of melanoma (CHL-1) cells. The limited number of samples was due to the time limitations and restrictions that were in place due to the COVID-19 pandemic. In this in vitro study, the optimal concentration of CBSC-derived exosomes (0, 100, 200, 300, 400 μg/ml protein at 24, 48 and 72h treatments) was confirmed by the CCK-8 assay. CBSC exosomes (300 μg/ml) were used to treat lymphocytes and CHL-1 cells in the Comet assay and evaluated using the real-time polymerase chain reaction (qPCR) and Western blotting (WB). The data of the CCK-8 and Comet assays illustrated that exosomes exerted genotoxic effects on CHL-1 cells (CCK-8 assay, ****p < 0.0001), (Comet assay, *p <0.05, **p < 0.01). However, the data portraying a reduction in the viability of lymphocytes needs further investigation as the number of samples was limited, therefore, further clarification is required. Importantly, no significant adverse effect was observed in healthy lymphocytes when treated with the same exosomes (p = ns). When further challenged with UVA+B radiation, the exosomes did not induce any genoprotective effect on ROS-induced CHL-1 cells, compared to the positive control (p = ns). Our data insinuates that the damage might be caused by inducing apoptosis. The anti-tumourigenic potential of exosomes was observed by activating the p53-mediated apoptotic pathway in CHL-1 cells, up-regulating p53, p21 and caspase 3 and down-regulating BCL-2 at mRNA (**p < 0.01, ***p <0.001, ****p <0.0001) and protein levels (*p < 0.05, **p <0.01). The potency of CBSC exosomes in inhibiting cancer progression in CHL-1 cells whilst causing no harm to the healthy lymphocytes makes it an ideal potential candidate for anti-cancer therapy. More samples are required to evaluate the therapeutic effect of exosomes on lymphocytes from cancer patients to fully understand their mechanism of action.
12

Investigation of inhibitors of polysialyltransferase as novel therapeutics for neuroblastoma : development of in vitro assays to assess the functionality and selectivity of novel small-molecule inhibitors of polysialyltransferases for use in neuroblastoma therapy

Saeed, Rida Fatima January 2015 (has links)
Polysialic acid is a unique carbohydrate that decorates the surface of the neural cell adhesion molecule. Polysialic acid is an onco-developmental antigen, expressed in tumours principally of neuroendocrine origin, notably neuroblastoma, strongly correlating with invasion and metastasis. Polysialylation is regulated by two polysialyltransferase enzymes, PST (ST8SiaIV) and STX (ST8SiaII), with STX dominant in cancer. Post-development polysialic acid expression is only found at low levels in the brain, thus this could be a novel target for cancer therapy. It is hypothesized that inhibition of polysialyltransferase could lead to control of tumour dissemination and metastasis. The aims of this thesis were to develop tools and in vitro assays to screen novel polysialyltransferase inhibitors. A panel of tumour cell lines were characterised in terms of growth parameters (using the MTT assay) and polysialic acid expression. This includes a pair of isogenic C6 rat glioma cells (C6-STX and C6-WT) and naturally polysialic acid expressing neuroblastoma cells (SH-SY5Y). Following this, an in vitro assay was validated to screen modulation of polysialic acid expression by removing pre-existing polysialic acid expression using endoneuraminidase N and evaluated the amount of re-expression of polysialic acid using immunocytochemistry. Then, a functional assay was developed and validated for invasion, the matrigel invasion assay. Cytidine monophosphate (tool compound) significantly reduced polysialic acid surface expression and invasion. A panel of six novel polysialyltransferase inhibitors was screened for cytotoxicity, polysialic acid surface expression and invasion. Of the potential polysialyltransferase inhibitors evaluated, ICT3176 and ICT3172 were identified from virtual screening of Maybridge library and were emerged as the most promising inhibitors, demonstrating significant (p < 0.05) reduction in cell-surface polysialic acid re-expression and invasion in polysialic acid expressing cells. Furthermore, the specificity of compounds for polysialyltransferase (α-2,8-sialyltransferase) over other members of the wider sialyltransferase family (α-2,3- and α-2,6-sialyltransferases) was confirmed using differential lectin staining. These results demonstrated that small molecule inhibitors as STX is possible and provides suitable in vitro cell based assays to discovery more potent derivatives.
13

Microfabricated Fluidic Devices for Biological Assays and Bioelectronics

Bickham, Anna V. 11 June 2020 (has links)
Microfluidics miniaturizes many benchtop processes and provides advantages of low cost, reduced reagent usage, process integration, and faster analyses. Microfluidic devices have been fabricated from a wide variety of materials and methods for many applications. This dissertation describes four such examples, each employing different features and fabrication methods or materials in order to achieve their respective goals. In the first example of microfluidic applications in this dissertation, thermoplastics are hot embossed to form t-shaped channels for microchip electrophoresis. These devices are used to separate six preterm birth (PTB) biomarkers and establish a limit of detection for each. The next chapter describes 3D printed devices with reversed-phase monoliths for solid-phase extraction and on-chip fluorescent labeling of PTB biomarkers. I demonstrate the optimization of the monolith and selective retention of nine PTB biomarkers, the first microchip study to perform an analysis on this entire panel. The third project describes the iterative design and fabrication of glass/polydimethylsiloxane (PDMS) devices with gold and nickel electrodes for the self-assembly of DNA nanotubes for site-selective placement of nanowires. Simple flow channels and “patch electrode” devices were successfully used, and DNA seeding was achieved on gold electrodes. Finally, a 3D printed device for cancer drug screening was developed as a replacement for one previously fabricated in PDMS. Devices of increasing complexity were fabricated, and those tested found to give good control over fluid flow for multiple inlets and valves. Although the applications and methods of these projects are varied, the work in this dissertation demonstrates the potential of microfluidics in several fields, particularly for diagnostics, therapeutics, and nanoelectronics. Furthermore, it demonstrates the importance of applying appropriate tools to each problem to gain specific advantages. Each of the described devices has the potential for increased complexity and integration, which further emphasizes the advantages of miniaturized analyses and the potential for microfluidics for analytical testing in years to come.
14

Inhibitory effect on the proteasome regulatory subunit, RPN11/POH1, with the use of Capzimin-PROTAC to trigger apoptosis in cancer cells

Holmqvist, Andreas January 2020 (has links)
Most patients diagnosed with cancer will receive systematic chemotherapy at some point during their illness, which almost always cause severe side effects for the patients such as, anemia, nausea and vomiting. The problems with today’s chemotherapy is not only that it cause severe side effects, but also that the cancer may develop resistance to the therapy, which is why the development of a new type of therapeutic agent is in dire need. The ubiquitin proteasome system (UPS) is a vital machinery for the cancer cells to maintain protein homeostasis, which also make them vulnerable to any disruption of this system. In recent years, a new technology has been developed that utilize the UPS by chemically bringing an E3 ubiquitin ligase into close proximity of a protein of choice and tagging the protein with ubiquitin for degradation. This technology is called proteolysis targeting chimera (PROTAC). In this project, we managed to theoretically develop a new type of cancer therapeutic agent, that utilize the PROTAC system together with the first-in-class proteasome regulatory subunit, POH1, inhibitor Capzimin as a warhead. By using Capzimin as a warhead it should be possible to polyubiquitinate POH1, and thus induce proteotoxic stress in the cancer cells to trigger apoptosis. This theoretically developed drug is therefore called Capzimin-PROTAC, which should be able to trigger apoptosis in cancer cells, and at the same time being relatively safe to normal healthy cells.
15

Investigation of inhibitors of polysialyltransferase as novel therapeutics for neuroblastoma. Development of in vitro assays to assess the functionality and selectivity of novel small-molecule inhibitors of polysialyltransferases for use in neuroblastoma therapy

Saeed, Rida F. January 2015 (has links)
Polysialic acid is aunique carbohydrate that decorates the surface of the neural cell adhesion molecule. Polysialic acidis an onco-developmental antigen, expressed in tumours principally of neuroendocrine origin, notably neuroblastoma,strongly correlating with invasion and metastasis. Polysialylation is regulated by two polysialyltransferase enzymes, PST(ST8SiaIV)and STX(ST8SiaII),withSTX dominant in cancer. Post-development polysialic acid expression is only found at low levels in the brain, thus this could be a novel target for cancer therapy. It is hypothesized that inhibition of polysialyltransferasecould lead to control of tumour dissemination and metastasis.The aims of this thesis were to develop tools and in vitro assays to screen novel polysialyltransferaseinhibitors. A panel of tumour cell lines were characterised in terms of growth parameters (using the MTT assay) and polysialic acid expression. This includes a pair of isogenic C6 rat glioma cells (C6-STX and C6-WT) and naturally polysialic acid expressing neuroblastoma cells(SH-SY5Y). Following this, an in vitro assay was validated to screen modulation of polysialic acid expression by removing pre-existing polysialic acid expression using endoneuraminidase N and evaluated the amount of re-expression of polysialic acid using immunocytochemistry. Then, a functional assay was developed and validated for invasion, the matrigel invasion assay. Cytidine monophosphate (tool compound) significantly reduced polysialic acidsurface expression and invasion. A panel of six novel polysialyltransferase inhibitors was screened for cytotoxicity, polysialic acidsurface expression and invasion. Of the potential polysialyltransferase inhibitorsevaluated, ICT3176 and ICT3172 were identified from virtual screening of Maybridge library and were emerged as the most promising inhibitors, demonstrating significant (p<0.05)reduction in cell-surface polysialic acidre-expression and invasion in polysialic acid expressing cells.Furthermore, the specificity of compounds for polysialyltransferase (α-2,8-sialyltransferase) over othermembers of the wider sialyltransferase family (α-2,3-and α-2,6-sialyltransferases) was confirmed using differential lectin staining. These results demonstrated that small molecule inhibitors as STX is possible and provides suitable in vitrocell based assays to discovery more potent derivatives.
16

Cellular sheddases are induced by Merkel cell polyomavirus small tumour antigen to mediate cell dissociation and invasiveness

Nwogu, N., Boyne, James R., Dobson, S.J., Poterlowicz, Krzysztof, Blair, G.E., Macdonald, A., Mankouri, J., Whitehouse, A. 10 August 2018 (has links)
yes / Merkel cell carcinoma (MCC) is an aggressive skin cancer with a high propensity for recurrence and metastasis. Merkel cell polyomavirus (MCPyV) is recognised as the causative factor in the majority of MCC cases. The MCPyV small tumour antigen (ST) is considered to be the main viral transforming factor, however potential mechanisms linking ST expression to the highly metastatic nature of MCC are yet to be fully elucidated. Metastasis is a complex process, with several discrete steps required for the formation of secondary tumour sites. One essential trait that underpins the ability of cancer cells to metastasise is how they interact with adjoining tumour cells and the surrounding extracellular matrix. Here we demonstrate that MCPyV ST expression disrupts the integrity of cell-cell junctions, thereby enhancing cell dissociation and implicate the cellular sheddases, A disintegrin and metalloproteinase (ADAM) 10 and 17 proteins in this process. Inhibition of ADAM 10 and 17 activity reduced MCPyV ST-induced cell dissociation and motility, attributing their function as critical to the MCPyV-induced metastatic processes. Consistent with these data, we confirm that ADAM 10 and 17 are upregulated in MCPyV-positive primary MCC tumours. These novel findings implicate cellular sheddases as key host cell factors contributing to virus-mediated cellular transformation and metastasis. Notably, ADAM protein expression may be a novel biomarker of MCC prognosis and given the current interest in cellular sheddase inhibitors for cancer therapeutics, it highlights ADAM 10 and 17 activity as a novel opportunity for targeted interventions for disseminated MCC. / In parts by the Medical Research Council (95505126) to AW, Royal Society (UF100419) to JM and Biotechnology and Biological Sciences Research Council (BB/R000352/1) to GEB and AW.
17

Potential New Drugs in Lymphoma

Delforoush, Maryam January 2016 (has links)
Lymphomas are malignant tumours arising from cells in the lymphatic system. They are classified as B-cell lymphomas, T-cell lymphomas and Hodgkin lymphoma (HL). Of the B-cell lymphomas, one of the most common is diffuse large B-cell lymphoma (DLBCL). Many patients with lymphomas can be successfully treated however patients who relapse or are refractory have a poor prognosis, warranting further investigations to identify potential targets and develop novel drugs. Picropodophyllin (PPP), a potent and selective inhibitor of IGF-1R, inhibits malignant cell growth with low or no toxicity on normal cells in preclinical models. In paper I, we investigated the potential benefits of using PPP against DLBCL and found that the anti-tumor effects of PPP might possibly be explained by IGF-1R-unrelated mechanism(s). However, the inhibitory effects of PPP on lymphoma cells together with its low toxicity in vivo makes it a promising drug candidate for treatment. Melflufen, a derivative of melphalan, is currently being evaluated in a clinical phase I/II trial in relapsed or refractory multiple myeloma. In paper II, we confirmed previous reports of superior potency of melflufen over melphalan. Being active in cell lines and primary cultures of lymphoma cells as well as in a xenograft model in mice, melflufen considered being a candidate for further evaluation in treatment. bAP-15, a novel inhibitor of proteasome activity, inhibits ubiquitin specific peptidase 14 (USP14) and ubiquitin carboxyl-terminal hydrolase L5 (UCHL5). In paper III, we investigated the activity of b-AP15 in DLBCL and HL cell lines and compared the results to standard drugs used in treatment. Results showed inhibition of the proteasome and growth inhibition/cytotoxicity with IC50-values in the micromolar range. Treatment failure and lack of clinical benefit of proteasome inhibitors like bortezomib in DLBCL patients inspired us investigating for possible new targets, with major focus on proteasome inhibitors in DLBCL. In paper IV, we suggested that UCHL5 and/or USP14, as new targets for proteasome inhibitors in DLBCL, be further evaluated. The findings in this thesis suggest that PPP, Melflufen and b-AP15 are potential candidates for clinical drug development and UCHL5 and/or USP14 are new potential targets for proteasome inhibitors in DLBCL.
18

Molecular Rationale and Determinants of Sensitivity for Statin-Induced Apoptosis of Human Tumour Cells

Clendening, James William 07 March 2011 (has links)
The statin family of hydroxymethylglutaryl coenzyme A reductase (HMGCR) inhibitors, used to control hypercholesterolemia, triggers apoptosis of various human tumour cells. HMGCR is the rate-limiting enzyme of the mevalonate (MVA) pathway, a fundamental metabolic pathway required for the generation of a number of biochemical end-products including cholesterol and isoprenoids, but the contribution of the MVA pathway to human cancer remains largely unexplored. Furthermore, as only a subset of tumour cells has been shown to be highly responsive to statins, the identification of appropriate subsets of patients will be required to successfully advance these agents as anticancer therapeutics. To this end, there were two major aims to this work: 1) Elucidate a molecular rationale for the observed therapeutic index of statin-induced apoptosis in normal and tumour cells; 2) Identify molecular determinants of sensitivity for statin-induced apoptosis in human tumour cells. To address the first aim we demonstrated that dysregulation of the MVA pathway, achieved by ectopic expression of either full length HMGCR (HMGCR-FL) or its novel splice variant lacking exon 13 (HMGCR-D13), increases transformation. Ectopic HMGCR promotes growth of transformed and non-transformed cells under anchorage-independent conditions or as xenografts in immunocompromised mice. We also show that high mRNA levels of HMGCR and four out of five other MVA pathway genes correlate with poor prognosis in primary breast cancer, suggesting the MVA pathway may play a role in the etiology of human cancers. To address the second aim, we show that dysregulation of the MVA pathway is a key determinant of sensitivity to statin-induced apoptosis in multiple myeloma. In a panel of 17 distinct myeloma cell lines, half were sensitive to statin-induced apoptosis and the remainder were insensitive. Interestingly, in sensitive cells, the classic feedback response to statin exposure is lost, a feature we demonstrated could distinguish a subset of statin-sensitive primary myeloma cells. We further illustrated that statins are highly effective and well tolerated in an orthotopic model of myeloma using cells harboring a dysregulated MVA pathway. Taken together, this work provides a molecular rationale and determinants of sensitivity for statin-induced apoptosis of human tumour cells.
19

Notch1-Induced Survival Signaling And Its Implications In Cancer Therapeutics

Mungamuri, Sathish Kumar 12 1900 (has links)
Notch receptors and ligands are type I transmembrane proteins that regulate development and differentiation during cell-cell contact. There are four Notch receptor homologues and five notch ligands, identified in humans till date. Upon ligand activation, Notch1 intracellular domain (NIC-1) is released into the cytoplasm, which binds to several proteins as well as translocates into the nucleus to effect the Notch signaling. In the absence of the activated Notch signaling, the Notch target genes are kept repressed by the transcriptional repressor C protein binding factor 1 (CBF1) also known as RBPjk or CSL for CBF1/Su(H)/Lag1. RBPjk binds to the sequence “CGTGGGAA” and acts as a constitutive repressor. Upon ligand dependent activation, NIC-1 enters into the nucler and converts RBPjk from transcriptional repressor to an activator. Notch binding to CSL replaces the SMRT corepressor complex with a coactivator complex including SKIP, Mastermind like 1 (MAML1) (Mastermind in Drosophila), and histone acetyl transferases PCAF, GCN5 and p300 activating the transcription of target genes. Mastermind-like (MAML), a family of transcriptional activator proteins comprising of 3 members 1 to 3, has been shown to be required for Notch signaling. MAML forms a ternary complex with RBPjk-NIC by directly interacting with NIC. In turn, MAML recruits the histone acetyl transferase p300/CBP, which acetylates the histones, thereby altering the structure of chromatin amenable for transcription. Activation of Notch pathway induces oncogenesis, which can be divided into two categories including 1) Inhibition of Apoptosis and 2) Induction of proliferation. In T cells, activation of Notch1 protects cells from T cell receptor, dexamethasone and etoposide-mediated apoptosis, Fas receptor-mediated signaling by up regulating IAP (Inhibitor of Apoptosis) and Bcl-2 families, as well as FLIP (FLICE-like inhibitor protein). Notch signaling also promotes the survival of T cells through maintenance of cell size as well as through the promotion of glucose uptake and metabolism. Notch-1 has been shown to protect against anoikis (apoptosis induced by matrix withdrawal) or p53-mediated apoptosis in immortalized epithelial cells, T cell receptor-induced apoptosis in mature cells and dexamethasone-mediated apoptosis in thymocytes. This study was carried out to functionally characterize NIC-1 (human Notch1-intracellular domain) as an inhibitor of apoptosis and to evaluate the therapeutic potential of reversal of this apoptosis inhibition. The main objectives of this study are 1. Construction of recombinant adenovirus expressing human Notch1-intracellular domain (Ad-NIC-1) and characterization of NIC-1 as an inhibitor of chemotherapy and p53-induced cytotoxicity and apoptosis. 2. Role of PI3 kinase -Akt/PKB -mTOR pathway in NIC-1-mediated inhibition of p53-induced apoptosis. 3. Essential role of association between mTOR and NIC-1 and the dependent NIC-1 phosphorylation in Notch1-mediated transcription and survival signaling. 4. Identification of NIC-1 as an inhibitor of E1A-induced apoptosis and the role of mTOR in NIC-1-mediated inhibition of E1A-induced apoptosis. Activated Notch1 was first linked to tumorigenesis through identification of a recurrent t(7;9)(q34;q34.3) chromosomal translocation involving the human Notch1 gene that is found in a subset of human pre-T-cell acute lymphoblastic leukemia’s (T-ALL). Deregulated Notch signaling is oncogenic, inhibits apoptosis and promotes survival. In order to understand survival signaling induced by Notch1 and its possible role in chemoresistance, we have generated a replication deficient recombinant adenovirus expressing human Notch1-intracellular domain (Ad-NIC-1) and shown that it produces functional NIC-1 protein. Using this overexpression system, we characterized that activated Notch1-inhibits chemotherapy and in particular p53 induced apoptosis. Notch1-mediated inhibition of p53-induced apoptosis does not include coactivator squelching. p53 was inefficient in binding to its DNA in NIC-1 overexpressing cells. The levels of phosphorylation at Ser15, Ser20, and Ser392 of p53 expressed from Ad-p53 significantly reduced in NIC-1 preinfected cells. These results suggest that NIC-1-mediated inhibition of p53-mediated apoptosis involves reduced DNA binding, reduced nuclear localization and reduced post translational modifications and thus reduced transactivation of its target genes. Notch1-mediated inhibition of p53 was found to occur mainly through mammalian target of rapamycin (mTOR) using PI3 kinase-Akt/PKB pathway, as the mTOR inhibitor; rapamycin treatment was able to reverse Notch-1 mediated inhibition of p53 and chemoresistance. Consistent with this, rapamycin failed to reverse NIC-1 induced chemoresistance in cells expressing rapamycin resistant mTOR. Our results also suggest that the N-terminal HEAT repeat and the kinase function of mTOR are essential for Notch mediated inhibition of p53. Further, ectopic expression of eIF4E, a translational regulator that acts downstream of mTOR, inhibited p53-induced apoptosis and conferred protection against p53-mediated cytotoxicity to similar extent as that of NIC-1 overexpression, but was not reversed by rapamycin, which indicates that eIF4E is the major target of mTOR in Notch1-mediated survival signaling. Notch1-intracellular domain (NIC-1), following proteolytic cleavage, binds to RBPjk and regulates transcription. Active NIC-1 located in the nucleus is phosphorylated, which makes it more stable and bind better to RBPjk. NIC-1 was also shown to bind to Deltex1 in the cytoplasm. Next, we studied the requirement of components of Notch1 signaling pathway for this function. By using variety of approaches, we found that both RBPjk and Maml1 and hence transcription activation is required for NIC-1-mediated survival signaling and inhibition of p53 functions. Interestingly, while we found the other Notch1 effector, Deltex1 is also required for above functions, Notch1 failed to activate PI3 kinase -Akt/PKB -mTOR pathway in Deltex1, but not in RBPjk silenced cells. Our results suggest that Notch-Deltex1 pathway activates PI3 kinase. Previous studies show that NIC-1 interacts with Deltex1 and Grb2 interacts with PI3 kinase. Our data shows that Deltex1 interacts with SH3 domain of Grb2. Since Notch1-Deltex1 and PI3 kinase-Grb2 interactions are known, we conclude that Notch1 activation of PI3 kinase involves Deltex1 and Grb2. We found activated mTOR was able to binds to NIC-1 and regulates its phosphorylation. Inhibition of mTOR either by PI3 kinase inhibitors or mTOR inhibitor treatment or silencing of Akt/PKB or mTOR reduced the phosphorylation of NIC-1 with the concomitant reduction in NIC-1-mediated transcription. Further, endogenous Notch1 receptor activated by the DSL ligand failed to activate transcription efficiently in rapamycin treated cells, implying a positive role for mTOR in mammalian Notch signaling. These studies reveal that Notch1 activates PI3 kinase -Akt/PKB -mTOR signaling through Deltex1 and subsequently activated mTOR modulates Notch1 signaling by direct binding and possibly thorough phosphorylation of the intracellular domain of Notch. Adenoviral E1A, in the absence of cooperating oncogene, suppresses primary tumor growth and reverses the transformed phenotype of human tumor cells by inducing apoptosis. E1A requires p53 for efficient induction of apoptosis and was shown to induce apoptosis by down regulating Akt and the activation of pro apoptotic factor p38 MAP kinase. Since our results suggest Notch1 inhibits chemotherapy and p53-induced apoptosis, we analyzed the ability of Notch1 to protect cells from E1A-induced apoptosis. Here we show that NIC-1 suppresses the ability of E1A to induce apoptosis. NIC-1 requires mTOR-dependent signal to inhibit E1A-mediated apoptosis, as the rapamycin, an mTOR inhibitor was able to completely reverse the ability of Notch1 to protect cells against E1A-induced apoptosis. The role of mTOR in NIC-1-mediated survival signaling was further confirmed by using the cells stably expressing rapamycin resistant mTOR. Rapamycin was able to reverse Notch1-mediated protection in cells expressing wild type mTOR but not in rapamycin resistant mTOR expressing cells. We also found that E1A was able to induce apoptosis in cells silenced for the pro apoptotic factor p38 and NIC-1 continued to inhibit E1A-induced apoptosis in these cells. These results confirm that Notch1 requires the activation of mTOR signaling but not p38 MAP kinase for inhibition of E1A-induced apoptosis. These results also suggest that the combination therapy utilizing E1A-mediated gene delivery in combination with inhibition of mTOR pathway may prove successful in treating Notch overexpressing cancers. Chemotherapy remains a major treatment modality for human cancers. Chemoresistance is a clinical problem that severely limits treatment success. It can be divided into two forms: intrinsic and acquired. Intrinsic resistance is the essence of oncogenic transformation, resulting from activation of oncogenes and the loss of tumor suppressors, and manifests itself as alterations in cell cycle checkpoints and apoptotic pathways. It is now widely accepted that the apoptotic capacity of the cancer cell is crucial in determining the response to chemotherapeutic agents. Indeed, several gene products that regulate apoptosis, i.e., p53, Akt and PI3K are frequently altered in cancer cells. In this study, we identified that cells with aberrant Notch1 signaling are chemoresistant. Activated Notch1 overexpression makes cells resistant to chemotherapy in a wild type p53 dependent manner. Notch protected p53 wild type cells but not p53 mutated or p53 deleted cells against chemotherapy induced cytotoxicity. Further, inactivation of p53 by specific silencing abrogated the ability of NIC-1 to protect H460 cells against adriamycin induced cytotoxicity. Most importantly, NIC-1 mediated chemoresistance can be reversed by blocking PI3 kinase -Akt/PKB -mTOR pathway. Collectively, these results suggest that cancers with activated Notch1 signaling are chemoresistant and provide basis for the reversal of chemoresistance.
20

Molecular Rationale and Determinants of Sensitivity for Statin-Induced Apoptosis of Human Tumour Cells

Clendening, James William 07 March 2011 (has links)
The statin family of hydroxymethylglutaryl coenzyme A reductase (HMGCR) inhibitors, used to control hypercholesterolemia, triggers apoptosis of various human tumour cells. HMGCR is the rate-limiting enzyme of the mevalonate (MVA) pathway, a fundamental metabolic pathway required for the generation of a number of biochemical end-products including cholesterol and isoprenoids, but the contribution of the MVA pathway to human cancer remains largely unexplored. Furthermore, as only a subset of tumour cells has been shown to be highly responsive to statins, the identification of appropriate subsets of patients will be required to successfully advance these agents as anticancer therapeutics. To this end, there were two major aims to this work: 1) Elucidate a molecular rationale for the observed therapeutic index of statin-induced apoptosis in normal and tumour cells; 2) Identify molecular determinants of sensitivity for statin-induced apoptosis in human tumour cells. To address the first aim we demonstrated that dysregulation of the MVA pathway, achieved by ectopic expression of either full length HMGCR (HMGCR-FL) or its novel splice variant lacking exon 13 (HMGCR-D13), increases transformation. Ectopic HMGCR promotes growth of transformed and non-transformed cells under anchorage-independent conditions or as xenografts in immunocompromised mice. We also show that high mRNA levels of HMGCR and four out of five other MVA pathway genes correlate with poor prognosis in primary breast cancer, suggesting the MVA pathway may play a role in the etiology of human cancers. To address the second aim, we show that dysregulation of the MVA pathway is a key determinant of sensitivity to statin-induced apoptosis in multiple myeloma. In a panel of 17 distinct myeloma cell lines, half were sensitive to statin-induced apoptosis and the remainder were insensitive. Interestingly, in sensitive cells, the classic feedback response to statin exposure is lost, a feature we demonstrated could distinguish a subset of statin-sensitive primary myeloma cells. We further illustrated that statins are highly effective and well tolerated in an orthotopic model of myeloma using cells harboring a dysregulated MVA pathway. Taken together, this work provides a molecular rationale and determinants of sensitivity for statin-induced apoptosis of human tumour cells.

Page generated in 0.4717 seconds