• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 5
  • 2
  • Tagged with
  • 28
  • 28
  • 13
  • 13
  • 11
  • 10
  • 7
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Réalisation et optimisation d'une électronique intégrée basse consommation pour la mesure de gaz polluants.

Boutet, P.-A. 10 December 2012 (has links) (PDF)
Afin de réaliser un appareil innovant pour la mesure de gaz polluants, la société SVS@CAP s'est associée avec le laboratoire de physique corpusculaire en 2009 pour la création du projet EREBUS. Ce projet a pour but la réalisation d'un ensemble de dispositifs sans fil permettant d'effectuer une surveillance de la concentration de gaz polluants. L'autonomie et la compacité d'un tel dispositif étant essentielles, la problématique principale porte sur la réduction de la consommation. A partir d'une première étude menée sur les différentes technologies existantes, les capteurs électrochimiques ont été identifiés comme les moins consommateurs d'énergie. Pour chacun des gaz cibles, un modèle électrique du capteur associé a été déterminé. A partir de ces modèles, une architecture dédiée et épurée a pu être déduite. Pour atteindre et même dépasser les objectifs de consommation, les efforts ont aussi été portés sur un dimensionnement avec la méthode gm/id. La réalisation de cette électronique intégrée a permis d'atteindre une consommation de l'ordre du microwatt pour chaque voie de mesure. Enfin, pour compléter la chaîne de lecture, plusieurs architectures de convertisseurs ont été étudiées et réalisées pour fonctionner à des fréquences d'échantillonnage proches du Hz. Les consommations obtenues pour les convertisseurs sont limitées avec comme ordre de grandeur la centaine de nW.
22

Modification de la sélectivité de couches minces de dioxyde d'étain par l'ajout de couches superficielles en vue de la réalisation de microcapteurs de gaz

Sauvan, Muriel 02 July 1999 (has links) (PDF)
Ce travail concerne la modification de la sélectivité de couches minces de dioxyde d'étain par l'ajout de couches superficielles en vue de la réalisation de microcapteurs de gaz. Une partie de cette étude a été consacrée à la caractérisation des différentes couches, essentiellement par la diffraction des rayons X sous incidence rasante en raison des faibles épaisseurs étudiées. Les couches minces de dioxyde d'étain sont élaborées soit par évaporation réactive soit par un procédé de dépôt chimique en phase vapeur (CVD). Quant aux couches superficielles, elles ont été choisies soit pour leur action catalytique vis-à-vis de certains gaz (cas des couches de platine, de palladium ou de rhodium) soit pour leur pouvoir de filtration comme les couches de silice. Dans une seconde partie, les performances électriques des couches de dioxyde d'étain modifiées par les couches superficielles ont été évaluées sur un banc de test. Il s'agit de suivre les variations de conductance sous gaz (éthanol, monoxyde de carbone, méthane, oxydes d'azotes) en fonction de la température. Il a été ainsi mis en évidence le rôle catalytique de certains matériaux, ce qui a permis d'obtenir des couches plus sélectives pour un gaz donné. Enfin, cette étude a abouti à la réalisation de microcapteurs de gaz dans lequel l'élèment sensible se trouve sous forme de couche mince.
23

Du capteur de gaz à oxydes métalliques vers les nez électroniques sans fil

Menini, Philippe 25 November 2011 (has links) (PDF)
Bien que développés depuis plus de 50 ans, les capteurs chimiques (au sens large) et les capteurs de gaz plus particulièrement, sont toujours aujourd'hui en plein développement. Côté industriel, le marché global des capteurs chimiques et biochimiques connait la plus forte progression (+9,6%/an) depuis la fin des années 2000 avec un volume de 15 milliards de dollars en 2010 (10% pour le seul marché des capteurs de gaz). Ces dispositifs de détection offrent potentiellement des applications dans les principaux domaines qui sont le transport, l'environnement, la santé, l'industrie et l'agroalimentaire. On conçoit dès lors, que le marché de capteurs de gaz bas coût soit florissant et plein d'avenir. Les défauts des détecteurs actuels performants et commercialisés tels que les systèmes basés sur la détection infrarouge, électrochimiques ou encore à photo-ionisation, sont leur consommation en puissance de l'ordre du Watt, leur prix de revient mais aussi la complexité de leur électronique associée. Avec l'émergence des micro/nanosystèmes, nous assistons de plus en plus au développement de dispositifs miniatures, portables, " intelligents ", intégrant le (ou les) capteurs, l'alimentation, l'électronique de traitement et bien d'autres éléments ; on parle alors de nez électroniques intégrés. Parmi les capteurs développés à ce jour, les capteurs de gaz semi-conducteurs répondent le mieux encore aujourd'hui à ces besoins avec un coût de fabrication modéré (d'autant plus faible que le nombre fabriqué sera grand) ; ils sont en effet non seulement très bien adaptés aux techniques de la microélectronique mais peuvent intégrer également une grande diversité de matériaux tels que les oxydes métalliques, les polymères semiconducteurs et autres composites. De très nombreux travaux de recherches ont été réalisés et le sont encore à ce jour pour améliorer leurs performances, toujours perfectibles notamment en termes de sensibilité, de sélectivité, de stabilité, de reproductibilité, de rév ersibilité, de temps de réponse et de recouvrement. Les trois principales voies de recherche explorées dans nos travaux sont au niveau : i) de la technologie du détecteur (optimisation des matériaux et des étapes de fabrication), ii) de son mode de fonctionnement et iii) du traitement du signal au travers de quatre thèses. Les performances de nos structures sont à ce jour très largement supérieures à celles des capteurs commerciaux de même type. Depuis 2007, une thèse a été menée en collaboration avec l'équipe MINC (Micro et Nano systèmes pour les Communications sans fil) du LAAS pour développer, en totale rupture technologique, un nouveau transducteur électromagnétique permettant la détection de gaz à distance sans fil, sans consommation d'énergie par conséquent voué au déploiement de réseau de capteurs communicants. Les prospectives de recherche à court, moyen et long termes sur les dix prochaines années sont abordées. Elles s'appuient sur trois grandes idées en totale complémentarité : i. l'intégration de nouveaux matériaux nanostructurés vers une ultra sensibilité. L'étude des phénomènes de surface et de différentes voies de transduction permettrait d'envisager de nouvelles générations capteurs pour l'environnement mais aussi pour la santé. ii. le développement de nouveaux microsystèmes multicellules de détection, permettant une grande sélectivité en jouant sur des modes de fonctionnement évolués. L'objectif est de réaliser des nez électroniques intégrés pour de multiples applications. iii. le développement de nouvelles générations de capteurs communicants sans fil pour une cartographie olfactive de l'environnement encore appelée " intelligence ambiante ".
24

Réalisation et optimisation d'une électronique intégrée basse consommation pour la mesure de gaz polluants

Boutet, Paul-Antoine 10 December 2012 (has links)
Afin de réaliser un appareil innovant pour la mesure de gaz polluants, la société SVS@CAP s’est associée avec le laboratoire de physique corpusculaire en 2009 pour la création du projet EREBUS. Ce projet a pour but la réalisation d’un ensemble de dispositifs sans fil permettant d’effectuer une surveillance de la concentration de gaz polluants. L’autonomie et la compacité d’un tel dispositif étant essentielles, la problématique principale porte sur la réduction de la consommation. A partir d’une première étude menée sur les différentes technologies existantes, les capteurs électrochimiques ont été identifiés comme les moins consommateurs d’énergie. Pour chacun des gaz cibles, un modèle électrique du capteur associé a été déterminé. A partir de ces modèles, une architecture dédiée et épurée a pu être déduite. Pour atteindre et même dépasser les objectifs de consommation, les efforts ont aussi été portés sur un dimensionnement avec la méthode gm/id. La réalisation de cette électronique intégrée a permis d’atteindre une consommation de l’ordre du μW pour chaque voie de mesure. Enfin, pour compléter la chaîne de lecture, plusieurs architectures de convertisseurs ont été étudiées et réalisées pour fonctionner à des fréquences déchantillonnage proches du Hz. Les consommations obtenues pour les convertisseurs sont limitées avec comme ordre de grandeur la centaine de nW. / In order to realize an innovative product for pollutants in the atmosphere, SVS@CAP company started in 2009 the EUREBUS project in collaboration with the "Laboratoire de Physique Corpusculaire". The aim of this project is to design a wireless equipement to measure gas concentrations. The key issues of this project are concerning the autonomy as well as the small size of the product. In consequence an integrated and low power electronics remains essential. From a first study of the existing technologies to detect gaz concentrations, electrochemical sensors were selected because of their low power consumption. For each of the target gas, an electrical model was determined. From those models, a specific architecture was designed. A special effort was made on the energy consumption thanks to the use of the gm/id methodology which was necessary to achieve and exceed the specifications. The final order of the power consumption of the front-end developped and realized is around the μW. Finally, in order to complete the chain of acquisition, some architectures of analog to digital converter were studied, developped and realized with sample frequencies close to the Hz. The power consumptions of the converters developped are limited to the order of the hundreds of nW.
25

Microsystèmes capteurs de gaz sélectifs au dioxyde d'azote associant structures semi-conducteurs et filtres chimiques (indigo ou/et nanomatériaux carbonés) destinés au contrôle de la qualité de l'air

Spinelle, Laurent 13 March 2012 (has links) (PDF)
Ce manuscrit est consacré à l'étude et au développement de microsystèmes capteurs de gaz sélectifs au dioxyde d'azote, destinés au contrôle de la qualité de l'air atmosphérique. La stratégie que nous avons développée consiste à associer une structure sensible à base de matériaux semi-conducteurs partiellement sélectifs aux gaz oxydants et des filtres sélectifs à l'ozone. L'objectif premier est la mise en oeuvre et la caractérisation de matériaux chimiques strictement imperméables à l'ozone (O3) et non-réactifs vis-à-vis du dioxyde d'azote (NO2). Notre choix s'est focalisé sur un matériau moléculaire, l'indigo, connu pour sa réactivité vis-à-vis de O3, et plusieurs nanomatériaux carbonés. Pour ces derniers, la possibilité de conformer leurs textures, leurs morphologies et leurs chimies de surface par traitements thermiques, chimiques et mécaniques, permet d'étendre le panel de matériaux potentiels et d'identifier les facteurs d'influence de leur réactivité avec les espèces gazeuses. La caractérisation de l'ensemble de ces matériaux a nécessité l'utilisation de techniques adaptées et complémentaires (adsorption de N2 à 77 K, spectroscopies Raman, XPS, IR en mode ATR, RPE et NEXAFS). Les filtres chimiques les plus efficaces (hauts rendements de filtration et grande durabilité) ont été sélectionnés d'après des tests de soumission aux gaz selon une méthodologie adaptée. Enfin, l'association de ces meilleurs filtres et de la structure capteur a conduit à l'élaboration de prototypes microsystèmes capteurs de gaz optimisés. De plus, une contribution à la compréhension des mécanismes d'interaction de l'indigo et de certains nanocarbones avec O3 et NO2 a aussi permis d'améliorer le microsystème en développant des méthodologies pertinentes et innovantes mais également en réalisant la synthèse de nouveaux filtres indigo / nanocarbone.
26

Graphene based gas sensors : Fabrication, characterization, and study of gas molecules detection mechanism / Capteurs de gaz à base de graphène : Fabrication, caractérisation, et étude du mécanisme de détection des molécules de gaz

Ben Aziza, Zeineb 16 November 2015 (has links)
Ce travail nous a permis de réaliser une étude de capteurs de gaz et d’humidité à base de graphène. Cette étude pourrait être utile non seulement pour améliorer les performances des capteurs à base de graphène mais aussi pour mieux comprendre l’interaction entre le graphène et les molécules de gaz. Ceci semble indispensable pour faire avancer les applications du graphène comme un matériau prometteur pour la détection des gaz. Des avancées significatives ont été présentées au niveau de la fabrication de ces capteurs, leurs différentes caractérisations électriques ainsi que d’autres techniques employées pour analyser le mécanisme contrôlant la détection des molécules de gaz/vapeur. Ces outils ont été mis en place pour concevoir et fabriquer plusieurs structures de capteur en utilisant différents substrats support du graphène d’une part et en modifiant les propriétés du graphène par utilisation des produits chimiques d’autres part. La caractérisation de ces capteurs sous différents environnements a permis de comparer les différentes réponses des capteurs et d’en tirer plusieurs conclusions sur le fonctionnement de ces dispositifs. En effet, le Mica, un substrat lisse et transparent, a été utilisé comme substrat pour le graphène. Le dopage induit par le mica a été étudié ainsi que son impact sur la sensibilité du graphène au gaz d’ammoniac. Ceci a permis de mettre en évidence le fait que le substrat joue un rôle important pour la détection de l’ammoniac. De plus, ces capteurs fabriques sur mica et SiO2 ont été testés sous différentes conditions de températures et d’oxygène. Dans une autre approche, un polymère a été utilisé pour doper le graphène. Une étude détaillée a été menée pour analyser le comportement de ce graphène fonctionnalisé par rapport aux molécules d’eau. Ces nouveaux résultats expérimentaux obtenus pendant cette thèse constituent un bon support à plusieurs résultats théoriques établis et permettent d’optimiser la conception des capteurs de gaz à base de graphène pour des meilleures performances. / In this research, we report on a study of graphene based gas and humidity sensors. This study could be useful not only to improve the performance of graphene based sensors but also to better understand the interaction between graphene and gas molecules. This seems necessary to promote the applications of graphene as a promising material for gas sensing. Significant advances have been made to design and fabricate these sensors: the different electrical characterizations as well as other techniques used to analyze the mechanism controlling the detection of gas/vapor molecules. These tools have been set up to design and manufacture various sensor structures using different underlying substrates for graphene on one hand and chemical modification of graphene properties on the other hand. The characterization of these sensors under different environments was used to compare the different responses of the sensors and draw several conclusions about gas sensing mechanism. Indeed, Mica, a smooth and transparent substrate, was used as a supporting substrate for graphene. Doping induced to graphene by mica and its impact on graphene sensitivity to ammonia gas were studied. This has made it possible to highlight the fact that the substrate plays an important role for the detection of ammonia. In addition, these sensors made on mica and SiO2 were tested under a variety of temperatures and oxygen. In another approach, a polymer was used to dope graphene. A detailed study was realized about the behavior of water molecules on functionalized graphene. The obtained experimental results, reported for the first time, represent a good support for several theoretical studies already made and could be used to optimize the design of graphene based gas sensors.
27

Elaboration and characterization of field-effect transistors based on organic molecular wires for chemical sensing applications / Elaboration et caractérisation de transistors organiques à effet de champs à base de fils moléculaires pour des applications capteurs.

Lienerth, Peter 31 January 2014 (has links)
Il est reconnu que la structure des semi-conducteurs organiques influence la sensibilité et la sensitivité des capteurs des gaz. Pour améliorer la compréhension des mécanismes sous-jacents dans les capteurs à base des transistors d’effet de champ organique (OFETs) cette thèse a exploré trois pistes différentes : L’utilisation de l’hystérésis des caractéristiques de transfert comme paramètre de détection des gaz est étudié. En ajoutant l’hystérésis aux paramètres standards, on améliore la sélectivité des OFETs à base de poly(3-hexylthiophène) aux gaz polaires. Des mesures transitoires de courant indiquent que la cinétique de piégeage et de piégeage des porteurs de charges est à l’origine de cette amélioration. Pour comprendre l’influence qu’à la structure moléculaire sur la sensibilité aux vapeurs d’éthanol, des polymères avec des chaînes latérales alcoxyle dont on fait varier la polarité ainsi que l’encombrement stérique, ont été étudiés. L’intensité de la réponse est corrélée avec la quantité d’analyte absorbée et le moment dipolaire des chaînes latérales. Pour permettre l’étude des mécanismes à l’échelle nanométrique, une partie de ce travail se concentre sur la fabrication de transistors avec une taille de canal réduite. En utilisant le nitrure de silicium comme couche diélectrique, on réduite les tensions de commande et les propriétés chimiques à l’interface. / The molecular structure of organic semiconductors which can be tailored by the chemical synthesis influences the sensitivity and selectivity of gas sensor devices. To improve the understanding of the ongoing mechanisms in sensors based on organic field effect transistors (OFETs) this thesis follows three different tracks: The applicability of the hysteresis of the transfer characteristics as a gas sensing parameter is studied. As a complement to the standard transistor parameters the hysteresis improves the selectivity of poly(3-hexylthiophen-2,5-diyl) based OFETs to polar gases. Transient current measurements indicate the additional dependence on the detrapping kinetics as origin of the increased selectivity. To understand the influence of the molecular structure on the gas sensing behavior, polymers with alkoxy side chains, varying in polarity and steric hindrance, are used as gas sensing layer for ethanol vapor. The response strength correlates with the amount of absorbed analyte and the dipole moment of the side chains. To enable investigations of the mechanisms at the nanoscale, one part of this work focuses on the preparation of transistors with a reduced channel length. By using silicon nitride as dielectric layer, driving voltages decreased and interface properties could be improved.
28

Microsystèmes capteurs de gaz sélectifs au dioxyde d'azote associant structures semi-conducteurs et filtres chimiques (indigo ou/et nanomatériaux carbonés) destinés au contrôle de la qualité de l'air / Nitrogen dioxide selective gas sensor microsystems combining semiconductor structures and chemical filters (indigo and/or carbonaceous nanomaterials) for air quality control

Spinelle, Laurent 13 March 2012 (has links)
Ce manuscrit est consacré à l’étude et au développement de microsystèmes capteurs de gaz sélectifs au dioxyde d’azote, destinés au contrôle de la qualité de l’air atmosphérique. La stratégie que nous avons développée consiste à associer une structure sensible à base de matériaux semi-conducteurs partiellement sélectifs aux gaz oxydants et des filtres sélectifs à l’ozone. L’objectif premier est la mise en oeuvre et la caractérisation de matériaux chimiques strictement imperméables à l’ozone (O3) et non-réactifs vis-à-vis du dioxyde d’azote (NO2). Notre choix s’est focalisé sur un matériau moléculaire, l’indigo, connu pour sa réactivité vis-à-vis de O3, et plusieurs nanomatériaux carbonés. Pour ces derniers, la possibilité de conformer leurs textures, leurs morphologies et leurs chimies de surface par traitements thermiques, chimiques et mécaniques, permet d’étendre le panel de matériaux potentiels et d’identifier les facteurs d’influence de leur réactivité avec les espèces gazeuses. La caractérisation de l’ensemble de ces matériaux a nécessité l’utilisation de techniques adaptées et complémentaires (adsorption de N2 à 77 K, spectroscopies Raman, XPS, IR en mode ATR, RPE et NEXAFS). Les filtres chimiques les plus efficaces (hauts rendements de filtration et grande durabilité) ont été sélectionnés d’après des tests de soumission aux gaz selon une méthodologie adaptée. Enfin, l’association de ces meilleurs filtres et de la structure capteur a conduit à l’élaboration de prototypes microsystèmes capteurs de gaz optimisés. De plus, une contribution à la compréhension des mécanismes d’interaction de l’indigo et de certains nanocarbones avec O3 et NO2 a aussi permis d’améliorer le microsystème en développant des méthodologies pertinentes et innovantes mais également en réalisant la synthèse de nouveaux filtres indigo / nanocarbone. / This work is devoted to the study and the development of gas sensors microsystems highly selective to nitrogen dioxide, dedicated to the air quality control. The strategy developed consists in the implementation of a sensitive structure based on semiconductor materials partially selective to oxidizing gases associated to an ozone selective filter. The first objective is the development of chemical filters strictly impervious to ozone (O3) and non-reactive towards the nitrogen dioxide (NO2). We have chosen a molecular material, indigo, well-known for its reactivity towards O3, and several carbonaceous nanomaterials. For these one, the possibility to modify their textures, their morphologies and their surface chemistries by chemical, mechanical and thermic treatments, enables us to extend the range of potential materials and to identify the factors of influence on their reactivity with gaseous species. The characterization of all these materials required the use of appropriate and complementary techniques (N2 adsorption at 77 K, Raman, XPS, IR in ATR mode, EPR and NEXAFS). The more efficient filters (high filtering yield and life-time) have been selected by means of specific tests of gas exposure. Finally, the association of the best filter and the sensitive structure has led to the development of optimized gas sensors microsystems prototypes.

Page generated in 0.0972 seconds