Spelling suggestions: "subject:"bothphysiological effect"" "subject:"carbohydratesynthesis effect""
1 |
SUBSTITUTION OF SOLUBLE CARBOHYDRATE FOR ALFALFA HAY IN FATTENING BEEF CATTLE DIETS: EFFECTS ON NUTRIENT DIGESTIBILITY AND VOLATILE FATTY ACID PARAMETERS.Delfino, Francis Joseph. January 1982 (has links)
No description available.
|
2 |
The effect of carbohydrate form and mode of delivery on endurance performancePaddon-Jones, Douglass J. January 1997 (has links)
This study examined and compared the effects of ingesting four different, isocaloric carbohydrate meals (460 kcals), two hour prior to a 60 minute bout of endurance cycling. The meals were chosen to represent a variety of types, forms and modes of delivery of carbohydrate: i) Banana Nut Bread®: semi-liquid, oat based carbohydrate-fat-protein combination, ii) Oatmeal: semi-liquid, oat based carbohydrate, iii) Cream of Wheat®: semiliquid, wheat based carbohydrate, iv) Power BarsTM: dense solid, fructose based carbohydrate-protein-vitamin combination. A standardized exercise and dietary regimen was followed prior to each performance trial. The purpose of the pre-trial preparation was to standardize each subjects endogenous carbohydrate stores thereby placing greater emphasis on the ability of each experimental meal to maintain blood glucose. Dependent variables were assessed at 15 minutes intervals during each performance trial to determine if any of the meals could elicit a different physiological response. No significant differences (treatment x trial) in blood glucose concentration, distance traveled, heart rate, V02, RER or RPE were observed (p > 0.05). It was concluded that none of the experimental meals conferred any particular advantage over the rest and due to this fact, issues such as personal preference, convenience and cost should be considered. / School of Physical Education
|
3 |
The effects of pre-exercise carbohydrate supplementation on anaerobic exercise performance in adolescent malesLee, Jonah D. January 2007 (has links)
This study examined the effects of pre-exercise carbohydrate (CHO) supplementation on anaerobic exercise performance in adolescent males (n =11; 15.0 ± 0.9 yrs). On separate days, subjects consumed either a CHO or a placebo (PL) beverage followed by 2 Wingate anaerobic tests (WAnT) separated with ten by 10-second sprints. Peak (PP), mean power (MP) and fatigue index (FI) were assessed. Venous blood samples were obtained and analyzed for glucose, lactate, insulin, and catecholamines. A trial by time ANOVA (P < 0.05) was used in the analysis. PP and MP tended to be higher (P < 0.09) in CHO versus PL, and MP tended to decline more in CHO (P < 0.06); Fl for the two WAnT were similar. Glucose concentration significantly increased after CHO consumption and then returned to baseline post-exercise, whereas glucose level remained unchanged over time during PL; similarly observed for insulin. Lactate and catecholamine levels significantly increased over time, but a trial difference was only observed in epinephrine. The tendency for PP and MP to be higher in CHO might suggest a potential ergogenic benefit of pre-exercise CHO although the change in MP over time in CHO and the similarity in Fl might suggest otherwise. / School of Physical Education, Sport, and Exercise Science
|
4 |
The effect of carbohydrate feeding on repeated bouts of anaerobic exercise in pre- and early-pubertal boysMarjerrison, Andrea D. January 2006 (has links)
The purpose of this study was to examine the effects of pre-exercise carbohydrate feeding on repeated bouts of anaerobic exercise in pre- and early-pubertal boys. Eleven boys, (10.2 ± 1.3 yrs) maturation stage I and II according to Tanner participated in this study. Peak (PP) and mean power (MP) were examined using 4 repeated Wingate Anaerobic Tests (WAnT) bouts. Two double-blind, randomized trials were performed; a carbohydrate (CHO) and placebo (PL) trial. A two-way (trial by time) ANOVA was used to analyze PP, MP, blood glucose, lactate, heart rate (HR) and ratings of perceived exertion (RPE). Statistical significance was set at p < 0.05. PP and MP were not significantly different across trials. Glucose was significantly higher after CHO consumption, but post-exercise responses did not vary between trials. There was no significant trial or time effect and no interaction effect for HR. There was a significant time effect for lactate and RPE. The results suggest that pre-exercise CHO feeding does not enhance anaerobic exercise performance in children, a finding that is similar to outcomes involving adults. / School of Physical Education, Sport, and Exercise Science
|
5 |
Effect of consumption of carbohydrate-electrolyte solution on running performance after pre-exercise glycemic index meal. / 運動前進食不同血糖指數食物及運動中補充碳水化合物飲料對長跑能力的影響 / Effect of consumption of carbohydrate-electrolyte solution on running performance after pre-exercise glycemic index meal. / Yun dong qian jin shi bu tong xue tang zhi shu shi wu ji yun dong zhong bu chong tan shui hua he wu yin liao dui chang pao neng li de ying xiangJanuary 2004 (has links)
Chan Oi Wan = 運動前進食不同血糖指數食物及運動中補充碳水化合物飲料對長跑能力的影響 / 陳靄允. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2004. / Includes bibliographical references (leaves 72-91). / Text in English; abstracts in English and Chinese. / Chan Oi Wan = Yun dong qian jin shi bu tong xue tang zhi shu shi wu ji yun dong zhong bu chong tan shui hua he wu yin liao dui chang pao neng li de ying xiang / Chen Aiyun. / Acknowledgments --- p.i / Abstract --- p.iii / Table of Contents --- p.vii / List of Figures --- p.ix / List of Tables --- p.x / Chapter Chapter One --- Introduction --- p.1 / Chapter 1.1 --- Background --- p.1 / Chapter 1.2 --- Purpose --- p.5 / Chapter 1.3 --- Significance of the Study --- p.5 / Chapter Chapter Two --- Review of Literature --- p.6 6 / Chapter 2.1 --- "Energy Metabolism during Prolonged, Submaximal Exercise" --- p.6 / Chapter 2.2 --- Importance of Nutrition on Exercise Performance --- p.9 / Chapter 2.3 --- Application of GI --- p.20 / Chapter CHAPTER Three --- Methodology --- p.36 / Chapter 3.1 --- General Methods --- p.36 / Chapter 3.2 --- Preliminary Testing --- p.42 / Chapter 3.3 --- Subjects --- p.45 / Chapter 3.4 --- Experimental Design --- p.46 / Chapter 3.5 --- Procedures --- p.47 / Chapter 3.6 --- Prescribed Meals --- p.50 / Chapter 3.7 --- Prescribed CHO-electrolyte Drink --- p.50 / Chapter 3.8 --- Statistical Analysis --- p.51 / Chapter Chapter Four --- Results --- p.52 / Chapter 4.1 --- Dietary Analysis --- p.52 / Chapter 4.2 --- Running Performance --- p.52 / Chapter 4.3 --- Blood Metabolites --- p.53 / Chapter 4.4 --- Metabolic Responses --- p.60 / Chapter 4.5 --- Subjective Responses and Heart Rates Responses --- p.61 / Chapter Chapter Five --- Discussion --- p.64 / Recommendations and Applications --- p.70 / References --- p.72 / Appendices --- p.95
|
6 |
Effects of carbohydrate supplementation on variable-intensity exercise responses in boys and menGuth, Lisa M. January 2009 (has links)
This study examined the physiological and perceptual effects of carbohydrate (CHO) on variable-intensity exercise (VIE) in boys and men. It was hypothesized that CHO would increase RER in boys and men and that this increase would be greater in boys. Additionally, it was hypothesized that RPE would be attenuated by CHO. Five boys (10-12 years) and seven men (18-30 years) consumed CHO or a placebo (PL) beverage before and throughout VIE. VIE included three 12-min sets of cycling; intensity varied every 20-30 seconds between 25, 50, 75, and 125% VO2max. Boys’ post-exercise glucose was higher in the CHO trial than the PL trial and RER was lower in boys than men, but was not affected by trial. RPE increased over time but was not different between groups or trials. Though VIE responses varied between boys and men, CHO ingestion before and during VIE did not provide physiological or perceptual benefits. / School of Physical Education, Sport, and Exercise Science
|
7 |
Effects of post-exercise carbohydrate-protein feedings on muscle glycogen restorationCarrithers, John A. January 1999 (has links)
The purpose of this investigation was to determine the effects of post-exercise carbohydrate-protein feedings on muscle glycogen restoration following exhaustive cycle ergometer exercise. Seven male collegiate cyclist (age=25.6±3.3y, ht.=180.9±8.5cm, wt.=75.4±10.7kg, VO2max=4.20±0.4 1•miri 1) performed three trials, each separated by -lwk, 1) 100% (x-D glucose (CHO), 2) 70% carbohydrate-20% protein-10% fat (CHOPRO), and 3) 86% carbohdyrate-14% amino acid (CHO-AA). All feedings were eucaloric, based upon 1.0 g•kgb.W.'1•hr"1 of carbohydrate, and administered every half hour during a four hour muscle glycogen restoration period in an 18% wt./vol. solution. Muscle biopsies were obtained immediately and four hours post exercise. Following the exhaustive exercise and every half hour for four hours a blood sample was drawn. Muscle glycogen concentrations increased 53%, 47%, and 57% for the CHO, CHO-PRO, and CHO-AA feedings, respectively, however no differences among the feedings were apparent in muscle glycogen restoration. The plasma glucose and insulin concentrations demonstrated no differences throughout the restoration period among the three feedings. These results suggest that muscle glycogen restoration does not appear to be enhanced with the addition of either protein or amino acids to an eucaloric carbohydrate feeding following an exhaustive cycle exercise. However, it appears that if adequate amounts of carbohydrates are consumed (greater than 0.70 g•kgb,W,."'•hf' carbohydrate) following exhaustive exercise, maximal muscle glycogen restoration occurs. / School of Physical Education
|
8 |
Effects of protein in carbohydrate-electrolyte solutions on post-exercise rehydration / CUHK electronic theses & dissertations collectionJanuary 2014 (has links)
This thesis aimed to, first, examine the effects of the addition of whey protein or casein protein to common carbohydrate-electrolyte (CE) solutions on post-exercise rehydration; second, examine the effects of various contents of whey protein in CE solutions on post-exercise rehydration; and third, investigate the mechanisms on the increased fluid retention after the ingestion of CE plus whey protein solutions. / The first study (Chapter 4) of this thesis examined the effects of CE solution added with a certain amount of whey or casein protein on post-exercise rehydration. Ten young healthy males (mean ± SEM, age: 20.7 ± 0.4 years; body weight (BW): 65.4 ± 2.0 kg; maximal oxygen uptake (VO₂ₘₐₓ): 60.7 ± 1.9 mL·kg⁻¹·min⁻¹) were recruited in this study. Three main experimental trials were conducted in a randomized single-blinded crossover design and separated by at least 7 days between any two of them. In each main trial, subjects ran for 60 min at 65% VO₂ₘₐₓ on a treadmill in a warm and humid environment (24 °C, 60% relative humidity (RH)), which was followed by a 4-hour recovery period. During recovery, the subjects were provided with either a common CE solution, or a CE with whey protein (CW) solution, or a CE with casein protein (CC) solution. The three solutions were matched for energy and electrolyte content and were provided in six equivalent volumes at 30 min intervals with a total volume equivalent to 150% of their BW loss. The nude BW, urine samples, and capillary blood samples were collected before and after exercise and at the end of each hour during recovery. After exercise, the subjects lost approximately 2.3% of their pre-exercise BW in all trials. Total urine volume after recovery was higher in the CE and CC trials than in the CW trial (CE vs. CW vs. CC: 1184 ± 120 mL vs. 1005 ± 68 mL vs. 1256 ± 130 mL, p < 0.05), which induced greater fluid retention in CW trial compared with both CE and CC trials (CE vs. CW vs. CC: 46.9 ± 5.2% vs. 54.9 ± 2.9% vs. 45.8 ± 5.5%, p < 0.05). By the end of recovery, the urine specific gravity (USG) was lower in the CE trial than in both CW and CC trials (CE vs. CW vs. CC: 1.002 ± 0.001 g·mL⁻¹ vs. 1.004 ± 0.001 g·mL⁻¹ vs. 1.004 ± 0.000 g·mL⁻¹, p < 0.05). In addition, the urine osmolality was lower in the CE trial than in both CW and CC trials after recovery (CE vs. CW vs. CC: 111 ± 18 mmol·kg⁻¹ vs. 181 ± 14 mmol·kg⁻¹ vs. 195 ± 23 mmol·kg⁻¹, p < 0.05). However, no difference was found in the changes of plasma volume among trials throughout recovery. These results suggested that during a 4-hour recovery after 60 min run which induced about 2% BW loss, the CE plus whey protein solution was more effective in fluid retention compared with the isocaloric CE or CE plus casein protein solution. / The second study (Chapter 5) was conducted to examine the effects of various contents of whey protein in CE solutions on post-exercise rehydration; meanwhile, the mechanisms on the greater fluid retention after the ingestion of CE plus whey protein solutions were investigated as well. Ten young healthy males (mean ± SEM, age: 22.0 ± 0.7 years; BW: 64.5 ± 1.9 kg; VO₂ₘₐₓ: 59.8 ± 1.9 mL·kg⁻¹·min⁻¹) finished five main experimental trials in a randomized single-blinded crossover manner and separated by at least 7 days. After a 60-min run at 65% VO₂ₘₐₓ on a treadmill in each main trial, a 4-hour recovery period was carried out. During recovery, five solutions of 1) a CE solution with high CHO content (CE-H); 2) a CE solution with low CHO content (CE-L); 3) a CE solution with high content of whey protein (CW-H); 4) a CE solution with medium content of whey protein (CW-M); and 5) a CE solution with low content of whey protein (CW-L) were consumed by the subjects randomly. The electrolyte content was matched, whereas CE-H, CW-H, CW-M, and CW-L solutions were matched for energy density, CE-L and CW-H solutions were matched for CHO content. The total volume consumed by subjects was 150% of the BW loss, and the solutions were provided in six equal volumes at 30 min intervals during recovery. The nude BW, urine samples, and capillary and venous blood samples were obtained before and after exercise and at the end of each hour during recovery. The results showed that the subjects lost about 2.2% of BW after exercise. By the end of the recovery, the total urine volume was smaller in the CW-M trial than in the CE-H trial (CE-H vs. CW-M: 1295 ± 103 mL vs. 1049 ± 130 mL, p < 0.05), whereas the CW-H trial was smaller than the CE-H, CE-L, and CW-L trials (CE-H vs. CE-L vs. CW-L vs. CW-H: 1295 ± 1033 mL vs. 1284 ± 90 mL vs. 1141 ± 58 mL vs. 891 ± 73 mL, p < 0.01). The less urine production in the CW-M and CW-H trials resulted in a greater fluid retention compared with CE-H, CE-L, and CW-L trials (CE-H vs. CE-L vs. CW-L vs. CW-M vs. CW-H: 38.4 ± 5.2% vs. 36.1 ± 4.3% vs. 43.0 ± 3.8% vs. 51.0 ± 5.7% vs. 55.4 ± 3.8%, p < 0.05). The CE-H and CE-L trials showed lower USG and urine osmolality compared with the CW-L, CW-M, and CW-H trials at the end of recovery (p < 0.05). In addition, the plasma osmolality of the CE-L trial was lower than that of the CW-L, CW-M, and CW-H trials at the 1st hour of recovery (CE-L vs. CW-L vs. CW-M vs. CW-H: 274 ± 4 mmol·kg⁻¹ vs. 291 ± 4 mmol·kg⁻¹ vs. 301 ± 6 mmol·kg⁻¹ vs. 293 ± 6 mmol·kg⁻¹, p < 0.05). The plasma volume was lower in the CE-L trial than that in the CW-H trial at the 2nd and 3rd hour, and the CE-L trial reached the lowest plasma volume than the other four trials by the end of recovery (p < 0.05). The aldosterone concentration was lower in both CE-H and CE-L trials compared with the CW-M and CW-H trials after recovery (CE-H vs. CE-L vs. CW-M vs. CW-H: 228 ± 100 pg·mL⁻¹ vs. 211 ± 51 pg·mL⁻¹ vs. 336 ± 85 pg·mL⁻¹ vs. 333 ± 70 pg·mL⁻¹, p < 0.05). The antidiuretic hormone (ADH) concentration was also found to be lower in the CE-L trial than in the CW-H trial at the 1st and 2nd hour of recovery (p < 0.05). However, no difference was found in plasma albumin concentrations among trials throughout recovery. The results indicated that the CE solutions with higher whey protein content retained more fluid compared with CE solutions with lower whey protein content or CE solution alone. The greater fluid retention was partly caused by the elevated aldosterone concentrations in the situations of current study. / In summary, the experimental results of this thesis found that the consumption of common CE solution plus whey protein can retain more fluid in body than isocaloric CE or CE plus casein protein solution during post-exercise recovery. CE solutions with relative higher whey protein content were more effective in fluid retention than CE solutions with lower whey protein content. Furthermore, the additive effects on fluid retention caused by whey protein supplementation were induced by the increased concentrations of plasma aldosterone. The elevated plasma osmolality and ADH concentrations maybe also played a role in the greater fluid retention. However, further studies are needed to clarify this issue. The current findings provided more evidences in this research topic and suggested some recommendations to athletes and sports enthusiasts to reach rehydration rapidly and effectively after exercise. / 本論文的研究目的包括:首先,研究在普通的碳水化合物-電解質(CE)飲料中添加乳清蛋白或酪蛋白對運動後復水的影響;其次,研究CE飲料中添加不同劑量的乳清蛋白對運動後復水的影響;再次,闡述飲用CE加乳清蛋白飲料後更能有效的將水分保留在人體內的機制。 / 實驗一(第四章)研究了在CE飲料中加入一定劑量的乳清蛋白或酪蛋白對運動後復水的影響。十位年輕、健康男性受試者(平均值 ± 標準誤,年齡: 20.7 ± 0.4 歲;體重: 65.4 ± 2.0 千克;最大攝氧量: 60.7 ± 1.9 mL·kg⁻¹·min⁻¹)自願參加本項測試。按照隨機單肓交叉設計,他們完成了三次主測試,期中任何兩次測試時間都相隔七天以上。在每一次主測試中,受試者首先在跑臺上以65%最大攝氧量的運動強度完成了60分鐘的跑步運動(運動環境控制在24攝氏度,60%相對濕度),隨後開始4小時的運動後恢復階段。在恢復過程中,受試者會分別飲用三種不同飲料中的一種。三種飲料包括:(1)普通CE飲料(CE組);(2)普通CE飲料中添加乳清蛋白(CW 組);(3)普通CE飲料中添加酪蛋白(CC 組)。三種飲料含有相同的能量密度及電解質濃度。受試者在每次主測試中飲用的總飲料體積為1.5倍的體重減少量,這些飲料分為6等份并每隔30分鐘由受試者飲用一份。運動前、後及在恢復階段每隔一小時收集受試者的體重(裸重)、尿液樣本、及血液樣本(指尖取血)。在三次主測試中,受試者在運動結束後減少的體重量約為運動前體重的2.3%。在4小時的恢復階段中,CE組和CC組受試者排出的尿液總體積大於CW組(CE vs. CW vs. CC: 1184 ± 120 mL vs. 1005 ± 68 mL vs. 1256 ± 130 mL, p < 0.05)。所以,恢復結束後,CW組的水分保持比例高於CE組及CC組(CE vs. CW vs. CC:46.9 ± 5.2% vs. 54.9 ± 2.9% vs. 45.8 ± 5.5%, p < 0.05)。在恢復結束時,CE組的尿比重低於CW組及CC組(CE vs. CW vs. CC: 1.002 ± 0.001 g·mL⁻¹ vs. 1.004 ± 0.001g·mL⁻¹ vs. 1.004 ± 0.000 g·mL⁻¹, p < 0.05)。另外,在恢復結束後,CE組尿滲透壓水平低於CW組及CC組(CE vs. CW vs. CC: 111 ± 18 mmol·kg⁻¹ vs. 181 ± 14mmol·kg⁻¹ vs. 195 ± 23 mmol·kg⁻¹, p < 0.05)。但是,在恢復階段,血漿容量的變化在三組中沒有顯著差異。本實驗的結果表明,完成60分鐘跑步後,受試者丟失掉約2%的體重,在之後4小時恢復階段中,飲用添加乳清蛋白的CE飲料比有相同能量密度的普通CE飲料或添加酪蛋白的CE飲料更能有效的將水分保留在體內。 / 實驗二(第五章)研究了在普通CE飲料中添加不同劑量的乳清蛋白對運動後復水的影響;同時,也研究了飲用CE加乳清蛋白飲料後更能有效的將水分保留在人體內的機制。十位年輕、健康男性受試者(平均值 ± 標準誤,年齡: 22.0 ± 0.7 歲;體重: 64.5 ± 1.9 千克;最大攝氧量: 59.8 ± 1.9 mL·kg⁻¹·min⁻¹)自願參加本項測試。按照隨機單肓交叉設計,他們完成了五次主測試,任何兩次測試的時間都相隔七天以上。在每一次主測試中,受試者首先在跑臺上以65%最大攝氧量的運動強度完成了60 分鐘的跑步運動,隨後開始4 小時的運動後恢復階段。在恢復過程中,受試者會飲用五種不同飲料中的一種。五種飲料包括:(1)普通CE飲料,含有較高的CHO濃度(CE-H組);(2)普通CE飲料,含有較低的CHO濃度(CE-L組);(3)普通CE飲料添加較高劑量的乳清蛋白(CW-H組);(4)普通CE飲料添加中等劑量的乳清蛋白(CW-M組);(5)普通CE飲料添加較低劑量的乳清蛋白(CW-L組)。五種飲料含有相同濃度的電解質,其中,CE-H,CW-H,CW-M,及CW-L組有相同的能量密度,CE-L 及CW-H 組有相同的CHO含量。在每次主測試的恢復階段,受試者飲用的飲料總體積為1.5倍的體重減少量,這些飲料分為6等份并每隔30分鐘由受試者飲用一份。運動前、後及在恢復階段每隔一小時收集受試者的體重(裸重)、尿液樣本、及血液樣本(指尖取血及靜脈取血)。運動結束後,受試者的體重減少量約為運動前體重的2.2%,五組測試中沒有顯著差異。在4小時的恢復階段後,CW-M 組受試者的尿液總體積小於CE-H組(CE-H vs. CW-M:1295 ± 103 mL vs. 1049 ± 130 mL, p < 0.05);同時,CW-H組的尿量低於CE-H,CE-L,及CW-L組(CE-H vs. CE-L vs. CW-L vs. CW-H: 1295 ± 103 mL vs. 1284 ± 90mL vs. 1141 ± 58 mL vs. 891 ± 73 mL, p < 0.01)。相對於CE-H,CE-L,及CW-L組,較少的尿液排出量使CW-M及CW-H組能將更多的水分保留在體內(CE-H vs.CE-L vs. CW-L vs. CW-M vs. CW-H: 38.4 ± 5.2% vs. 36.1 ± 4.3% vs. 43.0 ± 3.8% vs.51.0 ± 5.7% vs. 55.4 ± 3.8%, p < 0.05)。在恢復結束後,CE-H及CE-L組的尿比重水平及尿滲透壓水平低於CW-L,CW-M,及CW-H組(p < 0.05)。另外,在恢復階段的第1小時,CE-L組的血漿滲透壓水平低於CW-L,CW-M,及CW-H組(CE-L vs. CW-L vs. CW-M vs. CW-H: 274 ± 4 mmol·kg⁻¹ vs. 291 ± 4 mmol·kg⁻¹ vs. 301 ± 6 mmol·kg⁻¹ vs. 293 ± 6 mmol·kg⁻¹, p < 0.05)。在恢復階段的第2及3小時,CE-L組的血漿容量低於CW-H組;在恢復結束時,CE-L組的血漿容量低於其它四組(p <0.05)。對于兩種體液平衡調節激素,在恢復結束時,CE-H及CE-L組的醛固酮水平低於CW-M及CW-H組(CE-H vs. CE-L vs. CW-M vs. CW-H: 228 ± 100 pg·mL⁻¹ vs. 211 ± 51 pg·mL⁻¹ vs. 336 ± 85 pg·mL⁻¹ vs. 333 ± 70 pg·mL⁻¹, p < 0.05)。在恢復階段的第1及2小時,CE-L組的抗利尿激素水平低於CW-H組(p < 0.05)。然而,五組測試中,血漿白蛋白水平在恢復階段沒有顯著差異。本實驗的研究結果表明,普通CE飲料中加入較高劑量的乳清蛋白比較低劑量的乳清蛋白更能有效的將水分保留在人體內。這種較高水平的水分保留能力與醛固酮激素水平的升高有關。 / 綜上所述,本論文的研究結果發現,在運動後的恢復階段飲用添加乳清蛋白的CE飲料比有相同能量密度的普通CE飲料或添加酪蛋白的CE飲料更能有效的將水分保留在人體內。並且,在CE飲料中加入較高劑量的乳清蛋白比較低劑量的乳清蛋白對人體內水分的保留更加有效。另外,這種較高水平的水分保留能力是由醛固酮激素水平的升高引起的。同時,較高的血漿滲透壓及抗利尿激素水平可能對這種高效的水分保留能力也有一定的促進作用,但需要更多的研究來闡述這一觀點。本論文的研究結果為運動後復水的相關研究提供了更多的理論證據,並且對運動員及運動愛好者在運動結束後如何進行快速有效的復水提出了指導及建議。 / Li, Liang. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2014. / Includes bibliographical references (leaves 131-149). / Abstracts also in Chinese; appendixes includes Chinese. / Title from PDF title page (viewed on 01, November, 2016). / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only.
|
9 |
Effect of pre-exercise carbohydrate meals on running performance =: 運動前進食不同碳水化合物食物對長跑能力的影響. / 運動前進食不同碳水化合物食物對長跑能力的影響 / Effect of pre-exercise carbohydrate meals on running performance =: Yun dong qian jin shi bu tong tan shui hua he wu shi wu dui chang pao neng li de ying xiang. / Yun dong qian jin shi bu tong tan shui hua he wu shi wu dui chang pao neng li de ying xiangJanuary 2002 (has links)
Lok Cheuk-ming, Andy. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 62-73). / Text in English; abstracts in English and Chinese. / Lok Cheuk-ming, Andy. / Acknowledgments --- p.i / Abstract --- p.iii / Table of Contents --- p.vi / List of Tables --- p.viii / List of Figures --- p.ix / Chapter CHAPTER1 --- Introduction --- p.1 / Chapter 1.1 --- Background --- p.1 / Chapter 1.2 --- Purpose --- p.4 / Chapter 1.3 --- Significance of Study --- p.4 / Chapter CHAPTER2 --- Review of Literature --- p.5 / Chapter 2.1 --- "Energy Metabolism During Prolonged, Submaximal Exercise" --- p.5 / Chapter 2.1.1 --- Energy Metabolism in Humans / Chapter 2.1.2 --- Amount of Energy Stores in Body / Chapter 2.1.3 --- Substrates Utilization during Prolonged Exercise / Chapter 2.2 --- Importance of Pre-exercise Nutrition on Exercise Performance --- p.9 / Chapter 2.2.1 --- Pre-exercise CHO Supplementation / Chapter 2.2.2 --- Timing of CHO and Transient Hypoglycemia / Chapter 2.2.3 --- Type of CHO / Chapter 2.2.4 --- Other Nutrients / Chapter 2.3 --- Application of the Glycemic Index to Pre-exercise Nutrition --- p.14 / Chapter 2.3.1 --- Definition of Glycemic Index (GI) / Chapter 2.3.2 --- Ingestion of GI Foods Before Exercise / Chapter 2.3.3 --- Summary of the Previous Findings / Chapter CHAPTER3 --- Methodology --- p.23 / Chapter 3.1 --- General Methods --- p.23 / Chapter 3.2 --- Participants --- p.34 / Chapter 3.3 --- Experimental Design --- p.34 / Chapter 3.4 --- Procedures --- p.37 / Chapter 3.5 --- Prescribed Glycemic Index Meals --- p.39 / Chapter 3.6 --- Analysis --- p.40 / Chapter 3.7 --- Statistical Analysis --- p.41 / Chapter CHAPTER4 --- Results --- p.42 / Chapter 4.1 --- Running Performance --- p.42 / Chapter 4.2 --- Dietary Analysis --- p.43 / Chapter 4.3 --- Physiological Changes At Rest and During Exercise --- p.44 / Chapter 4.5 --- Changes in Perceptual Variables and Heart Rates At Rest and During Exercise --- p.54 / Chapter CHAPTER5 --- Discussion --- p.56 / Recommendation and Applications --- p.61 / References --- p.62 / Appendices --- p.74
|
10 |
Food addiction : a cost-effective treatment proposal within a developing country contextKistenmacher, Ann 01 1900 (has links)
This study explores the possible efficacy of a low carbohydrate and high fat nutritional intervention (LCHF) as a treatment possibility aiming to improve the ability of self-control and regulation in the context of carbohydrate-addiction.
The study first outlines why increased simple carbohydrate consumption has been implicated as a risk-factor in numerous chronic conditions, and then explores the possibility that a reduction of such consumption could lower general medical expenditure in the healthcare sector of already overburdened institutions, especially in developing countries like South Africa. Since the neurobiological evidence for food addiction is compelling, this study investigates the impact of a low carbohydrate and high fat eating (LCHF) regimen by measuring the change in the severity of addictive behaviour in relation to a reduced carbohydrate consumption. Results indicate that a LCHF nutritional intervention lessened addictive behaviour after just 30 days, resulting in a statistically significant decrease in addiction symptoms from day 1 to day 30. The weight and BMI values of the participants recorded at the end of the study showed a reduction from those obtained during the pre- treatment stage, and the self-perceived ‘feeling in control’ also improved in all participants after the intervention.
The introduction of a LCHF nutritional intervention presents a relatively cost-effective treatment and preventative measure to combat carbohydrate over-consumption and its numerous health complications, and it is therefore hoped that the positive findings of this study will foster further research, using larger samples, into this type of nutritional intervention against addictive eating behaviour. / Psychology / M.A. (Psychology)
|
Page generated in 0.0738 seconds