• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 25
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 112
  • 32
  • 32
  • 21
  • 20
  • 20
  • 19
  • 14
  • 12
  • 12
  • 11
  • 10
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

ICT Design Unsustainability & the Path toward Environmentally Sustainable Technologies

Bibri, Mohamed January 2009 (has links)
This study endeavors to investigate the negative environmental impacts of the prevailing ICT design approaches and to explore some potential remedies for ICT design unsustainability from environmental and corporate sustainability perspectives. More specifically, it aims to spotlight key environmental issues related to ICT design, including resource depletion; GHG emissions resulting from energy-intensive consumption; toxic waste disposal; and hazardous chemicals use; and also to shed light on how alternative design solutions can be devised based on environmental sustainability principles to achieve the goals of sustainable technologies. The study highlights the relationship between ICT design and sustainability and how they can symbiotically affect one another. To achieve the aim of this study, an examination was performed through an extensive literature review covering empirical, theoretical, and critical scholarship. The study draws on a variety of sources to survey the negative environmental impacts of the current mainstream ICT design approach and review the potential remedies for unsustainability of ICT design. For theory, central themes were selected for review given the synergy and integration between them as to the topic under investigation. They include: design issues; design science; design research framework for ICT; sustainability; corporate sustainability; and design and sustainability. Findings highlight the unsustainability of the current mainstream ICT design approach. Key environmental issues for consideration include: resource depletion through extracting huge amounts of material and scarce elements; energy-intensive consumption and GHG emissions, especially from ICT use phase; toxic waste disposal; and hazardous substances use. Potential remedies for ICT design unsustainability include dematerialization as an effective strategy to minimize resources depletion, de-carbonization to cut energy consumption through using efficient energy required over life cycle and renewable energy; recyclability through design with life cycle thinking (LCT) and extending ICT equipment’s operational life through reuse; mitigating hazardous chemicals through green design - low or non-noxious/less hazardous products. As to solving data center dilemma, design solutions vary from hardware and software to technological improvements and adjustments. Furthermore, corporate sustainability can be a strategic model for ICT sector to respond to environmental issues, including those associated with unsustainable ICT design. In the same vein, through adopting corporate sustainability, ICT-enabled organizations can rationalize energy usage to reduce GHG emissions, and thereby alleviating global warming. This study provides a novel approach to sustainable ICT design, highlighting unsustainability of its current mainstream practices. Review of the literature makes an advance on extant reviews of the literature by highlighting the symbiotic relationship between ICT design and environmental sustainability from both research and practice perspectives. This study adds to the body of knowledge and previous endeavours in research of ICT and sustainability. Overall, it endeavours to present contributions and avenues for further theoretical and empirical research and development. / +46704352135/+212662815009
112

Alternative energy concepts for Swedish wastewater treatment plants to meet demands of a sustainable society

Brundin, Carl January 2018 (has links)
This report travels through multiple disciplines to seek innovative and sustainable energy solutions for wastewater treatment plants. The first subject is a report about increased global temperatures and an over-exploitation of natural resources that threatens ecosystems worldwide. The situation is urgent where the current trend is a 2°C increase of global temperatures already in 2040. Furthermore, the energy-land nexus becomes increasingly apparent where the world is going from a dependence on easily accessible fossil resources to renewables limited by land allocation. A direction of the required transition is suggested where all actors of the society must contribute to quickly construct a new carbon-neutral resource and energy system. Wastewater treatment is as required today as it is in the future, but it may move towards a more emphasized role where resource management and energy recovery will be increasingly important. This report is a master’s thesis in energy engineering with an ambition to provide some clues, with a focus on energy, to how wastewater treatment plants can be successfully integrated within the future society. A background check is conducted in the cross section between science, society, politics and wastewater treatment. Above this, a layer of technological insights is applied, from where accessible energy pathways can be identified and evaluated. A not so distant step for wastewater treatment plants would be to absorb surplus renewable electricity and store it in chemical storage mediums, since biogas is already commonly produced and many times also refined to vehicle fuel. Such extra steps could be excellent ways of improving the integration of wastewater treatment plants into the society. New and innovative electric grid-connected energy storage technologies are required when large synchronous electric generators are being replaced by ‘smaller’ wind turbines and solar cells which are intermittent (variable) by nature. A transition of the society requires energy storages, balancing of electric grids, waste-resource utilization, energy efficiency measures etcetera… This interdisciplinary approach aims to identify relevant energy technologies for wastewater treatment plants that could represent decisive steps towards sustainability.

Page generated in 0.0638 seconds