Spelling suggestions: "subject:"cardiomyopathy"" "subject:"ardiomyopathy""
61 |
Soluble ST2 Receptor: Biomarker of Left Ventricular Impairment and Functional Status in Patients with Inflammatory CardiomyopathyObradovic, Danilo Momira, Büttner, Petra, Rommel, Karl-Philipp, Blazek, Stephan, Loncar, Goran, von Haehling, Stephan, von Roeder, Maximilian, Lücke, Christian, Gutberlet, Matthias, Thiele, Holger, Lurz, Philipp, Besler, Christian 02 June 2023 (has links)
Introduction: Inflammatory cardiomyopathy (ICM) frequently leads to myocardial fibrosis, resulting in permanent deterioration of the left ventricular function and an unfavorable outcome. Soluble suppression of tumorigenicity 2 receptor (sST2) is a novel marker of inflammation and fibrosis in cardiovascular tissues. sST2 was found to be helpful in predicting adverse outcomes in heart failure patients with reduced ejection fraction. The aim of this study was to determine the association of sST2 plasma levels with cardiac magnetic resonance (CMR) and echocardiography imaging features of left ventricular impairment in ICM patients, as well as to evaluate the applicability of sST2 as a prognosticator of the clinical status in patients suffering from ICM. Methods: We used plasma samples of 89 patients presenting to the Heart Center Leipzig with clinically suspected myocardial inflammation. According to immunohistochemical findings in endomyocardial biopsies (EMB) conducted in the context of patients’ diagnostic work-up, inflammatory cardiomyopathy was diagnosed in 60 patients (ICM group), and dilated cardiomyopathy in 29 patients (DCM group). All patients underwent cardiac catheterization for exclusion of coronary artery disease and CMR imaging on 1.5 or 3 Tesla. sST2 plasma concentration was determined using ELISA. Results: Mean plasma concentration of sST2 in the whole patient cohort was 45.8 ± 26.4 ng/mL (IQR 27.5 ng/mL). In both study groups, patients within the highest quartile of sST2 plasma concentration had a significantly lower left ventricular ejection fraction (LV-EF) compared to patients within the lowest sST2 plasma concentration quartile (26 ± 11% vs. 40 ± 13%, p = 0.05 for ICM and 24 ± 13% vs. 51 ± 10%, p = 0.004 for DCM). sST2 predicted New York Heart Association (NYHA) class III/IV at 12 months follow-up more efficiently in ICM compared to DCM patients (AUC 0.85 vs. 0.61, p = 0.02) and was in these terms superior to NT-proBNP and cardiac troponin T. ICM patients with sST2 plasma concentration higher than 44 ng/mL at baseline had a significantly higher probability of being assigned to NYHA class III/IV at 12 months follow-up (hazard ratio 2.8, 95% confidence interval 1.01–7.6, log rank p = 0.05). Conclusion: Plasma sST2 levels in ICM patients reflect the degree of LV functional impairment at hospital admission and predict functional NYHA class at mid-term follow-up. Hence, ST2 may be helpful in the evaluation of disease severity and in the prediction of the clinical status in ICM patients.
|
62 |
Nephropathic cystinosis associated with cardiomyopathy: A 27-year clinical follow-upDixit, Mehul, Greifer, Ira January 2002 (has links)
BACKGROUND:Nephropathic cystinosis is an autosomal recessive disease resulting from intracellular accumulation of cystine leading to multiple organ failure.CASE REPORT:We describe the clinical course of a patient managed from the age of six until his death at the age of 33 years. He underwent multiple surgery, including two renal transplants, developed transplant renal artery stenosis that was managed medically, and progressive heart failure at the age of 33 years. His death from a ruptured pseudoaneurysm associated with a restrictive cardiomyopathy is noteworthy. A limited cardiac autopsy revealed the presence of cystine crystals in interstitial cardiac histiocytes and one myocardial cell, along with 1000-fold higher tissue cystine content of the left ventricular myocardium compared to patients without cystinosis, suggesting the possibility of direct cystine mediated metabolic injury.
|
63 |
Identification of novel sarcomeric modifiers of hypertrophy in hypertrophic cardiomyopathy using the yeast two-hybrid systemTodd, Carol 03 1900 (has links)
Thesis (MScMedSc)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: Left ventricular hypertrophy (LVH) occurs when the cardiomyocytes in the left ventricle become enlarged by increasing in mass in response to haemodynamic pressure overload. This can either be attributed to a normal physiological response to exercise or can be the result of a maladaptive process or disease state, such as chronic hypertension. Hypertrophic cardiomyopathy (HCM) is the most common form of Mendelian-inherited cardiac disease. A defining characteristic thereof is primary LVH that occurs when there are no other hypertrophy-predisposing conditions present. Therefore, HCM provides a unique opportunity to study the molecular determinants of LVH in the context of a Mendelian disorder, instead of in more complex disorders such as hypertension. Over 1000 HCM-causing mutations in 19 genes have been identified thus far, most of them encoding sarcomeric proteins residing in the sarcomeric C-zone. However, for many HCM patients no disease-causing genes have been identified. Moreover, studies have shown phenotypic variation in presentation of disease in, as well as between, families in which the same HCM-causing mutation segregates. This has led many investigators to conclude that genetic modifiers of hypertrophy exist.
The aim of the study was to identify novel plausible HCM-causing or modifier genes by searching for interactors of a known HCM-causing protein, namely titin. The hypothesis was that genes encoding proteins, which interact with proteins that are encoded by known HCM-causative genes, may also be considered HCM-causing or may modify the HCM phenotype. To this end, the aim was to identify novel interactors of the 11-domain super-repeat region of titin, which resides within the sarcomeric C-zone, using yeast two-hybrid analysis. Five putative interactors of the 11-domain super-repeat region of titin were identified in this study. These interactions were subsequently verified by colocalisation in H9C2 rat cardiomyocytes, providing further evidence for possible interactions between titin and these proteins.
The putative interactor proteins of titin determined from the Y2H library screen were: filamin C (FLNC), phosphatidylethanolamine-binding protein 4 (PEBP4), heart-type fatty acid binding protein 3 (H-FABP3), myomesin 2 (MYOM2) and myomesin 1 (MYOM1).
The FLNC gene could be a candidate for cardiac diseases, especially cardiomyopathies that are associated with hypertrophy or developmental defects. The putative interaction of titin and PEBP4 is speculated to be indicative of the formation of the interstitial fibrosis and myocyte disarray seen in HCM. Heart-type fatty acid-binding protein 3 has prognostic value to predict recurrent cardiac events. Its suggested interaction with titin is speculated to play a role in inhibiting its functional abilities. Myomesin 2 is jointly responsible, with MYOM1, for the formation of a head structure on one end of the titin string that connects the Z and M bands of the sarcomere. This is speculated to be linked to a developmental error with the result being a defect in sarcomeric structure formation, which could result in pathologies such as HCM.
Therefore, these identified proteins could likely play a functional role in HCM due to their interactions with titin. This research could thus help with new insights into the further understanding of HCM patho-aetiology. / AFRIKAANSE OPSOMMING: Linker ventrikulêre hipertrofie (LVH) ontstaan wanneer die kardiomyosiete in die linkerventrikel vergroot as gevolg van 'n verhoging in massa in reaksie op hemodinamiese drukoorlading. Dit kan toegeskryf word aan 'n normale fisiologiese respons op oefening of kan die gevolg wees van 'n wanaangepaste of siektetoestand, soos chroniese hipertensie. Hipertrofiese kardiomiopatie (HKM) is die mees algemene vorm van Mendeliese oorerflike hartsiekte. 'n Bepalende eienskap daarvan is primêre LVH, wat plaasvind wanneer daar geen ander hipertrofie-predisponerende voorwaardes teenwoordig is nie. Gevolglik bied HKM 'n unieke geleentheid om die molekulêre derterminante van LVH te bestudeer, in die konteks van 'n Mendeliese oorerflike siekte, in plaas van om dit in die meer komplekse siektes soos hoë bloeddruk te bestudeer. Meer as 1000 HKM-veroorsakende mutasies is tot dusver in 19 gene geïdentifiseer. Die meeste van hulle kodeer vir sarkomeriese proteïene wat in die C-sone voorkom. Egter, vir baie HKM-pasiënte is geen siekte-veroorsakende gene al geïdentifiseer nie. Daarbenewens het studies getoon dat variasie in fenotipiese aanbieding van die siekte in, sowel as tussen, families voorkom wat dieselfde HKM-veroorsakende mutasie het. Dit het daartoe gelei dat baie navorsers tot die gevolgtrekking gekom het dat genetiese wysigers van hipertrofie wel bestaan.
Die doel van die studie was om nuwe moontlike HKM-veroorsakende of wysiger-gene te identifiseer deur te soek vir interaktors van 'n bekende HKM-veroorsakende proteïen, naamlik titin. Die hipotese was dat gene wat vir proteïene kodeer, wat in wisselwerking is met proteïene wat geïnkripteer word deur bekende HKM-veroorsakende gene, ook oorweeg kan word om HKM te veroorsaak. Dit kan ook die HKM fenotipe verander. Dus was die doel om nuwe interaktors van die 11-domein super-herhaalstreek van titin, soos gevind binne die sarkomeriese C-sone, te identifiseer deur middel van gis-twee-hibried-analise. Vyf vermeende interaktors van die 11-domein super-herhaalstreek van titin is in hierdie studie geïdentifiseer. Hierdie interaksies is later geverifieer met behulp van ko-lokalisering in H9C2-rotkardiomyosiete, wat verdere bewyse vir moontlike interaksies tussen titin en hierdie proteïene verskaf.
Die vermeende interaktor-proteïene van titin wat bepaal is vanaf die gis-twee-hibried-biblioteeksifting was as volg: filamin C (FLNC), phosphatidylethanolamine-bindingsproteïen 4 (PEBP4), hart-tipe-vetsuur bindingsproteïen 3 (H-FABP3), myomesin 2 (MYOM2) en myomesin 1 (MYOM1).
Die FLNC-geen kan 'n kandidaat vir kardiale siektes, veral kardiomiopatieë, wees wat geassosieer word met hipertrofie of ontwikkelingsafwykings. Die vermeende interaksie van titin en PEBP4 dui daarop om 'n aanduiding te wees vir die vorming van die interstisiële fibrose en miokardiale wanorde, soos gesien in HKM. Hart-tipe-vetsuur bindingsproteïen 3 het prognostiese waarde om herhalende kardiale gebeure te voorspel. Verder dui sy voorgestelde interaksie met titin moontlik daarop dat dit 'n rol kan speel in die inhibering van sy funksionele vermoëns. Myomesin 2 tesame met MYOM1 is verantwoordelik vir die vorming van 'n kopstruktuur aan die een kant van die titinstring wat dan die Z- en M-bande van die sarkomeer verbind. Daar word vermoed dat dit gekoppel is aan 'n ontwikkelingsfout, met die gevolg dat daar 'n defek is in sarkomeriese struktuurvorming, wat weer kan lei tot patologieë soos HKM. / Mrs Wendy Ackerman / Prof Paul van Helden / National Research Foundation (NRF) / Stellenbosch University
|
64 |
Enhancing Cardiomyocyte Survival in Drug Induced Cardiac InjuryMaharsy, Wael 11 October 2012 (has links)
Cardiotoxicity associated with many cancer drugs is a critical issue facing physicians these days and a huge hurdle that must be overcome for a side effects-free cancer therapy. Survival of cardiac myocytes is compromised upon the exposure to certain chemotherapeutic drugs. Unfortunately, the mechanisms implicated in cardiac toxicity and the pathways governing myocyte survival are poorly understood. The following thesis addresses the mechanisms underlying the cardiotoxicity of two anticancer drugs, doxorubicin (DOX) and Imatinib mesylate (Gleevec). Transcription factor GATA-4, has recently emerged as an indispensable factor in the adult heart adaptive response and cardiomyocyte survival. Therefore, the specific aim of this project was to determine the role of GATA-4, its upstream regulators, as well as partners in survival. A combination of cell and molecular techniques done on in vivo, and ex vivo models were utilized to tackle these issues. In this study, we confirmed the cardiotoxicity of the anticancer drug, Imatinib mesylate and found to be age dependent. GATA-4, already known to be implicated in DOX-induced toxicity, was confirmed as an Imatinib target. At the molecular level, we identified IGF-1 and AKT as upstream regulators of GATA-4. Moreover, we confirmed ZFP260 (PEX-1), a key regulator of the cardiac hypertrophic response, as a GATA-4 collaborator in common prosurvival pathways. Collectively, these results provide new insights on the mechanisms underlying drug-induced cardiotoxicity and raise the exciting possibility that cancer drugs are negatively affecting the same prosurvival pathway(s), in which GATA-4 is a critical component. Therapeutic interventions aimed at enhancing GATA-4 activity may be interesting to consider in the context of treatments with anticancer drugs.
|
65 |
JPH2 Mutant Gene Causes Familial Hypertrophic Cardiomyopathy : A Possible Model to Unravel the Subtlety of Calcium-Regulated ContractilityRoberts, Robert 02 1900 (has links)
No description available.
|
66 |
Effects of Three Cardiomyopathic-Causing Mutations (D230N, D84N, and E62Q) on the Structure and Flexibility of α-TropomyosinHoleman, Teryn A., Holeman, Teryn A. January 2017 (has links)
Cardiac contraction at the level of the sarcomere is regulated by the thin filament (TF) composed of actin, alpha tropomyosin (TPM), and the troponin (Tn) complex (cTnT: cTnC: cTnI). The "gate-keeper" protein, α-TPM, is a highly conserved α-helical, coiled-coil dimer that spans actin and regulates myosin-actin interactions. The N-terminus of one α-TPM dimer inter-digitates with the C-terminus of the adjacent dimer in a head-to-tail fashion forming the flexible and cooperative TPM-overlap that is necessary for myofilament activation. Two dilated cardiomyopathy (DCM) causing mutations in TPM (D84N and D230N) and one hypertrophic cardiomyopathy (HCM) causing mutation (E62Q), all identified in large, unrelated, multigenerational families, were utilized to study how primary alterations in protein structure cause functional deficits. We hypothesize that structural changes from a single point mutation propagate along the -helical coiled-coil of TPM, thus affecting its regulatory function. Structural effects of the mutations studied via differential scanning calorimetry (DSC) on TPM alone revealed significant changes in the thermal unfolding temperatures of both the C- and N-termini for all mutants compared to WT, indicating that mutational effects propagate to both ends of TPM, thus affecting the overlap region. Although, of note, the proximal termini to the mutation has shown more significant structural changes compared to WT. DSC analysis on fully reconstituted TF’s (Tn:TPM:Actin) revealed effects on the TPM-Actin cooperativity of activation, affecting interaction strength (thermal stability), and the rigidity of TPM moving along actin (FWHM). To characterize the resultant functional effect of these discrete changes in thermal stability and TPM rigidity, ATPase assays were used to measure actomyosin activation in the presence and absence of Ca2+. Together, these data will provide a molecular level understanding of the structural and functional deficits caused by these mutations to help elucidate the mechanisms leading to disease.
|
67 |
SILDENAFIL ATTENUATES ETHANOL-INDUCED CARDIOMYOCYTE INJURY AND PRESERVES CARDIAC FUNCTION THROUGH PROTEIN KINASE G-DEPENDENT SIGNALINGSturz, Gregory R. 15 April 2013 (has links)
Background: Ethanol is a cardiotoxic substance that damages the heart by increasing apoptosis, free radical formation and calcium overloading. Consequently, there is an increase in cell death leaving fewer functioning myocytes leading to heart failure. Sildenafil is a phosphodiesterase type-5 (PDE-5) inhibitor approved for treatment of erectile dysfunction. Studies from our lab have demonstrated that PDE-5 inhibition reduces myocardial infarct size and attenuates post-ischemic cardiac dysfunction in both ischemia-reperfusion and permanent coronary artery ligation models. Therefore, in the present study, we hypothesized that treatment with sildenafil will prevent cardiotoxicity associated with acute alcohol exposure by reducing myocyte apoptosis and preserving cardiac function through PKG signaling. Methods and Results: Adult cardiomyocytes were isolated and treated with 100 mM of 100% ethanol ± 10 µM sildenafil. At 24 hours necrosis was assessed via trypan blue exclusion assay, JC-1 staining assessed mitochondrial membrane potential and ROS production was measured by DCF fluorescence. At 48 hours apoptosis was assessed by TUNEL assay. Ethanol increased the rate of necrotic and apoptotic cell death. This was attenuated by co-treatment with sildenafil. Ethanol disrupted the mitochondrial membrane potential and increased ROS production. Sildenafil preserved mitochondrial membrane potential and attenuated ROS production. Treatment of myocytes with 5-HD, a mitochondrial K+atp channel antagonist, blocked the protective effect of sildenafil. Knockdown of PKG using adenoviral siRNA blocked the protective effect of sildenafil, while overexpression of PKG1α conferred protection against ethanol cytotoxicity. To further demonstrate the effect of sildenafil ethanol-cardiotoxicity in vivo, mice were treated with ethanol (3 g/kg/day) with or without sildenafil (0.7 mg/kg) by i.p. injection for three consecutive days. After treatment, the animals were sacrificed and the hearts removed and perfused on a Langendorff system to measure function. After functional analysis, apoptosis and PKG activity was measured in the heart samples. Ethanol decreased the rate-force product and increased myocardial apoptosis. Sildenafil preserved cardiac function and significantly reduced apoptosis. Sildenafil treated myocardium also showed an increase in PKG activity. Conclusion: Sildenafil attenuates the toxic effect of ethanol by reducing apoptosis and maintaining the mitochondrial integrity in cardiomyocytes. Sildenafil also preserved cardiac function in ethanol-treated mice. Protein kinase G-dependent signaling plays a critical role in attenuating cardiotoxic effect of ethanol.
|
68 |
The prevalence of hearing loss in adults presenting with cardiovascular disease.Solanki, Trusha 29 June 2012 (has links)
The relationship between cardiovascular disease and hearing loss has already been
proven. However literature does not provide information on the prevalence of
hearing loss in adults with cardiovascular disease. Previous studies provide
contradictory information regarding the audiological characteristics in this
population. Data relating to the South African context is minimal. The objectives
of this descriptive survey research study were to describe the prevalence of
hearing loss in adults with this cardiovascular disease and determine the variables
which may influence hearing thresholds in this population. Ninety two individuals
diagnosed with coronary artery disease or cardiomyopathy were recruited using a
non-probability, purposive sampling strategy. This sample, with an average age of
48 years and five months, consisted of more males than females and more
participants with coronary artery disease than cardiomyopathy. Participants
underwent a comprehensive audiological evaluation including an otoscopic
examination, immittance audiometry, pure-tone audiometry, speech audiometry,
as well as distortion product otoacoustic emissions. Content analysis, descriptive
statistics, t-tests and an analysis of covariance revealed a hearing loss prevalence
of 5%. These participants presented with a low frequency sensorineural hearing
loss with the right ear being more affected. It was found that duration of
cardiovascular disease influenced hearing thresholds. Implications of this study
include the importance of prevention and early identification of hearing loss. This
highlights the need to establish the role of audiologists within a multi-disciplinary
team and the management of individuals with this disease.
|
69 |
Left ventricular diastolic dysfunction in a community of African ancestryPeterson, Vernice Roxanne January 2017 (has links)
A thesis submitted to the Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Doctor of Philosophy.
Johannesburg, South Africa
2017. / Almost half of all cases of heart failure have a preserved ejection fraction. However, therapy targeting the mechanisms of this disorder has not improved outcomes. Left ventricular (LV) diastolic dysfunction is a characteristic feature of heart failure with a preserved ejection fraction. A more sound understanding of the mechanisms responsible for LV diastolic dysfunction produced by risk factors may lead to better approaches to preventing this syndrome.
Although obesity is thought to be a major risk factor for LV diastolic dysfunction, this does not occur in all obese individuals. In the present thesis I have demonstrated in 737 randomly recruited participants from a community sample of African ancestry, that the relationship between insulin resistance (homeostasis model) and LV diastolic function, as assessed from trans-mitral velocity (E/A) and tissue Doppler imaging of the lateral and septal walls of the LV (e’ and E/e’), is markedly altered by the presence of a more concentrically remodelled LV (as indexed by LV relative wall thickness [RWT]). Importantly, insulin resistance was only associated with LV diastolic function or dysfunction in those with an RWT above a threshold value. In contrast no interactive effects on LV diastolic function between either blood pressure or age and RWT were noted. These data therefore suggest that obesity will only translate into LV diastolic dysfunction if it is associated with insulin resistance and a concentrically remodeled LV.
Although hypertension is thought to play an important role in contributing to LV diastolic dysfunction, the pulsatile hemodynamic change primarily responsible for this effect is uncertain. In 524 randomly selected individuals from a community sample I have demonstrated that independent of confounders including left ventricular mass and RWT, aortic backward wave pressure effects (as determined using wave separation analysis), antedate the impact of aortic stiffness (indexed by aortic pulse wave velocity) or the factors determined by aortic stiffness (the time of backward wave return or forward wave pressures) on LV filling pressures (E/e’). These data therefore suggest that to adequately prevent LV diastolic dysfunction, targeting aortic backward wave pressures may be required.
As conventional risk factors account for only a portion of the inter-individual variations in LV diastolic function, it is thought that the genetic factors may play a
iv
significant role. In 694 randomly recruited participants of African ancestry belonging to nuclear families, I demonstrated that independent of conventional risk factors, heritability accounts for approximately 50% of the variation in LV RWT, an important LV structural determinant of LV diastolic function. Moreover, in 442 randomly recruited individuals of African ancestry belonging to nuclear families, I also demonstrated that heritability accounts for approximately 50% of the variation in the index of LV filling pressures, E/e’, independent of LV mass or RWT remodeling and aortic function. These data provide strong evidence that genetic factors responsible for LV diastolic dysfunction and the structural determinants thereof should be sought.
In conclusion, the results provided in the present thesis have advanced our knowledge of possible pathophysiological mechanisms that play a role in the development of LV diastolic dysfunction and hence possibly heart failure with a preserved ejection fraction. / MT2017
|
70 |
Hypertrophic cardiomyopathy in Northern Sweden : with special emphasis on molecular geneticsMörner, Stellan January 2004 (has links)
Hypertrophic cardiomyopathy (HCM) is a heterogeneous, often familial disease, characterized by cardiac hypertrophy, predominantly affecting the interventricular septum. To date, no study has systematically analysed the genetic and phenotypic aspects of the disease in a Swedish population. The aim of this thesis was to identify the genotypes causing HCM in northern Sweden, to characterize the disease phenotypes and correlate these findings. Forty-six patients were recruited for the genetic studies (21 women), 11 familial and 35 sporadic cases. Eight sarcomeric protein genes were screened for mutations. A total of 11 different disease causing mutations were found in four genes. Six of the mutations were previously not described. A novel mutation (a 33 base pair deletion) in the troponin I gene was found in one HCM family. Despite the severe genetic defect, the associated phenotype displayed only mild cardiac hypertrophy and few symptoms. Most mutations (64%) were identified in the myosin binding protein C gene, a gene considered to have a low penetrance. Mutations were identified in 10 of 11 familial HCM cases, but only in three of the 35 sporadic cases. It was found that cardiac amyloidosis can sometimes present itself as HCM. Three HCM patients (7%) carried the ATTR Val30Met mutation, also found in Swedish patients with familial amyloid polyneuropathy (FAP). The patients had no symptoms of polyneuropathy, but cardiac amyloidosis as the cause of hypertrophy was verified by myocardial biopsy in an index case. Amyloid heart disease should therefore be considered as a differential diagnosis in patients with HCM. By studying heart rate variability (HRV), it was found that young patients with HCM had signs of autonomic dysfunction, expressed as a reduced HRV. Treatment with beta-blockade attenuated these effects. Abnormal autonomic function might be a substrate for lethal arrhythmias, most often encountered in younger patients with HCM. The results suggest a possible protective effect of beta-blockade, remaining to be studied further. Ventricular function is frequently abnormal in HCM. In particular, diastolic dysfunction has been demonstrated. The recently described myocardial performance index allows the assessment of cardiac function by combining systolic and diastolic performance. We found that patients with hypertrophic cardiomyopathy had evidence of global and regional right ventricular dysfunction, besides left ventricular dysfunction. Hypertrophic cardiomyopathy is traditionally considered to be a disease of the left ventricle. The results show that hypertrophic cardiomyopathy should more be regarded as a biventricular disease. In conclusion, the myosin binding protein C gene is the most common gene causing familial HCM in northern Sweden. This disease gene is considered to be associated with a mild, late-onset disease with ≈50% penetrance at 30 years of age. The low disease penetrance emphasizes the importance of adequate family screening when evaluating patients with HCM, since the familial nature of the disease might easily be overlooked. These particular disease features in northern Sweden contrast to most previous reports, which indicate another disease gene as the most frequent in HCM, associated with a much higher penetrance. Amyloid heart disease, requiring different treatment than HCM, should be kept in mind as a differential diagnosis in the management of patients with HCM. Key words: Hypertrophic cardiomyopathy, genetics, autonomic nervous system, familial amyloid polyneuropathy, echocardiography.
|
Page generated in 0.0311 seconds