• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 26
  • 10
  • 7
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 102
  • 39
  • 33
  • 26
  • 18
  • 16
  • 15
  • 15
  • 14
  • 13
  • 12
  • 12
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Modification of ion channel auxiliary subunits in cardiac disease

Al Katat, Aya 10 1900 (has links)
L’infarctus du myocarde (IM) survenant après l’obstruction de l’artère coronaire est la cause principale des décès cardiovasculaires. Après l’IM, le coeur endommagé répond à l’augmentation du stress hémodynamique avec une cicatrice et une hypertrophie dans la région non-infarcie du myocarde. Dans la région infarcie, la cicatrice se forme grâce au dépôt du collagène. Pendant formation de la cicatrice, les cardiomyocytes ventriculaires résidant dans la région non-infarcie subissent une réponse hypertrophique après l’activation chronique due au système sympathique et à l’angiotensine II. La cicatrisation préserve l’intégrité structurale du coeur et l'hypertrophie des cardiomyocytes apporte un support ionotropique. Le canal CaV1.2 joue un rôle dans la réponse hypertrophique après l’IM. L’activation du CaV1.2 déclenche la signalisation dépendante de Ca2+ induisant l’hypertrophie. Cependant, il est rapporté que l’ouverture des canaux potassiques (KATP) ATP sensitifs joue un rôle sélectif dans l’expansion de la cicatrice après IM. Malgré leur expression dans les coeurs mâles, les KATP fournissent une cardioprotection sexe dépendante limitant l’expansion de la cicatrice chez les femelles. L’administration de rapamycine aux rates ayant subi un infarctus produit l’expansion de la cicatrice, soutenant la relation possible entre la cible de rapamycine, mTORC1 et les KATP dans la cardioprotection sexe spécifique. Effectivement, dans les cellules pancréatiques α, la signalisation mTORC1 était couplée à l'activation du KATP. Cependant, le lien entre mTORC1 et les canaux KATP dans le coeur reste inconnu. L'objectif de la thèse est d’examiner le rôle des canaux ioniques dans le remodelage cardiaque post-IM, surtout des canaux calciques dans l'hypertrophie et d'élucider la relation entre les KATP et mTORC1. L’hypothèse première teste que l’hypertrophie médiée par le système sympathique des cardiomyocytes ventriculaires des rats néonataux (NRCM) produit une augmentation de l’influx calcique après une augmentation des sous-unités du CaV1.2. Le traitement de norépinéphrine (NE) quadruple l’amplitude du courant calcique type L et double l’expression protéique des sous unités de CaVα2δ1 et CaVβ3. L’hypertrophie des NRCM au NE s’associe à une augmentation de la phosphorylation de la Kinase ERK 1/2. Le β1-bloqueur metoprolol et l’inhibiteur ii de ERK1/2 diminuent l’effet de NE sur CaVα2δ1. Cependant, l’augmentation de CaVβ3 et de la réponse hypertrophique persiste. Ainsi, le signal β1-adrenergique à travers ERK augmente les sous-unités CaVα2δ1 outre l’hypertrophie. L’autre hypothèse examine la spécificité du sexe sur l’expansion cicatricielle médiée par rapamycine et l’influence de mTOR sur l’expression de KATP. Rapamycin augmente la surface de la cicatrice et inhibe la phosphorylation de mTOR chez les coeurs de femelles. Dans les coeurs des deux sexes, la phosphorylation de mTOR et l’expression de KATP, Kir6.2 et SUR2A sont similaires. Cependant, une grande inactivation de la tubérine et une faible expression de raptor sont détectées chez les femelles. Le traitement à l’ester de phorbol des NRCM induit l’hypertrophie, augmente la phosphorylation de p70S6K et l’expression SUR2A. Le prétraitement par Rapamycine atténue chacune des réponses. Rapamycin démontre un patron d’expansion cicatriciel sexe spécifique et une régulation de phosphorylation de mTOR dans IM. Aussi, l’augmentation de SUR2A dans les NRCM traités par PDBu révèle une interaction entre mTOR et KATP. / Myocardial infarction (MI) secondary to the obstruction of the coronary artery is the main cause of cardiovascular death. Following MI, the damaged heart adapts to the increased hemodynamic stress via formation of a scar and a hypertrophic response of ventricular cardiomyocytes in the non-infarcted myocardium. In the infarcted region, a scar is formed via the rapid deposition of collagen. With ongoing scar formation, ventricular cardiomyocytes in the non-infarcted myocardium undergo a hypertrophic response secondary to the chronic activation by the sympathetic system and angiotensin II. Collectively, scar formation and cardiomyocyte hypertrophy preserve the structural integrity of the heart and provide inotropic support, respectively. CaV1.2 channels play a significant role in the hypertrophic response post-MI. Notably, the activation of CaV1.2 channel triggers Ca2+-dependent signaling that induces hypertrophy. By contrast, the opening of ATP-sensitive potassium (KATP) channels was shown to partake in selective scar expansion following MI. Notwithstanding its expression in male hearts, KATP channels endow a sex-dependent cardioprotection limiting scar expansion selectively in females. Moreover, administration of the macrolide rapamycin to the infarcted female rat heart led to scar expansion, supporting the possible relationship between the target of rapamycin, mTORC1 and KATP channels in providing sex-specific cardioprotection. Indeed, in pancreatic-α cells, mTORC1 signaling was coupled to KATP channel activation. However, whether mTORC1 targets KATP channels in the heart remains unknown. Thus, the AIM of the thesis was to explore the role of ion channels in cardiac remodeling post-MI by specifically addressing the role of Ca channels in cardiomyocyte hypertrophy and elucidate the potential relationship between KATP channels and mTORC1 signaling. The first study tested the hypothesis that hypertrophied neonatal rat ventricular cardiomyocytes (NRVMs) following sympathetic stimulation translated to an increase in calcium influx secondary to the augmentation of CaV1.2 channel subunits. NE treatment led to a 4-fold increase of L-type Ca2+ peak current associated with a 2-fold upregulation of CaVα2δ1 and CaVβ3 protein subunits in hypertrophied NRVMs. The hypertrophic response of NNVMs to NE was associated with the increased phosphorylation of extracellular regulated kinase (ERK1/2). The β1-blocker metoprolol and the ERK1/2 inhibitor suppressed NE-mediated protein upregulation of CaVα2δ1 whereas CaVβ3 upregulation and the hypertrophic response persisted. Therefore, sympathetic mediated β1-adrenergic signaling via ERK selectively upregulated the CaVα2δ1 subunit independent of NRVM hypertrophy. The second study tested the hypothesis that rapamycin-mediated scar expansion was sexspecific and mTOR influenced KATP channel subunit expression. Rapamycin administration translated to scar expansion and inhibited mTOR phosphorylation exclusively in females. In normal adult male and female rat hearts, mTOR phosphorylation and protein levels of KATP channel subunits Kir6.2 and SUR2A were similar. However, greater tuberin inactivation and reduced raptor protein levels were detected in females. NRVMs treated with a phorbol ester induced hypertrophy, increased p70S6K phosphorylation and SUR2A protein levels and rapamycin pretreatment attenuated each response. Thus, rapamycin administration to MI rats unmasked a sex-specific pattern of scar expansion and highlighted the disparate regulation of mTOR phosphorylation. Moreover, rapamycin-dependent upregulation of SUR2A in PDButreated NRVMs revealed a novel interaction between mTOR and KATP channel subunit expression
102

Development of new advanced therapies to mitigate ischemia-reperfusion-induced injury during acute myocardial infarction

Tejedor Gascón, Sandra 13 July 2023 (has links)
[ES] Las intervenciones actuales utilizadas en el ámbito clínico durante el infarto agudo de miocardio (IAM) se centran en la revascularización de la zona isquémica. Entre dichas estrategias, la angioplastia coronaria, procedimiento por el cual se utiliza un catéter para desobstruir la arteria ocluida, es el método más utilizado. Sin embargo, se ha descrito este proceso (conocido como reperfusión) desencadena un daño adicional en el miocardio, por lo que la combinación de dicha intervención con moléculas cardioprotectoras resulta de gran interés para tratar de reducir el tamaño del infarto. El presente trabajo propone dos nuevas moléculas con el fin de precondicionar el área isquémica antes de la reperfusión en el contexto del IAM. La primera estrategia propuesta se ha basado en el aporte de un ácido graso (diDHA) en la zona isquémica antes de la reperfusión para tratar de reducir el estrés de los cardiomiocitos y el número de células muertas antes de la reperfusión. Además, se han sintetizado nanoconjugados basados en la unión covalente de diDHA a un unido covalentemente a un esqueleto polimérico (ácido poli-L-glutámico, PGA) con el fin de incrementar la estabilidad del diDHA y conseguir una liberación controlada de la molécula. Los resultados obtenidos mostraron que la formulación PGA-diDHA6.4 fue la más optimizada, mostrando un mejor efecto en el precondicionamiento de los cardiomiocitos antes de la reperfusión en términos de reducción de apoptosis, generación de especies reactivas de oxígeno y mantenimiento de la función mitocondrial in vitro. Además, dicho nanoconjugado también mostró un modesto efecto terapéutico cuando se administró en modelos in vivo de isquemia-reperfusión en ratas y cerdos, reduciendo el tamaño final de infarto respecto a los grupos control. La segunda estrategia terapéutica propuesta se ha centrado en aumentar el potencial terapéutico de las vesículas celulares de pequeño tamaño (SEV o exosomas) procedentes de medio condicionado de células madre estromales (MSC). Numerosos estudios han descrito el papel terapéutico de factores paracrinos secretados por las MSC, donde se incluyen tanto factores solubles como vesículas extracelulares (EV) y, en especial, SEV. Diversas estrategias, como la modificación genética o precondicionamiento de estas células, han sido utilizadas para aumentar el potencial terapéutico de las mismas. En este trabajo se ha propuesto la modificación genética de las MSC con el objetivo de enriquecer las SEV en proteínas de interés que pudiesen potenciar el efecto terapéutico de las SEV nativas. En base a estudios previos, donde se ha visto que la oncostatina-M (OSM) podría jugar un papel anti-fibrótico en el contexto del IAM, se decidió incorporar dicha proteína en la superficie de las SEV derivadas de MSC mediante su fusión con proteínas presentes de forma natural en la superficie de las SEV, con el objetivo de desencadenar una respuesta en las células diana. La modificación de la secuencia de la OSM y su fusión con la tetraspanina CD81 permitieron cargar de manera efectiva la OSM en la superficie de las SEV, y los resultados preliminares en fibroblastos ventriculares cardíacos mostraron un efecto funcional beneficioso con respecto a los SEV control y los enriquecidos en CD81, reduciendo la tasa de proliferación de las células en condiciones de ayuno, y modificando la expresión y la liberación de la proteína telo-Col1α1 en las células después de ser estimuladas con TGFβ-1, α-dextrano y ácido ascórbico-L-sulfato En resumen, dos nuevas estrategias terapéuticas avanzadas libres de células han sido propuestas en el presente trabajo, donde se han mostrado resultados preliminares prometedores para reducir el daño en el miocardio tras el IAM en términos de reducción de apoptosis de cardiomiocitos y de activación de fibroblastos car / [CA] Les intervencions actuals utilitzades en l'àmbit clínic durant l'infart agut de miocardi (IAM) se centren en la revascularització de la zona isquèmica. Entre aquestes estratègies, l'angioplàstia coronària, procediment pel qual s'utilitza un catèter per a desobstruir l'artèria oclosa, és el procés més utilitzat. No obstant això, s'ha descrit que aquest procés (conegut com a reperfusió) desencadena un mal addicional en el miocardi. En conseqüència, la combinació d'aquesta intervenció amb molècules cardioprotectores resulta de gran interés per a tractar de reduir la grandària de l'infart. El present treball proposa dues noves molècules amb potencial cardioprotector en el context del IAM. Com a primera estratègia terapèutica, s'ha proposat l'aportació d'un àcid gras (diDHA) a la zona isquèmica del miocardio abans de la reperfusió per a tractar de reduir l'estrés dels cardiomiocitos i el nombre de cèl·lules mortes abans de la reperfusió. A més, s'han sintetitzat nanoconjugats basats en la unió covalent de diDHA a un esquelet polimèric (àcid poli-L-glutàmic, PGA) amb la finalitat d'incrementar l'estabilitat del diDHA i aconseguir un alliberament controlat de la molècula. Els resultats obtinguts van mostrar que la formulació PGA-diDHA6.4 va ser la més efectiva, mostrant un millor efecte en el precondicionament dels cardiomiocitos abans de la reperfusió en termes de reducció d'apoptosi, generació d'espècies reactives d'oxigen i manteniment de la funció mitocondrial in vitro. A més, el nanoconjugat PGA-diDHA6.4 també va mostrar un modest efecte terapèutic quan es va administrar en models in vivo d'isquèmia-reperfusió en rates i porcs, reduint la grandària final d'infart respecte als grups control. La segona estratègia proposada s'ha centrat en potenciar l'efect terapèutic de vesícules extracelul·lars de xicoteta grandària (SEV o exosomes) que son secretades per cèl·lules mare estromales. Nombrosos estudis han descrit el paper terapèutic de factors paracrinos secretats per les MSC, on s'inclouen tant factors solubles com vesícules extracelul·lars (EV) i, especialment, les SEV. Diverses estratègies, com la modificació genètica o el precondicionament de les MSC, s'han estudiat per augmentar el potencial terapèutic d'aquestes cèl·lules. En aquest treball, es va pensar en la modificació genètica de les MSC amb l'objectiu d'enriquir les SEV en proteïnes d'interés que pogueren potenciar l'efecte terapèutic de les SEV natives. Sobre la base d'estudis previs, on s'ha vist que la oncostatina-M (OSM) podria jugar un paper anti-fibròtic en el context del IAM, es va decidir incorporar aquesta proteïna en la superfície de les SEV derivades de MSC mitjançant la seua fusió amb proteïnes presents de manera natural en la superfície de les SEV, amb l'objectiu de desencadenar una resposta en les cèl·lules diana. La modificació de la seqüència de la OSM i la seua fusió amb la tetraspanina CD81 van permetre carregar de manera efectiva la OSM en la superfície de les SEV, i els resultats preliminars en fibroblastos ventriculars cardíacs van mostrar un efecte funcional respecte als SEV control i els enriquits en CD81, reduint la taxa de proliferació de les cèl·lules en condicions de dejuni, i modificant l'expressió i la secreció de la proteïna telo-Col1α1 en les cèl·lules després de ser estimulades amb TGFβ-1, α-dextran i àcid ascòrbic-L-sulfat, simulant una activació dels fibroblastos in vitro. En resum, dues noves estratègies terapèutiques avançades lliures de cèl·lules han sigut proposades en el present treball, on s'han mostrat resultats preliminars prometedors per a reduir el mal en el miocardi després del IAM en termes de reducció d'apoptosi de cardiomiocitos i d'activació de fibroblastos cardíacs. / [EN] Current therapeutic approaches against acute myocardial infarction (AMI) are focused on myocardial ischemic zone revascularization. The most common strategy is called primary angioplasty, in which a catheter is introduced to unblock the affected artery and restore blood flux, in a process called reperfusion. Nevertheless, an additional injury on cardiac tissue is caused after reperfusion, and the combination of primary angioplasty with the use of cardioprotective molecules has emerged as a potential strategy to reduce cardiac tissue injury. Two new cell-free therapeutic strategies to preconditionate myocardial ischemic area before reperfusion have been proposed to reduce cardiac injury after AMI. The first therapeutic strategy proposed consisted on the input of a free fatty acid (di-docosahexaenoic acid, diDHA) covalently bound to a polymeric backbone (poly-L-glutamic acid, PGA) in order to increase diDHA solubility and stability and modulate its effect on target cells. Results showed that PGA-diDHA6.4 conjugate administration during ischemia protected cardiomyocytes from reperfusion-induced injury, as apoptotic number of cells and oxidative stress was reduced, and mitochondrial function was less affected when compared to untreated cells. In addition to this, PGA-diDHA6.4 also showed therapeutic effects when locally administered in an ischemia-reperfusion in vivo model in rats and pigs, where a modest reduction of area at risk was observed compared to control groups. The second cell-free strategy proposed in this work was focused on enhancing the therapeutic potential of small extracellular vesicles (SEV or exosomes) isolated form mesenchymal stromal cells (MSC) conditioned media. Previous studies have described the therapeutic potential of paracrine factors released by MSC, where both soluble factors and vesicular components are included. In particular, SEV have gained special attention. Several stretegies, such as genetic modification or cell preconditioning, have been tested to enhance the MSC therapeutic potential. In this work, it was proposed MSC genetic modification in order to load proteins of interest on SEV and potentiate its native therapeutic potential. Based on previous findings, where it has been described a potential anti-fibrotic role of oncostatin-M (OSM) in AMI context, we decided to incorporate OSM on SEV surface by its fusion to CD81 tetraspanin, a protein naturally loaded on SEV surface, in order to trigger functional effects on target cells. OSM sequence modification was necessary in order to load the protein on SEV surface efficiently, and preliminary data showed that modified OSM-CD81 loaded on SEV had a functional effect on human ventricular cardiac fibroblasts. Concretely, decrease of proliferation rate after starvation and telo-Collagen1α1 location pattern modification was observed after stimulation with a pro-fibrotic cocktail (containing TGFβ-1, α-dextran and ascorbic-L-acid sulphate) in vitro when cells were treated with modified OSM-CD81- SEV compared to ctrl and CD81-loaded SEV treatments. Overall, two new advanced cell-free therapies with preliminary promising results have been proposed in order to reduce myocardial injury after AMI in terms of cardiomyocytes apoptosis reduction and fibrosis mitigation. / Tejedor Gascón, S. (2021). Development of new advanced therapies to mitigate ischemia-reperfusion-induced injury during acute myocardial infarction [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/171487

Page generated in 0.0728 seconds