• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 82
  • 17
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 142
  • 51
  • 34
  • 26
  • 25
  • 25
  • 16
  • 16
  • 15
  • 15
  • 14
  • 12
  • 12
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Optimisation of casting process of sand cast austenitic stainless-steel pump impeller using numerical modelling and additive manufacturing

Mugeri, Hudivhamudzimu 12 1900 (has links)
M. Tech. (Department of Metallurgical Engineering, Faculty of Engineering and Technology), Vaal University of Technology. / The production of austenitic stainless-steel pump impellers in foundries present a huge challenge mainly due to its thin-walled blades, pouring temperature, presence of junctions and chemical composition. Two different alloys were used namely nodular cast iron and austenitic stainless-steel. Nodular cast iron was used as a comparison alloy due to its excellent flowability whereas austenitic stainless-steel was chosen due to its attractive corrosion and wear resistant properties. Austenitic stainless-steel alloy showed difficulties during casting because of its chemical composition and freezing range. Thin-walled sections are more susceptible to filling defects like misrun and cold-shut. This results in high scrap rate and high processing costs during high production of thin-walled components. High pouring temperature is considered one of the most effective methods to improve filling ability of thin-walled castings. However, there is a major drawback in using this method owing to the high occurrence of shrinkage defects and hot tearing especially at junctions. 1060 aluminium was used as a benchmark to evaluate the effect of wall thickness on the filling and feeding of thin-walled Al components with complex geometry during sand casting. The aim of this dissertation is therefore to optimize casting process of sand cast austenitic stainless-steel pump impeller. Numerical modelling and additive manufacturing were used to optimize the production of this product. The use of casting simulation software combined with three-dimensional (3D) mould printing technology has enabled optimisation of casting parameters to minimise the occurrence of casting defects. Casting parameters of five test samples of complex geometry and varying thicknesses (1.0 mm;1.5 mm;2 mm;2.5 mm and 3.0 mm) were optimised using MAGMAsoft® at a constant pouring temperature of 700 °C and 1060 Aluminium as an alloy. Simulation and casting results showed that complete filling was only possible at a wall thickness of 3 mm. The simulation results showed that as the wall thickness increased from 1 mm to 3 mm the filling ability increased by 67.5 % whereas experimental casting results showed that filling ability increase by 75 %. The combination of MAGMAsoft® simulation and 3D printed moulds proved to be effective tools in predicting filling and feeding of thin-walled aluminium components during sand casting. MAGMAsoft® casting software was used to simulate metal flow and predict the degree of filling at different pouring temperatures. Test samples were cast using 1060 Aluminium alloy at temperatures of 702 °C, 729 °C, 761 °C, 794 °C, 800 °C and 862 °C. Complete mould filling was predicted at 800 °C using the simulation model and 761°C during actual casting. At temperatures above 761°C tearing at the junction was quite pronounced. An optimal of 761°C pouring temperature was found to be appropriate pouring temperature when casting thin-walled aluminum components using sand casting. MAGMAsoft® casting software proved to be an effective tool in optimizing filling and feeding of thin-walled aluminium components during sand casting. Nodular cast iron pump impeller was optimized at 1500 °C using MAGMAsoft® and 3D mould printing technology. Design variables used were feeder radius (17 mm, 18 mm, 19 mm and 20 mm), feeder height (32 mm, 33 mm, 34 mm, 35 mm) and number of feeders of (3, 4 and 5). Simulation and casting results showed a completely-filled casting. The high fluidity of nodular cast iron promotes mould filling ability and prevent any form of misrun defect. Minimum shrinkage was noted at the junctions and top surface of the casting. A new design was proposed to eliminate shrinkage defects at the junctions of the nodular cast iron pump impeller. The design used a tapered circular runner bar with straight ingates. Optimization of nodular cast iron was now done at 1390 °C with the use of MAGMAsoft® and real casting was done 1385 °C. Simulation and casting were in correlation to each other since both showed completely-filled mould cavity with no misrun, cold-shut and shrinkage porosity defect. Simulation proved to be an effective tool in optimizing filling and solidification of nodular cast iron during sand casting. Austenitic stainless-steel pump impeller was optimized at 1500 °C using MAGMAsoft® and 3D mould printing technology. A high quality mould and core print were printed with the use of Voxeljet VX1000 at a minimum period of time. Design variables used were feeder radius (17 mm, 18 mm, 19 mm and 20 mm), feeder height (32 mm, 33 mm, 34 mm, 35 mm) and number of feeders of (3, 4 and 5). An increase in feeder size and the number of feeders greatly reduced hot spot and porosity of the casting but it also reduced the casting yield. The quality of the casting was found to be inversely proportional to the casting yield. Simulation showed a completely-filled casting with actual casting showing only 50 % filling ability. High viscosity of the molten metal and thin walled blades promote quick solidification which caused misrun defects. A new design was proposed to eliminate misrun defects of the first design. MAGMAsoft® was used to optimize this design at 1550 °C. The design used a tapered circular runner bar with tapered ingates. The actual casting showed improved filling ability from 50 % to 80 % while simulation showed completely-filled mould cavity (100 %). Major factors which contributed to low filling ability of austenitic stainless-steel pump impeller were chemistry, runner system and men. Numerical modelling and additive manufacturing did optimize filling and feeding of sand cast austenitic stainless-steel pump impeller.
122

ADDITIVE MANUFACTURING OF COMPONENTS FOR IN-DIE CAVITY USE, SUITABLE TO WITHSTAND ALUMINIUM HIGH PRESSURE DIE CASTING (HPDC) PROCESS CONDITIONS

Pereira, Manuel. Filipe. Viana. Teotonio. January 2013 (has links)
Thesis (M. Tech. (Engineering: Mechanical)) -- Central University of Technology, Free State, 2013 / This research examines the suitability of Additive Manufacturing (AM) for manufacturing dies used in aluminium high pressure die casting. The study was guided by the following objectives: • The reviews of applicable literature sources that outline technical and application aspects of AM in plastic injection moulds and the possibilities of applying it to high pressure casting die. • To introduce AM grown die components in die manufacture. Further, to develop a methodology that will allow industry to apply AM technology to die manufacture. • Revolutionise the way die manufacture is done. The potential for AM technologies is to deliver faster die manufacture turnaround time by requiring a drastically reduced amount of high level machining accuracy. It also reduces the number of complex mechanical material removal operations. Fewer critical steps required by suitable AM technology platforms able to grow fully dense metal components on die casting tools able to produce production runs. • Furthermore, promising competitive advantages are anticipated on savings to be attained on the casting processing side. AM technology allows incorporation of features in a die cavity not possible to machine with current machining approaches and technology. One such example is conformal cooling or heating of die cavities. This approach was successfully used in plastic injection mould cavities resulting in savings on both the part quality as well as the reduction on cycle time required to produce it (LaserCUSING®, 2007). AM technology has evolved to a point where as a medium for fast creation of an object, it has surpassed traditional manufacturing processes allowing for rapidly bridging the gap between ideas to part in hand. The suitability of the AM approach in accelerating the die manufacturing process sometime in the near future cannot be dismissed or ignored. The research showed that there is promise for application of the technology in the not too distant future. In the South African context, the current number and affordability of suitable AM platforms is one of the main stumbling blocks in effecting more widespread applied research aimed at introduction of the technology to die manufacture.
123

Studium slévárenských vad v masivních odlitcích / Study of foundry defects in heavy castings

Čech, Jan January 2013 (has links)
A massive castings defects are examined in this doctoral thesis, specialise in steels passing through peritectic transformation. There are typical types of defects at massive steel castings, as contrasted to „ordinary“ internal and surface ones. For massive steel castings are typical defects under feeders like conchoidal fractures, segregations, microporesities, reoxidation products. Combination of Al and Zr is an ordinary final deoxidation of EOP and LF steel for castings in ŽĎAS a.s. foundry. The aim of Al + Zr combination was to both deep deoxidation by Al (decrease of bubbles risk) and denitrification by Zr (decrease of conchoidal fractures). This theses refute premission mentioned above and verified persisting risk of defects under massive feeders, even though Al + Zr deoxidation is used. A final deoxidation by increased amount of Al was examinated, in combination with other deoxidation agents. Castings had 11 [cm] maximal modulus, and occurence of conchoidal fracture, reoxidation products and primary austenite grain size was evaluated. A selected optimal final deoxidations (Al, Al+Ti, Al+Zr) as a result from experiment described above, were evaluated on castings with 15 [cm] maximal modulus. The result of experiment is, that is not possible to repeatedly produce massive steel casting using EOP metallurgical equipment without defects under feeders, despite of deoxidation and pouring temperature optimalization. The defect indications look like conchoidal fracture, but there are microporesity and impurities instead. Finally, castings with maximal modulus 15 [cm] were produced using so called secondary metallurgy (LF, VD). Secondary metallurgy allowed to both significant decrease of sulfur and degassing of melted metal. Only this metallurgical procedure guarantees production of heavy steel castings without typical defects under massive feeders
124

A Methodology to Predict the Effects of Quench Rates on Mechanical Properties of Cast Aluminum Alloys

Ma, Shuhui 01 May 2006 (has links)
The physical properties of polymer quench bath directly affect the cooling rate of a quenched part. These properties include the type of quenchant, its temperature, concentration, and agitation level. These parameters must be controlled to optimize the quenching process in terms of alloy microstructure, properties and performance. Statistically designed experiments have been performed to investigate the effects of the process parameters (i.e. polymer concentration and agitation) on the heat transfer behavior of cast aluminum alloy A356 in aqueous solution of Aqua-Quench 260 using the CHTE quenching-agitation system. The experiments were designed using Taguchi technique and the experimental results were analyzed with Analysis of Variance (ANOVA) based on the average cooling rate. It is found that average cooling rate dramatically decreases with the increase in polymer concentration. Agitation only enhances the average cooling rate at low and medium concentration levels. From ANOVA analysis, the process parameter that affects the variation of average cooling rate most is the polymer concentration, its percentage contribution is 97%. The effects from agitation and the interaction between polymer concentration and tank agitation are insignificant. The mechanical properties of age-hardenable Al-Si-Mg alloys depend on the rate at which the alloy is cooled after the solutionizing heat treatment. A model based on the transformation kinetics is needed for the design engineer to quantify the effects of quenching rates on the as-aged properties. Quench Factor analysis was developed by Staley to describe the relationship between the cooling rate and the mechanical properties of an age-hardenable alloy. This method has been previously used to successfully predict yield strength, hardness of wrought aluminum alloys. However, the Quench Factor data for aluminum castings are still rare in the literature. In this study, the Jominy End Quench method was used to experimentally collect the time-temperature and hardness data as the inputs for Quench Factor modeling. Multiple linear regression analysis was performed on the experimental data to estimate the kinetic parameters during quenching. Time-Temperature-Property curves of cast aluminum alloy A356 were generated using the estimated kinetic parameters. Experimental verification was performed on a L5 lost foam cast engine head. The predicted hardness agreed well with that experimentally measured.
125

Simulation of Residual Stresses in Castings

Lora, Ruben, Namjoshi, Jayesh January 2008 (has links)
This work presents a study and implementation of the simulation of residual stresses in castings. The objects of study are a cast iron truck Hub part (provided by the company Volvo 3P) and an optimized version of the Hub resulting from the application of a topology optimization process. The models are solved through an uncoupled thermo-mechanical solidification analysis, performed both in the FE commercial software Abaqus and the FD commercial software Magmasoft and the results are compared. First, a thermal analysis is carried out where the casting is cooled down from a super-heated temperature to room temperature. The thermal history obtained, is then used as an external force to calculate the residual stresses by means of a quasi-static mechanical analysis, using a J2-plasticity model. The simulation procedures are explained through a simplified model of the Hub and then applied to the geometries of interest. A results comparison between the original Hub and its optimized version is also presented. The theoretical base is given in this work as well as detailed implementation procedures. The results shows that the part subjected to the topology optimization process develop less residual stresses than its original version.
126

Simulation of Residual Stresses in Castings

Lora, Ruben, Namjoshi, Jayesh January 2008 (has links)
<p>This work presents a study and implementation of the simulation of residual stresses in castings. The objects of study are a cast iron truck Hub part (provided by the company Volvo 3P) and an optimized version of the Hub resulting from the application of a topology optimization process. The models are solved through an uncoupled thermo-mechanical solidification analysis, performed both in the FE commercial software Abaqus and the FD commercial software Magmasoft and the results are compared. First, a thermal analysis is carried out where the casting is cooled down from a super-heated temperature to room temperature. The thermal history obtained, is then used as an external force to calculate the residual stresses by means of a quasi-static mechanical analysis, using a J2-plasticity model. The simulation procedures are explained through a simplified model of the Hub and then applied to the geometries of interest. A results comparison between the original Hub and its optimized version is also presented. The theoretical base is given in this work as well as detailed implementation procedures. The results shows that the part subjected to the topology optimization process develop less residual stresses than its original version.</p>
127

Untersuchung der kognitiven Modellierung zur Gussstückqualitätsverbesserung

Polyakova, Irina 25 March 2014 (has links) (PDF)
Als Ergebnis der vorliegenden Arbeit wurde ein nützliches Hilfsmittel auf der Basis der kognitiven Herangehensweise zur Verbesserung der Effizienz der Managemententscheidungen für die Gussausschussverringerung und Qualitätsverbesserung in den Gießereien entwickelt. Das Werkzeug hilft dem Technologen, den Mechanismus des Gussfehlerentstehungsprozesses aufzudecken, die Logik der Gussfehlerentstehung zu verstehen und die präventiven Maßnahmen zu testen. Man kann das Werkzeug täglich im Betrieb benutzen, um die strategischen und operativen Entscheidungen rasch und ohne Durchführung der kostspieligen und komplizierten Versuche zu treffen. Auf diese Weise können Kosten und Zeit eingespart werden.
128

A temperature control strategy for Stelco McMaster Works /

Grandillo, Angelo M. January 1988 (has links)
In this study, it was shown that improvements in the quality of continuously cast steel billets, similar to those which can be achieved by electromagnetic stirring (EMS) of the liquid pool during solidification, can be obtained if casting superheats can be consistently controlled at low levels. A lack of casting temperature control is not only detrimental to the quality of the cast product, but also to a shop's overall productivity. The important variables for temperature control in the ladle, tundish and mould were quantified and possible methods of controlling these variables were proposed. / The thermal state of the ladle lining is one of the major contributors to the variability in casting temperature. It was shown that by reducing energy losses from the refractory ladle lining, by way of incorporating an insulating refractory tile between the ladle shell and the safety lining and by using a ladle lid throughout the cycle of the ladle, temperature losses from the liquid steel can be substantially decreased. (Abstract shortened by UMI.)
129

Multi-Phase Modeling Of Microporosity And Microstructures During Solidification Of Aluminum Alloys

Karagadde, Shyamprasad 04 1900 (has links) (PDF)
Manufacturing of light-weight materials is associated with several types of casting defects during solidification. Porosity defects are common, especially in aluminum and its alloys, which initiate crack propagation and thereby cause drastic deterioration in the mechanical properties. These defects, classified as micro and macro defects (based on their sizes), are mainly governed by release of hydrogen into the liquid at the solid-liquid interface, which triggers the nucleation and growth of hydrogen bubbles in the melt. Subsequently, these bubbles interact with solidifying interfaces such as dendritic arms and eutectic fronts, leading to the formation of pores. Macroscopic defects in the form of voids are created due to solidification shrinkage. The primary focus of the present work is to develop phenomenological models for the evolution of microporosity and microstructures during solidification. The issues outlined above typically occur in multi-phase environments comprising of solid, liquid and gaseous phases, and over a range of length and time scales. Any phenomenological prediction would, therefore, require a multi-phase-scale approach. Principles of volume averaging are applied to equations of conservation to obtain single-field formulations. These are then solved with appropriate interface tracking techniques such as Enthalpy, Level-set, Volume-of-fluid and Immersed-boundary methods. The framework is built up on a standard pressure based incompressible fluid flow solver (SIMPLER algorithm) and coupled modeling strategies are proposed to address the interfacial dynamics. A two-dimensional framework is considered with a fixed-grid Cartesian co-ordinate system. Scaling analyses are performed to bring out the relative effects of various competing parameters in order to obtain further insights into this complex phenomenon. The numerical results and scaling predictions are validated against experimental observations published in literature. In literature, numerical predictions of microporosity mainly include criteria based models based on empirical relations and deterministic/stochastic models based on diffusion driven growth assuming spherical bubbles. The dynamic evolution of non-spherical bubble-metal interface in a three-phase system is yet to be captured. Moreover, several in-situ experiments have shown elongated bubble shapes during the engulfment phase, therefore a criterion to define the dependence on cooling rates and the resulting bubble morphology can possibly deliver further practical insights. We propose a numerical model for hydrogen bubble growth, its movement and subsequent engulfment by a solidifying front, combining the features of level-set and enthalpy methods for tracking bubble-metal and solid-liquid interfaces, respectively. The influx of hydrogen into heterogeneously nucleated bubbles results in growth of bubbles to sizes up to a few hundreds of microns. In the first part of this numerical study, a methodology based on the level-set approach is developed to simultaneously capture hydrogen bubble growth and movement in liquid aluminum. The solidification is first assumed to occur outside the micro-domain providing a specified hydrogen influx to the bubble-in-liquid system. The level-set equation is formulated in such a way as to account for simultaneous growth and movement of the bubble. The growth of a bubble with continuous and fixed hydrogen levels in the melt is studied. The rates of growth of bubble-liquid and solidifying interfaces are compared using an order of magnitude analysis. This scaling analysis explains the thought experiment proposed in the literature, where difference in bubble shapes was attributed to the cooling rate. Moreover, it shows explicit dependence on bubble radius and cooling rate leading to a new criterion for bubble elongation proposed in this thesis. This also highlights the comparison between solidification and hydrogen diffusion time-scales which primarily govern the competitive growth behavior. The bubble-in-liquid model is coupled with microscopic enthalpy method to incorporate effects of solidification and study the interaction of solid-liquid and bubble-liquid interfaces. The phenomena of bubble engulfment and elongation are successfully captured by the proposed model. A parametric study is carried out to estimate the bubble elongation based on different initial bubble sizes and varying cooling rates encountered in typical sand, permanent mold and die casting processes. Although simulation of microstructures has been extensively studied in the literature, very few models address the phenomena of simultaneous growth and movement of equiaxed dendrites. The presence of different flow environments and multiple dendrites are known to alter the position and shape of the dendrites. The proposed model combines the features of the following methods, namely, the Enthalpy method for modeling growth; the Immersed Boundary Method (IBM) for handling the rigid solid-liquid interfaces; and the Volume of Fluid (VOF) method for tracking the advection of the dendrite. The algorithm also performs explicit-implicit coupling between the techniques used. Validation with available literature is performed and dendrite growth in presence of rotational and buoyancy driven flow fields is studied. The expected transformation into globular microstructure in presence of stirring induced flows is successfully simulated. A simple order estimate for time required for stirring is performed which agrees with numerical predictions. In buoyancy driven environment of a settling dendrite, the arm tip speeds show expected higher velocity of the upstream tip compared to its counterpart. The model is extended to study thermal and hydrodynamic interactions between multiple dendrites with appropriate considerations for different orientations and velocities of the dendritic solid entities. The present model can be used for the prediction of grain sizes and shapes and to simulate morphological transformations due to different melt flow scenarios. In the final part, the methodology presented for growth and engulfment of hydrogen bubbles is extended to study the phenomenon of diffusion driven bubble growth occurring in direct foaming of metals. The source of hydrogen is determined by the rate of decomposition of the blowing agent. This is accounted for by a source term in the hydrogen species conservation equation, and growth rate of hydrogen bubbles is calculated on the basis of diffusive flux at the interface. The level-set method is used for tracking the bubble-liquid interface growth, and the macroscopic enthalpy model is used for obtaining heat transfer and solid front position. The model is validated with analytical solution by comparing the front position and the solidification time. The variation of foam density with a transient hydrogen generation source is studied and qualitatively compared with results reported in literature. The modeling strategies proposed in this work are generic and therefore have potential in simulating a variety of complex multi-phase problems.
130

Vady tlakově litých odlitků ze slitin hliníku / Defects of high pressure die cast castings from aluminum alloys

Dočekal, Václav January 2019 (has links)
This thesis is focused on defects occurring in products made by high pressure die casting of aluminum alloys. The theoretical part includes introduction to high pressure die casting technology and description of individual defects, causes and corrective procurations. The practical part focuses on the determination of the defect on the pre-selected casting, which is cast in the foundry ALW INDUSTRY, s.r.o. Based on the identification of the defect, there is a corrective procuration to reduce its occurrence.

Page generated in 0.0967 seconds