Spelling suggestions: "subject:"category"" "subject:"gategory""
171 |
The Baum-Connes conjecture for Quantum Groups : stability properties and K-theory computations / La conjecture de Baum-Connes pour les Groupes Quantiques : Propriétés de stabilité et calculs de K-théorieMartos Prieto, Ruben 06 September 2018 (has links)
Cette thèse porte sur la conjecture de Baum-Connes pour les groupes quantiques. Le but principal de ce travail est l'étude de la stabilité de la conjecture de Baum-Connes par certaines constructions de groupes quantiques discrets.Dans un premier temps, nous réalisons une étude détaillé et approfondie de la reformulation catégorielle de la conjecture de Baum-Connes d'après les travaux de R. Meyer et R. Nest. Ensuite, nous appliquons ces techniques au cas concret des groupes quantiques discrets sans torsion.Nous réalisons une étude exhaustive des produits croisés afin de pouvoir les manipuler aisément en connexion avec la conjecture de Baum-Connes. Notamment nous donnons une preuve de la propriété universelle d'un produit croisé réduit par un groupe quantique discret. Nous analysons également quelques propriétés d'importance pour le contexte de cette thèse. Mentionnons particulièrement la propriété d'associativité du produit croisé par rapport à un produit semi-direct.En s'inspirant des travaux pionniers de J. Chabert nous menons une généralisation pour les groupes quantiques discrets de la stabilité de la conjecture de Baum-Connes par rapport à un produit semi-direct. Deux propriétés d'invariance d'intérêt indépendant sont également étudiées, à savoir le phénomène de torsion et la K-moyennabilité. Nous observons que l'hypothèse sans torsion force un biproduit crosié compact à être un produit semi-direct quantique sans torsion. Ainsi, la conjecture de Baum-Connes correspondante ne fournit pas d'information remarquable dans ce cas. La stratégie générale pour mener à bien une telle généralisation consiste à définir un foncteur de “décomposition” entre les catégories de Kasparov suivant l'opération de produit semi-direct. Nous observons que cette stratégie peut être extrapolée à d'autres constructions de groupes quantiques. Notamment un produit direct de groupe quantiques. Dans ce cas, nous établissons une connexion avec la formule de Künneth de manière analogue à ce qui a été démontré par J. Chabert, S. Echterhoff et H. Oyono-Oyono pour les groupes localement compacts classiques. Les propriétés de torsion et de K-moyennabilité ont également été étudiées.Nous savons, grâce à R. Vergnioux and C. Voigt, que la conjecture de Baum-Connes forte est préservée par le passage aux sous-groupes quantiques discrets divisibles. Le même résultat est vrai pour la propriété de torsion forte, grâce à Y. Arano et K. De Commer. Dans ce travail nous montrons qu'aussi bien la conjecture de Baum-Connes usuelle que la propriété de torsion usuelle sont préservées par le passage aux sous-groupes quantiques discrets divisibles. La propriété de K-moyennabilité a également été étudiée.Une notable propriété de permanence inclue dans cette thèse est la stabilité de la conjecture de Baum-Connes forte par produit en couronne libre. Pour cela, nous réalisons une complète classification des actions de torsion pour un produit libre quantique, ce qui permet de donner une formulation adéquate de la conjecture de Baum-Connes forte pour un produit en couronne libre inspirés par le travail pionnier de C. Voigt. Une application majeure est un calcul explicite de K-théorie, dans trois situations pertinentes, pour le groupe quantique compact de Lemeux-Tarrago qui est monoïdallement équivalent à un produit en couronne libre. Cette propriété de stabilité pour un produit en couronne libre ainsi que les calculs de K-théorie s'intègrent dans un travail en collaboration avec A. Freslon. Pour conclure, nous nous questionnons sur les résultats obtenus afin de proposer une liste de questions, problems et objectifs que l'auteur a rencontré durant l'intégralité de la période de recherche de cette thèse et qui rassemblent quelques unes des lignes de travail pour ses projets futures de recherche / The present dissertation is focused on the Baum-Connes conjecture for quantum groups. The main purpose of this work is the study of the Baum-Connes conjecture stability under some constructions of discrete quantum groups. In a first phase, we carry out a detailed and extensive study about the categorical reformulation of the Baum-Connes conjecture according to the results of R. Meyer and R. Nest. Next, we apply these techniques to the specific case of torsion-free discrete quantum groups. We carry out an exhaustive study of crossed products in order to handle them comfortably in connexion with the Baum-Connes conjecture. Notably, we give a proof of the universal property satisfied by a reduced crossed product by a discrete quantum group. We analyze as well some important properties for this dissertation. Let us mention in particular the associativity property of the crossed product with respect to a semi-direct product. Being inspired by the pionneer work of J. Chabert, we perform a generalization for discrete quantum groups of the invariance property of the Baum-Connes conjecture under the semi-direct product construction. Two permanence properties of own interest are studied as well. Namely, the torsion-freeness and the K-amenability. We observe that the torsion-freeness assumption forces a compact bicrossed product to be a torsion-free quantum semi-direct product, so that the corresponding Baum-Connes conjecture does not give any relevant information in this case. The general strategy used to accomplish such a generalization consists in defining a “decomposition” functor between the corresponding Kasparov categories in accordance with the semi-direct product operation. Thus, we observe that this strategy can be extrapolate to other (quantum) group constructions. Namely, to a quantum direct product. In this case, we state a connexion with the Künneth formula as pointed out by J. Chabert, S. Echterhoff and H. Oyono-Oyono for classical locally compact groups. The properties of torsion-frenness and K-amenability are also analyzed. It is known, thanks to R. Vergnioux and C. Voigt, that the strong Baum-Connes conjecture is preserved by divisible discrete quantum subgroups. The same is true for the strong torsion-freeness property, thanks to Y. Arano and K. De Commer. Here we show that both the usual Baum-Connes conjecture and the usual torsion-freeness property are preserved by divisible discrete quantum subgroups. The K-amenability property is analyzed too. A notably permanence property included in this dissertation is the invariance of the strong Baum-Connes conjecture under the free wreath product construction. For this, we carry out a complete classification of torsion actions of a quantum free product, which allows to give an appropriated formulation of the strong Baum-Connes conjecture for a free wreath product inspired by the pioneer work of C. Voigt. A major application is an explicit K-theory computation, in three relevant situations, for the Lemeux-Tarrago's compact quantum group which is monoidally equivalent to a free wreath product. Both this stability property for a free wreath product and the K-theory computations are part of a collaboration work with A. Freslon. To conclude, we question ourselves about the results obtained in order to suggest a list of questions, problems and goals that the author has encountered during the whole research period of the present dissertation and that are part of his future research projects
|
172 |
A Primer to Categorical Symmetries and Their Application to QCD in Two DimensionsOlofsson, Rikard January 2021 (has links)
We introduce the formalism of categorical symmetries, and examine how these appear in quantum field theories. We discuss rational conformal field theories and their Verlinde lines, with the critical Ising model as an example. We introduce Wess Zumino Witten models and affine Lie algebras. An algorithm for the fusion rules is presented. We use bosonization to realise two dimensional adjoint SU(N) QCD as a WZW coset model plus a kinetic term for the gauge field. We argue that the infrared theory has degenerate vacua acted upon by a non-negative integer valued matrix representation of a categorical symmetry. We compute generators for these matrices for gauge groups SU(3) and SU(4).
|
173 |
On Braided Monoidal 2-CategoriesPomorski, Kevin 24 May 2022 (has links)
No description available.
|
174 |
English Coordination in Linear Categorial GrammarWorth, Andrew Christopher 08 June 2016 (has links)
No description available.
|
175 |
Особенности выражения категории пространства в романе Джека Керуака «В дороге» : магистерская диссертация / The expression' features of space category in Jack Kerouac's novel «On the Road»Ефремова, А. С., Efremova, A. S. January 2024 (has links)
Исследование посвящено особенностям выражения категорий пространства в романе Джека Керуака «В дороге» и их передаче в русских переводах. Актуальность работы обусловлена растущим интересом к исследованиям в области художественного перевода и недостаточной изученностью текстов переводов романа Дж. Керуака «В дороге», в частности, категории пространства. В первой главе рассматривается проблема определения текста в научных исследованиях, выделяются разновидности феномена текстовых категорий и особенности категории пространства, рассматривается специфика художественного перевода. Во второй главе рассматривается история создания романа «On the Road», проводится анализ приемов перевода категории пространства в переводах романа Дж. Керуака. В заключении подводятся итоги исследования. В работе выявляются механизмов передачи пространственных сигналов при художественном переводе. Выявлено, что В. Коган и М. Немцов при передаче категории пространства прибегают к приему калькирования. Однако были выявлены и расхождения в частоте использования тех или иных приемов перевода. Наряду с количественными результатами в ходе анализа удалось обнаружить индивидуально-авторские особенности перевода романа Джека Керуака, а также наиболее частотные приемы перевода категории пространства. / The research is devoted to the peculiarities of space categories' the expression in Jack Kerouac's novel On the Road and their transfer in Russian translations. The relevance of the work is due to the growing interest in research in the field of literary translation and the lack of knowledge of the texts of translations of the novel by J. Kerouac's "On the Road", in particular, the category of space. In the first chapter, the problem of defining text in scientific research is considered, the varieties of the phenomenon of text categories and the features of the category of space are highlighted, the specifics of literary translation are considered. The second chapter examines the history of the creation of the novel "On the Road", analyzes the techniques of translating the category of space in the translations of the novel by J. Kerouac. In conclusion, the results of the study are summarized. The work reveals the transmission's mechanisms of spatial signals in artistic translation. It is revealed that V. Kogan and M. Nemtsov resort to calculus when transferring the category of space. However, there were also discrepancies in the frequency of use of certain translation techniques. Along with the quantitative results, the analysis revealed the individual author's translation features of Jack Kerouac's novel, as well as the most frequent methods of translating the category of space.
|
176 |
Trail Making Test Quotient (Trails B/ Trails A): A comparison with measures of executive functioningRenfrow, Stephanie Lei 01 January 2010 (has links)
This study examined the utility of the Trail Making Test Quotient (Trails B/ Trails A) in assessing executive functioning relative to that of common tests of executive function such as the Wisconsin Card Sorting Test, Category Test, and the Stroop Test. The purpose of the current study was to investigate the relationship of the Trail Making Test Quotient (Trails B/ Trails A) with other common tests of executive functioning (i.e., Wisconsin Card Sorting Test, Stroop, Category Test) to determine whether these tests are measuring similar domains of functioning or whether Trail Making Test Quotient (Trails B/ Trails A) offers a more pure measure of executive functioning over and beyond that of Trail Making Test B alone or the difference score, Trail Making Test (Trails B- Trails A).
A series of partial correlations were conducted involving the Trail Making Test scores (Quotient, Difference, and B [Raw]), and the scores of the executive functioning measures (Wisconsin Card Sorting Test, Category Test, and Stroop), controlling for age, education, and gender. Trails Quotient, Trails B Raw, and Trails Difference were found to significantly negatively correlate with WCST Total # of Categories. Only Trails B Raw and Trails Difference were found to significantly positively correlate with WCST Perseverative Responses and Category Error. None of the Trail Making Test measures used in this study were found to significantly correlate Stroop Interference. Correlation coefficients were compared to determine the strength of Trails Quotient's relationship with
the aforementioned executive functioning measures relative to that of Trails Difference and Trails B Raw.
Contrary to the hypotheses of the current study, the Trails Quotient demonstrated a significantly weaker correlation with WCST Total # of Categories, WCST Perseverative Responses, and Category Error than that of Trails Difference and Trails B Raw. Additionally, there were no significant differences in the correlation coefficients of Trails Quotient, Trails Difference, and Trails B Raw with Stroop Interference. However, upon further investigation using exploratory factor analyses, it was discovered that Trails Quotient may have represented a particular component of executive functioning more so than the Trails Difference and Trails B Raw. The results suggest that Trails Quotient offers a unique estimate of executive skill specific to cognitive organization, whereas Trails B Raw and Trails Difference represent multiple executive domains including regulatory and organizational abilities.
Clinical practice will benefit from the current study's findings in that assessment of complex executive functioning will be more precise. Future research is needed to determine the utility of the Trails Quotient in identifying specific types and locations of brain injury. Assessment of specific impaired frontal skills common to degenerative dementias and traumatic brain injury may be possible with the use of Trails Quotient contingent upon further research. Future research into the domains of executive functioning and the Trail Making Test should focus on specific skills within regulatory and organizational components, and the development of normative data for Trails Quotient.
|
177 |
Lexical errors produced during category generation tasks by bilingual adults and bilingual typically developing and language-impaired seven to nine-year-old childrenMcKinney, Kellin Lee 23 August 2010 (has links)
The development of category knowledge is in part a function of one's experiences with the world. The types of errors produced during category generation tasks may reveal the boundaries of these experiences and the ways in which they are organized into lexical networks. Examining the errors made by bilingual children with and without language impairment (LI) and bilingual adults may help to distinguish the effects of ability versus experience on the development and organization of lexical-semantic categories. The purpose of this study was to examine the types of errors made by bilingual (Spanish-English) children with (n=37) and without (n=35) LI and bilingual adults (n=26) on category generation tasks in both their languages and at two category levels: taxonomic and slot-filler. Results revealed a main effect for level (taxonomic vs. slot-filler) and error type (semantic vs. other) and suggest that bilingual seven to nine-year-old children's and adults' proportions and types of errors produced on category generation tasks differ significantly based on ability (i.e., TD or LI) but not on experience (i.e., TD or Adults). / text
|
178 |
Autoequivalences, stability conditions, and n-gons : an example of how stability conditions illuminate the action of autoequivalences associated to derived categoriesLowrey, Parker Eastin 05 October 2010 (has links)
Understanding the action of an autoequivalence on a triangulated category is generally a very difficult problem. If one can find a stability condition for which the autoequivalence is "compatible", one can explicitly write down the action of this autoequivalence. In turn, the now understood autoequivalence can provide ways of extracting geometric information from the stability condition. In this thesis, we elaborate on what it means for an autoequivalence and stability condition to be "compatibile" and derive a sufficiency criterion. / text
|
179 |
ASYMPTOTIC PROPERTIES OF PARTIAL AREAS UNDER THE RECEIVER OPERATING CHARACTERISTIC CURVE WITH APPLICATIONS IN MICROARRAY EXPERIMENTSLiu, Hua 01 January 2006 (has links)
Receiver operating characteristic (ROC) curves are widely used in medical decision making. It was recognized in the last decade that only a specific region of the ROC curve is of clinical interest, which can be summarized by the partial area under the ROC curve (partial AUC). Early statistical methods for evaluating partial AUC assume that the data are from a specified underlying distribution. Nonparametric estimators of the partial AUC emerged recently, but there are theoretical issues to be addressed. In this dissertation, we propose two new nonparametric statistics, partially integrated ROC and partially integrated weighted ROC, for estimating partial AUC. We show that our partially integrated ROC statistic is a consistent estimator of the partial AUC, and derive its asymptotic distribution which is distribution free under the null hypothesis. In the partially integrated ROC statistic, when the ROC curve crosses the Uniform distribution function (CDF) and if the partial area evaluated contains the crossing point, or when there are multiple crossing, the partially integrated ROC statistic might not perform well. To address this issue, we propose the partially integrated weighted ROC statistic. This statistic evaluates the partially weighted AUC, where larger weight is given when the ROC curve is above the Uniform CDF and smaller weight is given when the ROC curve is below the Uniform CDF. We show that our partially integrated weighted ROC statistic is a consistent estimator of the partially weighted AUC. We derive its asymptotic distribution which is distribution free under the null hypothesis. We propose to apply our two nonparametric statistics to functional category analysis in microarray experiments. We define the functional category analysis to be the statistical identification of over-represented functional gene categories in a microarray experiment based on differential gene expression. We compare our statistics with existing methods for the functional category analysis both via simulation study and application to a real microarray data, and demonstrate that our two statistics are effective for identifying over-represented functional gene categories. We also emphasize the essential role of the empirical distribution function plots and the ROC curves in the functional category analysis.
|
180 |
Gluon Phenomenology and a Linear ToposSheppeard, Marni Dee January 2007 (has links)
In thinking about quantum causality one would like to approach rigorous QFT from outside the perspective of QFT, which one expects to recover only in a specific physical domain of quantum gravity. This thesis considers issues in causality using Category Theory, and their application to field theoretic observables. It appears that an abstract categorical Machian principle of duality for a ribbon graph calculus has the potential to incorporate the recent calculation of particle rest masses by Brannen, as well as the Bilson-Thompson characterisation of the particles of the Standard Model. This thesis shows how Veneziano n point functions may be recovered in such a framework, using cohomological techniques inspired by twistor theory and recent MHV techniques. This distinct approach fits into a rich framework of higher operads, leaving room for a generalisation to other physical amplitudes. The utility of operads raises the question of a categorical description for the underlying physical logic. We need to consider quantum analogues of a topos. Grothendieck's concept of a topos is a genuine extension of the notion of a space that incorporates a logic internal to itself. Conventional quantum logic has yet to be put into a form of equal utility, although its logic has been formulated in category theoretic terms. Axioms for a quantum topos are given in this thesis, in terms of braided monoidal categories. The associated logic is analysed and, in particular, elements of linear vector space logic are shown to be recovered. The usefulness of doing so for ordinary quantum computation was made apparent recently by Coecke et al. Vector spaces underly every notion of algebra, and a new perspective on it is therefore useful. The concept of state vector is also readdressed in the language of tricategories.
|
Page generated in 0.033 seconds