Spelling suggestions: "subject:"cauchy"" "subject:"dauchy""
31 |
Nappes de tourbillon-courant en magnétohydrodynamique / Current-vortex sheets in magnetohydrodynamicsPierre, Olivier 10 July 2017 (has links)
On considère dans cette thèse le couplage de deux plasmas homogènes et idéaux, présentant une discontinuité tangentielle le long d’une hypersurface évoluant au cours de temps. Le mouvement d’un tel fluide est dicté par les équations de la magnétohydrodynamique idéale incompressible. Le phénomène de cisaillement du plasma conduit à la création d’une nappe de tourbillon-courant. Un premier travail consiste à construire des solutions analytiques au système des nappes de tourbillon-courant, en utilisant un théorème de Cauchy-Kowalevskaya. Dans une seconde partie, on s’attarde sur le comportement qualitatif des solutions exactes du système des nappes de tourbillon-courant, issues de données initiales de faible amplitude et fortement oscillantes. Pour ce faire, on utilise des outils d’optique géométrique, et on met en évidence la formation d’ondes de surface lorsque les données initiales oscillent à des fréquences bien particulières. / In this thesis, we consider the coupling between two ideal and homogeneous plasmas, giving rise to a tangential discontinuity across a time-dependent hypersurface. The motion of such a fluid is described by the ideal incompressible magnetohydrodynamics equations. This shear flow leads to the creation of a current-vortex sheet. The first part of this work is devoted to the construction of analytic solutions to the current-vortex sheet system, using a Cauchy-Kowalevskaya theorem. In a second part, we look at the qualitative behavior of exact solutions to the current-vortex sheet system, obtained from highly oscillating initial data. We use tools of geometric optics and we exhibit the creation of surface waves when the initial datum is oscillating with particular frequencies.
|
32 |
Regularization of the AVO inverse problem by means of a multivariate Cauchy probability distributionAlemie, Wubshet M. Unknown Date
No description available.
|
33 |
Regularization of the AVO inverse problem by means of a multivariate Cauchy probability distributionAlemie, Wubshet M. 06 1900 (has links)
Amplitude Variation with Oset (AVO) inversion is one of the techniques that is being used to estimate subsurface physical parameters such as P-wave velocity, S-wave velocity, and density or their attributes. AVO inversion is an ill-conditioned problem which has to be regularized in order to obtain a stable and unique solution. In this thesis, a Bayesian procedure that uses a Multivariate Cauchy distribution as a prior probability distribution is introduced. The prior includes a scale matrix that imposes correlation among the AVO attributes and induces a regularization that provokes solutions that are sparse and stable in the presence of noise. The performance of this regularization is demonstrated by both synthetic and real data examples using linearized approximations to the Zoeppritz equations. / Geophysics
|
34 |
H^infinity well-posedness for degenerate p-evolution operatorsHerrmann, Torsten 29 November 2012 (has links) (PDF)
Untersucht wird das Cauchy Problem für degenerierte $p$-Evolutionsgleichungen. Dabei kann für Gleichungen höherer Ordnung in $D_t$, die nur von der Zeit abhängen, gezeigt werden, dass das Problem $H^\\infinity$ korrekt ist. Dafür werden gewisse Bedingungen an die Koeffizienten und deren erste Ableitungen gestellt. $H^\\infinity$ korrekt bedeutet dabei, dass die Anfangsdaten $u_0\\in H^s$, $u_1$ in einem dazugehörigen Sobolevraum und die Lösung bezüglich $x$ in $H^{s-s_0}$ liegen. Eine Notwendigkeit für die Bedingungen kann allerdings nicht gezeigt werden. Auch ist offen, ob der Regularitätsverlust wirklich eintritt. Später wird der Beweis erweitert um das Ergebniss für Koeffizienten zu zeigen, die in gewisser Weise auch vom Ort abhängen können. Im zweiten Teil der Dissertation geht es um Korrektheit für degenerierte $p$-Evolutionsgleichungen mit zeitabhängigen Koeffizienten und zweiter Ordnung in $D_t$. Gefordert werden Bedingungen an die Koeffizienten und die ersten beiden Ableitungen bezüglich der Zeit. Damit wird gezeigt, dass diese in Skalen von Sobolevräumen korrekt gestellt sind. Abschließend wird die Schärfe der Bedingungen und das tatsächliche Auftreten des Regularitätsverlustes in der Lösung bewiesen.
|
35 |
Extensions Of S-spacesLosert, Bernd 01 January 2013 (has links)
Given a convergence space X, a continuous action of a convergence semigroup S on X and a compactification Y of X, under what conditions on X and the action on X is it possible to extend the action to a continuous action on Y . Similarly, given a Cauchy space X, a Cauchy continuous action of a Cauchy semigroup S on X and a completion Y of X, under what conditions on X and the action on X is it possible to extend the action to a Cauchy continuous action on Y . We answer the first question for some particular compactifications like the one-point compactification and the star compactification as well as for the class of regular compactifications. We answer the second question for the class of regular strict completions. Using these results, we give sufficient conditions under which the pseudoquotient of a compactification/completion of a space is the compactification/completion of the pseudoquotient of the given space
|
36 |
Pre-semigrupos de operadores lineales : problema de cauchy abstractoAycho Flores, Milton Angelino January 2013 (has links)
En este trabajo se estudia la Teoría de Pre-Semigrupos de operadores lineales en un espacio de Banach, la cuál constituye una generalización de la Teoria de C0 - Semigrupos de operadores lineales. Además se exponen teoremas de existencia y unicidad de solución para el problema de Cauchy abstracto, asociado a esta clase de operadores. Finalmente se estudian propiedades asociadas al control exponencial y un resultado sobre la convergencia de una sucesión de Pre-Semigrupos.
Palabras Clave:Pre-Semigrupos, C-Semigrupos, Problema de Cauchy, Control Exponencial, Análisis Funcional. / --- In this paper we study the Pre-Semigroups Theory of linear operators in Banach space, which is a generalization of the theory of C0 - Semigroups of linear operators. Furthermore exposed existence and uniqueness theorems of solutions for the abstract Cauchy problem,associated with this class operators. Finally we study properties associated with exponencial control and a result on the convergence of a sequence Pre-Semigroups.
Keywords: Pre-Semigroups, C-Semigroups, Cauchy problem, Exponential Control, Functional Analysis. / Tesis
|
37 |
Cauchy transforms of self-similar measures. / CUHK electronic theses & dissertations collectionJanuary 2002 (has links)
by Dong Xinhan. / "March 2002." / Thesis (Ph.D.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (p. 113-117). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Mode of access: World Wide Web. / Abstracts in English and Chinese.
|
38 |
A note on the ramified Cauchy problemCamalès, Renaud January 2003 (has links)
In this paper, the ramified Cauchy problem in C² for operator with multiple characteristics of constant multiplicity and second member ramified around some analytic set is studied.
|
39 |
Elementary Solving Strategies of InequalitiesLi, Tzu-lin 20 June 2006 (has links)
In many mathematical problems, we are expected to compare the
interesting quantities. Thus, the use of well-known inequalities
will be required. Techniques of using these inequalities to solve
inequality problems vary from problem to problem. In this paper,
we will introduce commonly used well-known inequalities in high
school mathematical contests and discuss the solving strategies
for inequality problems.
|
40 |
Well-posedness for the space-time monopole equation and Ward wave mapCzubak, Magdalena, 1977- 21 September 2012 (has links)
We study local well-posedness of the Cauchy problem for two geometric wave equations that can be derived from Anti-Self-Dual Yang Mills equations on R2+2. These are the space-time Monopole Equation and the Ward Wave Map. The equations can be formulated in different ways. For the formulations we use, we establish local well-posedness results, which are sharp using the iteration methods. / text
|
Page generated in 0.0321 seconds