• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 21
  • 21
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Análise dos mecanismos de dano de aços inoxidáveis austeníticos com elevado teor de nitrogênio durante desgaste erosivo por cavitação / Analysis of damaging mechanisms of high nitrogen austenitic stainless steel during cavitation erosion tests.

Mesa Grajales, Dairo Hernan 20 July 2010 (has links)
Neste trabalho são estudados os mecanismos de desgaste, atuantes na escala do tamanho de grão (meso-escala), durante ensaios de cavitação vibratória, para diferentes amostras de aços inoxidáveis austeníticos ligados com nitrogênio. Amostras com teores superficiais de nitrogênio de aproximadamente 0, 9 % massa, 1, 4%massa e 20%massa, obtidas a partir do a¸co inoxidável dúplex UNS S31803, foram estudadas. As amostras do a¸co inoxidável duplex UNS S31803, com aproximadamente 0, 9 % N massa, foram obtidas por nitretação gasosa em alta temperatura (temperatura de nitretação entre 1050 e 1200 C) e consistiram em três grupos diferentes: amostras com nitrogênio em solução sólida e solubilizadas, amostras com precipitação de nitretos e amostras com nitrogênio em solução sólida e encruadas. Já as amostras com teor de nitrogênio próximo de 20 % N massa foram processadas por meio de nitretação a plasma na temperatura de 400 C, obtendo-se uma camada superficial de austenita expandida. As amostras de ensaio foram submetidas à caracterização de textura por difração de elétrons retroespalhados, EBSD, e posteriormente à cavitação vibratória em ´agua destilada. Os ensaios de cavitação foram periodicamente interrompidos com o intuito de estudar a deteriora¸cao das amostras por exame das mesmas no microscópio eletrônico de varredura, MEV, e por medidas de perda de massa. Quando comparadas com os aços inoxidáveis austeníticos convencionais (UNS S30403 solubilizado e UNS S31803 como recebido), sem adição de nitrogênio e livre de encruamento, as amostras estudadas apresentaram resistência ao desgaste por cavitação superior, quantificada tanto pelo tempo de incubação do dano com perda de massa quanto pela taxa máxima de perda de massa nos estágios avançados do dano. A taxa máxima de perda de massa para cada tipo de amostra estudada, com relação `a taxa máxima do material de comparação, o aço inoxidável convencional sem adição de nitrogênio e livre de encruamento (UNS S30403) solubilizado, foi de: amostras com precipitação de nitretos (318HTGN+Nit), 6,9 vezes menor; amostras com nitrogênio em solução sólida e solubilizadas (318HTGH+Sol) e laminadas e solubilizadas (318HTGN+Lam+Sol), 26,8 e 25 vezes menor, respectivamente; amostras com nitrogênio em solução sólida e encruadas (318HTGN+Enc) 145 vezes menor; e amostras com camada superficial de austenita expandida (obtidas por nitretação a plasma), (318HTGN+Plas e 304LSol+Plas) 290 e 1,77 e vezes menor respectivamente. O efeito benéfico da adição de nitrogênio na resistência à erosão por cavitação dos aços inoxidáveis austeníticos estudados foi atribuído a: (i) aumento na resistência à deformação plástica; (ii) distribuição mais homogênea da deformação plástica induzida pelas ondas de choque e micro-jatos característicos do processo de cavitação; e (iii) aumento da importância relativa dos mecanismos de perda de massa com elevado consumo de energia de impacto. Nos primeiros estágios do dano erosivo por cavitação se observou clara evidência de deformação plástica, acompanhada de formação de microreelevo superficial e de protrusão de bandas de escorregamento. A perda de massa em nível microscópico (observações no MEV) começa como destacamento de material em microtrincas e micropites. Observou-se que tanto a nucleação do dano como o seu crescimento se apresenta de forma heterogênea na escala do tamanho de grão. Os sítios microestruturais nos quais se iniciou o dano com perda de massa foram preferencialmente protuberâncias nas protrusões de bandas de escorregamento, protuberâncias nos contornos de grão e as interfaces matriznitreto. O incremento do teor de nitrogênio (em solução sólida) na amostra aumentou a importância relativa dos contornos de grão como locais de nucleação do dano, em relação ao dano iniciado no interior dos grãos. Observou-se que o interior dos grãos com planos 100 ou 111 orientados de forma aproximadamente paralela à superfície das amostras são regiões muito suscetíveis à incubação do dano e ao crescimento do mesmo. Já os grãos com planos 101 orientados aproximadamente paralela à superfície das amostras, apresentam regiões com resistência ao dano bem maior. Esses resultados são discutidos, considerando as diferenças de tensão (resultantes da ação de ondas de choque causadas pela implosão de bolhas de cavitação) crítica projetada para cisalhamento de grãos com diferentes orientações. O dano ocorre preferencialmente em contornos de grãos com acentuados gradientes de tensão resolvida para a deformação plástica, onde se desenvolve elevada concentração de tensões. Em particular, os contornos de macla CSL 3 são acentuadamente mais suscetíveis à incubação do dano que os outros tipos de contornos CSL e que os contornos não CSL. / High nitrogen austenitic stainless steels containing 0.9 wt-% N and 20 wt- % N were tested in a ultrasonically induced vibratory cavitation testing device. Incubation times for damage initiation and mass losses were periodically measured during the cavitation-erosion tests. Scanning Electron Microscopy observation of the damaged surfaces allowed identifying the wear mechanisms operating during each step of the cavitation-erosion test. 0.9 wt-% N specimens were obtained through High Temperature Gas Nitriding UNS S31803 duplex stainless steel, at temperatures between 1050 and 1200 oC. Three groups of specimens were obtained: solubilized with all nitrogen in solid solution, solubilized and work hardened specimens and nitride containing specimens. The 20 wt- % N specimens were obtained through Low Temperature Plasma Nitriding the already High Temperature Gas Nitrided specimens and getting an expanded austenite layer at the surface. The specimens were firstly characterized by Electron Backscattered Diffraction - EBSD techniques and then submitted to the cavitation-erosion tests in distilled water. When compared to conventional UNS S30403 lean nitrogen solubilized austenitic stainless steel specimens, greater incubation times and smaller maximum wear rates were observed. The maximum wear rates (compared to those of the solubilized UNS S30403 steel) were: for the nitride containing specimen 6.9 times smaller; for textured and non-textured all nitrogen in solid solution specimens 26.8 and 25 times smaller, respectively; for the solubilized and work hardened specimen 145 times smaller; for the expanded austenite layer, with circa 20 wt- % N, specimens 300 times smaller. The beneficial effect of nitrogen on the cavitation-erosion resistance of the studied specimens was attributed to: (i) an increase in resistance to plastic deformation; (ii) a more homogeneous distribution of the plastic deformation; and (iii) an increase of the relative participation of energy consuming mass loss mechanisms. Plastic deformation accompanied by formation of micro relief at the surface and slip bands protrusions were clearly identified, during the first stages of cavitation erosion. The first evidences of mass loss (detected by SEM observations) were seen as particles detaching from micro cracks and micro pits formed at the grain surface. Nucleation and growth of cavitation damage was heterogeneously distributed at the grain scale. Slip bands protrusions, grain boundary protrusions and nitride matrix interfaces sites were more prone to nucleating the damage. Increasing nitrogen contents in solid solution increased the relative contribution of grain boundary nucleated damage, compared to the total amount of nucleation sites. Grains with 100 and 111 crystallographic planes approximately parallel to the surface were more prone to nucleation and growth of cavitation damage. Grains with 101 planes // surface were much more resistant to cavitation-erosion damage. These results are discussed considering differences of critical resolved shear stresses for grains with different orientations. Cavitation erosion damage occurs preferentially at grain boundaries across which steep stress gradients arise. Particularly, CSL -3 twin boundaries are much more susceptible to cavitation erosion damage incubation than other types of CSL boundaries and non CSL boundaries.
12

Análise dos mecanismos de dano de aços inoxidáveis austeníticos com elevado teor de nitrogênio durante desgaste erosivo por cavitação / Analysis of damaging mechanisms of high nitrogen austenitic stainless steel during cavitation erosion tests.

Dairo Hernan Mesa Grajales 20 July 2010 (has links)
Neste trabalho são estudados os mecanismos de desgaste, atuantes na escala do tamanho de grão (meso-escala), durante ensaios de cavitação vibratória, para diferentes amostras de aços inoxidáveis austeníticos ligados com nitrogênio. Amostras com teores superficiais de nitrogênio de aproximadamente 0, 9 % massa, 1, 4%massa e 20%massa, obtidas a partir do a¸co inoxidável dúplex UNS S31803, foram estudadas. As amostras do a¸co inoxidável duplex UNS S31803, com aproximadamente 0, 9 % N massa, foram obtidas por nitretação gasosa em alta temperatura (temperatura de nitretação entre 1050 e 1200 C) e consistiram em três grupos diferentes: amostras com nitrogênio em solução sólida e solubilizadas, amostras com precipitação de nitretos e amostras com nitrogênio em solução sólida e encruadas. Já as amostras com teor de nitrogênio próximo de 20 % N massa foram processadas por meio de nitretação a plasma na temperatura de 400 C, obtendo-se uma camada superficial de austenita expandida. As amostras de ensaio foram submetidas à caracterização de textura por difração de elétrons retroespalhados, EBSD, e posteriormente à cavitação vibratória em ´agua destilada. Os ensaios de cavitação foram periodicamente interrompidos com o intuito de estudar a deteriora¸cao das amostras por exame das mesmas no microscópio eletrônico de varredura, MEV, e por medidas de perda de massa. Quando comparadas com os aços inoxidáveis austeníticos convencionais (UNS S30403 solubilizado e UNS S31803 como recebido), sem adição de nitrogênio e livre de encruamento, as amostras estudadas apresentaram resistência ao desgaste por cavitação superior, quantificada tanto pelo tempo de incubação do dano com perda de massa quanto pela taxa máxima de perda de massa nos estágios avançados do dano. A taxa máxima de perda de massa para cada tipo de amostra estudada, com relação `a taxa máxima do material de comparação, o aço inoxidável convencional sem adição de nitrogênio e livre de encruamento (UNS S30403) solubilizado, foi de: amostras com precipitação de nitretos (318HTGN+Nit), 6,9 vezes menor; amostras com nitrogênio em solução sólida e solubilizadas (318HTGH+Sol) e laminadas e solubilizadas (318HTGN+Lam+Sol), 26,8 e 25 vezes menor, respectivamente; amostras com nitrogênio em solução sólida e encruadas (318HTGN+Enc) 145 vezes menor; e amostras com camada superficial de austenita expandida (obtidas por nitretação a plasma), (318HTGN+Plas e 304LSol+Plas) 290 e 1,77 e vezes menor respectivamente. O efeito benéfico da adição de nitrogênio na resistência à erosão por cavitação dos aços inoxidáveis austeníticos estudados foi atribuído a: (i) aumento na resistência à deformação plástica; (ii) distribuição mais homogênea da deformação plástica induzida pelas ondas de choque e micro-jatos característicos do processo de cavitação; e (iii) aumento da importância relativa dos mecanismos de perda de massa com elevado consumo de energia de impacto. Nos primeiros estágios do dano erosivo por cavitação se observou clara evidência de deformação plástica, acompanhada de formação de microreelevo superficial e de protrusão de bandas de escorregamento. A perda de massa em nível microscópico (observações no MEV) começa como destacamento de material em microtrincas e micropites. Observou-se que tanto a nucleação do dano como o seu crescimento se apresenta de forma heterogênea na escala do tamanho de grão. Os sítios microestruturais nos quais se iniciou o dano com perda de massa foram preferencialmente protuberâncias nas protrusões de bandas de escorregamento, protuberâncias nos contornos de grão e as interfaces matriznitreto. O incremento do teor de nitrogênio (em solução sólida) na amostra aumentou a importância relativa dos contornos de grão como locais de nucleação do dano, em relação ao dano iniciado no interior dos grãos. Observou-se que o interior dos grãos com planos 100 ou 111 orientados de forma aproximadamente paralela à superfície das amostras são regiões muito suscetíveis à incubação do dano e ao crescimento do mesmo. Já os grãos com planos 101 orientados aproximadamente paralela à superfície das amostras, apresentam regiões com resistência ao dano bem maior. Esses resultados são discutidos, considerando as diferenças de tensão (resultantes da ação de ondas de choque causadas pela implosão de bolhas de cavitação) crítica projetada para cisalhamento de grãos com diferentes orientações. O dano ocorre preferencialmente em contornos de grãos com acentuados gradientes de tensão resolvida para a deformação plástica, onde se desenvolve elevada concentração de tensões. Em particular, os contornos de macla CSL 3 são acentuadamente mais suscetíveis à incubação do dano que os outros tipos de contornos CSL e que os contornos não CSL. / High nitrogen austenitic stainless steels containing 0.9 wt-% N and 20 wt- % N were tested in a ultrasonically induced vibratory cavitation testing device. Incubation times for damage initiation and mass losses were periodically measured during the cavitation-erosion tests. Scanning Electron Microscopy observation of the damaged surfaces allowed identifying the wear mechanisms operating during each step of the cavitation-erosion test. 0.9 wt-% N specimens were obtained through High Temperature Gas Nitriding UNS S31803 duplex stainless steel, at temperatures between 1050 and 1200 oC. Three groups of specimens were obtained: solubilized with all nitrogen in solid solution, solubilized and work hardened specimens and nitride containing specimens. The 20 wt- % N specimens were obtained through Low Temperature Plasma Nitriding the already High Temperature Gas Nitrided specimens and getting an expanded austenite layer at the surface. The specimens were firstly characterized by Electron Backscattered Diffraction - EBSD techniques and then submitted to the cavitation-erosion tests in distilled water. When compared to conventional UNS S30403 lean nitrogen solubilized austenitic stainless steel specimens, greater incubation times and smaller maximum wear rates were observed. The maximum wear rates (compared to those of the solubilized UNS S30403 steel) were: for the nitride containing specimen 6.9 times smaller; for textured and non-textured all nitrogen in solid solution specimens 26.8 and 25 times smaller, respectively; for the solubilized and work hardened specimen 145 times smaller; for the expanded austenite layer, with circa 20 wt- % N, specimens 300 times smaller. The beneficial effect of nitrogen on the cavitation-erosion resistance of the studied specimens was attributed to: (i) an increase in resistance to plastic deformation; (ii) a more homogeneous distribution of the plastic deformation; and (iii) an increase of the relative participation of energy consuming mass loss mechanisms. Plastic deformation accompanied by formation of micro relief at the surface and slip bands protrusions were clearly identified, during the first stages of cavitation erosion. The first evidences of mass loss (detected by SEM observations) were seen as particles detaching from micro cracks and micro pits formed at the grain surface. Nucleation and growth of cavitation damage was heterogeneously distributed at the grain scale. Slip bands protrusions, grain boundary protrusions and nitride matrix interfaces sites were more prone to nucleating the damage. Increasing nitrogen contents in solid solution increased the relative contribution of grain boundary nucleated damage, compared to the total amount of nucleation sites. Grains with 100 and 111 crystallographic planes approximately parallel to the surface were more prone to nucleation and growth of cavitation damage. Grains with 101 planes // surface were much more resistant to cavitation-erosion damage. These results are discussed considering differences of critical resolved shear stresses for grains with different orientations. Cavitation erosion damage occurs preferentially at grain boundaries across which steep stress gradients arise. Particularly, CSL -3 twin boundaries are much more susceptible to cavitation erosion damage incubation than other types of CSL boundaries and non CSL boundaries.
13

Simulation de l'érosion de cavitation par une approche CFD-FEM couplée / Simulation of cavitation erosion by a coupled CFD-FEM approach

Sarkar, Prasanta 05 March 2019 (has links)
Ce travail de recherche est dédié à la compréhension des mécanismes physiques de l’érosion de cavitation dans un fluide compressible à l’échelle fondamentale de l’implosion d’une bulle de cavitation. Suite à l’implosion d’une bulle de vapeur à proximité d’une surface solide, des très hautes pressions sont générées. Ces pressions sont considérées responsables de l’endommagement (érosion) des surfaces solides observé dans la plupart des applications. Notre approche numérique démarre avec le développement d’un solveur compressible capable de résoudre les bulles de cavitation au sein du code volumes finis YALES2 en utilisant un simple modèle de mélange homogène des phases fluides. Le solveur est étendu à une approche ALE (Arbitraire Lagrangien Eulérien) dans le but de mener des simulations d’interaction fluide-structure sur un maillage mobile. La réponse du matériau solide est calculée avec le code de calcul éléments finis Cast3M, et nous a permis de mener des simulation avec un couplage d’abord monodirectionnel, ensuite bidirectionnel, entre le fluide et le solide. On compare des résultats obtenus à deux dimensions, puis à trois, avec des observations expérimentales. On discute les chargements de pression estimés, et les réponses de différents matériaux pour des implosions de bulle à des différentes distances de la surface. Enfin, à travers l’utilisation de simulations avec couplage bidirectionnel entre fluide et solide, on identifie l’amortissement des chargements de pression pour les différents matériaux. / This research is devoted to understanding the physical mechanism of cavitation erosion in compressible liquid flows on the fundamental scale of cavitation bubble collapse. As a consequence of collapsing bubbles near solid wall, high pressure impact loads are generated. These pressure loads are believed to be responsible for the erosive damages on solid surface observed in most applications. Our numerical approach begins with the development of a compressible solver capable of resolving the cavitation bubbles in the finite-volume solver YALES2 employing a simplified homogenous mixture model. The solver is extended to Arbitrary Lagrangian-Eulerian formulation to perform fluid structure interaction simulation with moving mesh capabilities. The material response is resolved with the finite element solver Cast3M, which allowed us to perform one-way and two-way coupled simulations between the fluid and solid domains. In the end, we draw comparisons between 2D and 3D vapor bubble collapse dynamics and compare them with experimental observations. The estimated pressure loads on the solid wall and different responses of materials for attached and detached bubble collapses are discussed. Finally, the damping of pressure loads by different materials is identified with two-way coupled fluid-structure interaction.
14

Comportamento em desgaste por erosão cavitação, erosão - corrosão e em ensaios de microesclerometria linear instrumentada de um aço inoxidável martensítico AISI 410 nitretado a plasma em baixa temperatura, utilizando a tecnologia de tela ativa. / Cavitation erosion, corrosio - erosion and linear scratch test of active screen low temperature plasma nitrided AISI 410 martensitic stainless steel.

Espitia Sanjuan, Luis Armando 27 May 2015 (has links)
Amostras de um aço inoxidável martensítico AISI 410 temperado e revenido foram nitretadas a plasma em baixa temperatura usando o tratamento de nitretação plasma DC e a nitretação a plasma com tela ativa. Ambos os tratamentos foram realizados a 400 °C, utilizando mistura gasosa de 75 % de nitrogênio e 25 % de hidrogênio durante 20 horas e 400 Pa de pressão. As amostras de aço AISI 410 temperado e revenido foram caracterizadas antes e depois dos tratamentos termoquímicos, usando as técnicas de microscopia óptica, microscopia eletrônica de varredura, medidas de microdureza, difração de raios X e medidas de teor de nitrogênio em função da distância à superfície por espectrometria WDSX de raios X. A resistência à erosão por cavitação do aço AISI 410 nitretado DC e com tela ativa foi avaliada segundo a norma ASTM G32 (1998). Os ensaios de erosão, de erosão - corrosão e de esclerometria linear instrumentada segundo norma ASTM C1624 (2005) somente foram realizados no aço AISI 410 nitretado com tela ativa. Ensaios de nanoindentação instrumentada forma utilizados para medir a dureza (H) e o módulo de elasticidade reduzido (E*) e calcular as relações H/E* e H3/E*2 e a recuperação elástica (We), utilizando o método proposto por Oliver e Pharr. Ambos os tratamentos produziram camadas nitretadas de espessura homogênea constituídas por martensita expandida supersaturada em nitrogênio e nitretos de ferro com durezas superiores a 1200 HV, porém, a nitretação DC produziu maior quantidade de nitretos de ferro do que o tratamento de tela ativa. Os resultados de erosão por cavitação do aço nitretado DC mostraram que a precipitação de nitretos de ferro é prejudicial para a resistência à cavitação já que reduziu drasticamente o período de incubação e aumentou a taxa de perda de massa nos estágios iniciais do ensaio; entretanto, depois da remoção desses nitretos de ferro, a camada nitretada formada somente por martensita expandida resistiu bem ao dano por cavitação. Já no caso do aço nitretado com tela ativa, a resistência à erosão por cavitação aumentou 27 vezes quando comparada com o aço AISI 410 sem nitretar, fato atribuído à pequena fração volumétrica e ao menor tamanho dos nitretos de ferro presente na camada nitretada, às maiores relações H/E* e H3/E*2 e à alta recuperação elástica da martensita expandida. A remoção de massa ocorreu, principalmente, pela formação de crateras e de destacamento de material da superfície dos grãos por fratura frágil sem evidente deformação plástica. As perdas de massa acumulada mostradas pelo aço nitretado foram menores do que aquelas do aço AISI 410 nos ensaios de erosão e de erosão corrosão. O aço nitretado apresentou uma diminuição nas taxas de desgaste em ambos os ensaios de aproximadamente 50 % quando comparadas com o aço AISI 410. O mecanismo de remoção de material foi predominantemente dúctil, mesmo com o grande aumento na dureza. Os resultados de esclerometria linear instrumentada mostraram que a formação de martensita expandida possibilitou uma diminuição considerável do coeficiente de atrito em relação ao observado no caso do aço AISI 410 sem nitretar. O valor de carga crítica de falha foi de 14 N. O mecanismo de falha operante no aço nitretado foi trincamento por tensão. / Specimens of a quenched and tempered AISI 410 martensitic stainless were low temperature plasma nitrided using DC pulsed plasma treatment and the pulsed plasma active screen technic. Both treatments were carried out at 400 °C in a mixture of 75 % of nitrogen and 25 % of hydrogen during 20 hours and 400 Pa of pressure. Nitrided and non-nitrided AISI 410 specimens were characterized by optical and scanning electron microscopy, micro and nanohardness measurements, X ray diffraction and determination of the nitrogen content as a function of the depth using wavelength dispersive spectroscopy WDSX. Cavitation erosion tests were carried out according to ASTM G32 (1998) standard for both DC nitrided steel and active screen nitrided steel, whereas, the erosion, erosion - corrosion tests and scratch tests according to ASTM C1624 (2005) were conducted only for active screen nitrided steel. Nanoindentation tests were carried out in order to assess the hardness (H), the reduced elastic modulus (E*) the H/E* and H3/E*2 ratios and the elastic recovery (We) of the active screen nitrided steel according to the procedure proposed by Oliver and Pharr. Both nitrided treatments produced thick nitrided cases composed of nitrogen supersaturaded expanded martensite and iron nitrides, however, the DC treatment promoted the precipitation of large quantities of iron nitrides in comparison to the active screen technic. The cavitation erosion results of the DC nitrided steel showed that iron nitrides precipitation is harmful for the cavitation resistance as it drastically reduced the incubation period, despites this, after the removal of those iron nitrides, the nitrided case composed solely of expanded martensite resisted the cavitation damage. On the other hand, the active screen technic increased 27 times the cavitation erosion resistance of the AISI 410 steel. The increase in cavitation erosion resistance was attributed to minor quantities of smaller size iron nitrides, the higher H/E* and H3/E*2 ratios and to the higher elastic response of the expanded martensite. The material removal mainly comes from the formation of craters and from debris detachment from the grain surfaces due to brittle fracture, without plastic deformation. The active screen nitrided steel showed the lower cumulative mass losses in erosion and erosion - corrosion tests. The nitrogen addition decreased around 50 % the erosion rate in both tests. The active screen nitrided steel showed a ductile behavior despite the intense increase in hardness. The scratch tests showed that expanded martensite formation led to a significant decrease of the friction coefficient. The critical load was 14 N and the failure mechanism acting in the nitrided case was tensile cracking.
15

Comportamento em desgaste por erosão cavitação, erosão - corrosão e em ensaios de microesclerometria linear instrumentada de um aço inoxidável martensítico AISI 410 nitretado a plasma em baixa temperatura, utilizando a tecnologia de tela ativa. / Cavitation erosion, corrosio - erosion and linear scratch test of active screen low temperature plasma nitrided AISI 410 martensitic stainless steel.

Luis Armando Espitia Sanjuan 27 May 2015 (has links)
Amostras de um aço inoxidável martensítico AISI 410 temperado e revenido foram nitretadas a plasma em baixa temperatura usando o tratamento de nitretação plasma DC e a nitretação a plasma com tela ativa. Ambos os tratamentos foram realizados a 400 °C, utilizando mistura gasosa de 75 % de nitrogênio e 25 % de hidrogênio durante 20 horas e 400 Pa de pressão. As amostras de aço AISI 410 temperado e revenido foram caracterizadas antes e depois dos tratamentos termoquímicos, usando as técnicas de microscopia óptica, microscopia eletrônica de varredura, medidas de microdureza, difração de raios X e medidas de teor de nitrogênio em função da distância à superfície por espectrometria WDSX de raios X. A resistência à erosão por cavitação do aço AISI 410 nitretado DC e com tela ativa foi avaliada segundo a norma ASTM G32 (1998). Os ensaios de erosão, de erosão - corrosão e de esclerometria linear instrumentada segundo norma ASTM C1624 (2005) somente foram realizados no aço AISI 410 nitretado com tela ativa. Ensaios de nanoindentação instrumentada forma utilizados para medir a dureza (H) e o módulo de elasticidade reduzido (E*) e calcular as relações H/E* e H3/E*2 e a recuperação elástica (We), utilizando o método proposto por Oliver e Pharr. Ambos os tratamentos produziram camadas nitretadas de espessura homogênea constituídas por martensita expandida supersaturada em nitrogênio e nitretos de ferro com durezas superiores a 1200 HV, porém, a nitretação DC produziu maior quantidade de nitretos de ferro do que o tratamento de tela ativa. Os resultados de erosão por cavitação do aço nitretado DC mostraram que a precipitação de nitretos de ferro é prejudicial para a resistência à cavitação já que reduziu drasticamente o período de incubação e aumentou a taxa de perda de massa nos estágios iniciais do ensaio; entretanto, depois da remoção desses nitretos de ferro, a camada nitretada formada somente por martensita expandida resistiu bem ao dano por cavitação. Já no caso do aço nitretado com tela ativa, a resistência à erosão por cavitação aumentou 27 vezes quando comparada com o aço AISI 410 sem nitretar, fato atribuído à pequena fração volumétrica e ao menor tamanho dos nitretos de ferro presente na camada nitretada, às maiores relações H/E* e H3/E*2 e à alta recuperação elástica da martensita expandida. A remoção de massa ocorreu, principalmente, pela formação de crateras e de destacamento de material da superfície dos grãos por fratura frágil sem evidente deformação plástica. As perdas de massa acumulada mostradas pelo aço nitretado foram menores do que aquelas do aço AISI 410 nos ensaios de erosão e de erosão corrosão. O aço nitretado apresentou uma diminuição nas taxas de desgaste em ambos os ensaios de aproximadamente 50 % quando comparadas com o aço AISI 410. O mecanismo de remoção de material foi predominantemente dúctil, mesmo com o grande aumento na dureza. Os resultados de esclerometria linear instrumentada mostraram que a formação de martensita expandida possibilitou uma diminuição considerável do coeficiente de atrito em relação ao observado no caso do aço AISI 410 sem nitretar. O valor de carga crítica de falha foi de 14 N. O mecanismo de falha operante no aço nitretado foi trincamento por tensão. / Specimens of a quenched and tempered AISI 410 martensitic stainless were low temperature plasma nitrided using DC pulsed plasma treatment and the pulsed plasma active screen technic. Both treatments were carried out at 400 °C in a mixture of 75 % of nitrogen and 25 % of hydrogen during 20 hours and 400 Pa of pressure. Nitrided and non-nitrided AISI 410 specimens were characterized by optical and scanning electron microscopy, micro and nanohardness measurements, X ray diffraction and determination of the nitrogen content as a function of the depth using wavelength dispersive spectroscopy WDSX. Cavitation erosion tests were carried out according to ASTM G32 (1998) standard for both DC nitrided steel and active screen nitrided steel, whereas, the erosion, erosion - corrosion tests and scratch tests according to ASTM C1624 (2005) were conducted only for active screen nitrided steel. Nanoindentation tests were carried out in order to assess the hardness (H), the reduced elastic modulus (E*) the H/E* and H3/E*2 ratios and the elastic recovery (We) of the active screen nitrided steel according to the procedure proposed by Oliver and Pharr. Both nitrided treatments produced thick nitrided cases composed of nitrogen supersaturaded expanded martensite and iron nitrides, however, the DC treatment promoted the precipitation of large quantities of iron nitrides in comparison to the active screen technic. The cavitation erosion results of the DC nitrided steel showed that iron nitrides precipitation is harmful for the cavitation resistance as it drastically reduced the incubation period, despites this, after the removal of those iron nitrides, the nitrided case composed solely of expanded martensite resisted the cavitation damage. On the other hand, the active screen technic increased 27 times the cavitation erosion resistance of the AISI 410 steel. The increase in cavitation erosion resistance was attributed to minor quantities of smaller size iron nitrides, the higher H/E* and H3/E*2 ratios and to the higher elastic response of the expanded martensite. The material removal mainly comes from the formation of craters and from debris detachment from the grain surfaces due to brittle fracture, without plastic deformation. The active screen nitrided steel showed the lower cumulative mass losses in erosion and erosion - corrosion tests. The nitrogen addition decreased around 50 % the erosion rate in both tests. The active screen nitrided steel showed a ductile behavior despite the intense increase in hardness. The scratch tests showed that expanded martensite formation led to a significant decrease of the friction coefficient. The critical load was 14 N and the failure mechanism acting in the nitrided case was tensile cracking.
16

Experimental analysis of oil based cavitation peening in air

Marsh, Richard 21 January 2011 (has links)
Oil Jet Cavitation Peening in Air (OPA) is capable of inducing compressive residual stress in standard aerospace materials. This paper demonstrates the process capabilities of OPA on Al 2024-T3. Specifically, changes in the workpiece residual stress, microhardness, mass loss and surface roughness are investigated as a function of the control parameters for the system. Additionally, the paper identifies a method to monitor the process in situ through the use of high frequency acoustic emission sensors. The results indicate the OPA process is capable of generating residual stresses comparable to those of standard shot peening, up to 60% of the yield strength of the material, at similar depths, around 300 µm. Finally, the acoustic emission signal may be utilized to monitor the process, specifically in predicting the microhardness and mass loss of the system.
17

Opotřebení materiálu kavitační erozí / Material wear due to cavitation erosion

Lecnar, Lukáš January 2015 (has links)
This Master’s thesis is dedicated to cavitation erosion of a material surface. First part of thesis describes basic principle of cavitation and its erosion consequences of solid objects. There are mentioned basic cavitation models used in CFD software. Second part incorporate concept design and numerical calculation of critical shape in reference to highest intensity of cavitation erosion at flow area. Last part of thesis is experimental and it is focused on cavitation erosion at flow area due to critical shapes from numerical calculation.
18

Laser cavitation bubbles at objects: Merging numerical and experimental methods

Koch, Max 29 September 2020 (has links)
No description available.
19

Numerical prediction and experimental investigation of cavitation erosion of hydraulic components using hfc

Moosavi, Atena, Osterland, Sven, Krahl, Dominik, Müller, Lutz, Weber, Jürgen 25 June 2020 (has links)
Hydraulic devices play an essential role in mechanical engineering due to their high-power density, good controllability, flexible application and high robustness, which expose innovative methods of energy transmission. However, in applications where there is an increased risk of fire or explosion, the commonly used combustible mineral oils represent an unacceptable safety hazard. In such cases, fireresistant, water-based hydraulic fluids are in demand. A special feature of these liquids is their high cavitation tendency and the associated strong erosion wear. The aim of this research is to predict the cavitation behaviour of HFC and the subsequent erosion phenomena using numerical methods and to validate the results with experiments. Additionally, experimental results for HFC were compared with HLP. The findings help to implement further developments to decrease the erosive effect of cavitation in high-pressure differences in hydraulic components. For this purpose, flow geometries of typical hydraulic components, e.g. valve and pump, are used for experimental and numerical investigation. The large-eddy simulation (LES) turbulent modelling is used with Zwart-Gerber cavitation model. The cavitation aggressiveness is quantified by cavitation erosion indices according to Nohmi.
20

Fluid/Material Coupled Numerical Analysis of Single Bubble Collapse Near a Pit on a Wall / Vätska/Material Kopplad Numerisk Analys av en Bubbla Kollaps Nära en Grop på en Vägg

Makii, Daiki January 2020 (has links)
In order to elucidate the progression mechanism of cavitation erosion, the behaviors of a single cavitation bubble collapse near a pit on a wall and both the resulting pressure wave in fluid and stress wave in material are investigated in detail. To find out the mechanism of cavitation erosion, many experimental studies on the bubble collapse behavior near a flat rigid wall and the resulting material damage have been conducted so far. A lot of numerical studies using only fluid analysis have been also carried out. In recent years, a few studies on the bubble collapse near a more complex geometry were made and it is reported that more complex geometry has an effect on the bubble collapse behavior, jet formation and subsequent wave dynamics. It is, however, very challenging to introduce a material analysis and investigate detailed stress wave propagation in the material and its effect on the material damage i.e. cavitation erosion. This study tackles this problem using an in-house fluid/material two-way coupled numerical analysis method which considers reflection and transmission of plane waves with acoustic impedance at the fluid/material boundary. In the fluid domain, the locally homogeneous model of compressible gas-liquid two-phase medium is used for capturing the gas-liquid interface. The compressibility of two-phase flow is also considered in this model so that the propagation of pressure wave can be also be taken into account. The governing equations are the 3D compressible gas-liquid two-phase Navier-Stokes equations. In the material domain, the governing equations are composed of the motion equations and the time-differential constitutive equations assuming that the material is a homogeneous isotropic elastic medium, which can simulate the stress wave propagation in the material. Results show that the stress waves are concentrated at the bottom of the pit regardless of the initial bubble position. It is also found that the surface pressure in the fluid side does not necessarily correlate with the stresses in the material, suggesting the importance of material analysis. Moreover, under high pressure conditions, a rapid bubble collapse causes a gas phase generation at the bottom of the pit and its gas phase is contracted and collapsed by the pressure wave, which leads to pressure and stress peaks at the bottom of the pit. Furthermore, through the study of the effect of initial bubble position on its collapse behavior, it is confirmed that, when the initial bubble position is shifted horizontally, bubble collapses asymmetrically and the pressure waves tend to be directed away from a pit. This research numerically reveals that a single bubble collapse near a pit on a wall results in high strain energy concentration at the bottom of the pit, which gives rise to deeper erosion progression at the bottom of the pit. / För att klargöra framstegsmekanismen för kavitationserosion kollapsar beteendet hos en enda kavitationsbubbla nära en grop på en vägg och både den resulterande tryckvågen i vätska och stressvåg i material undersöks i detalj. För att ta reda på mekanismen för kavitationserosion har många experimentella studier av bubblans kollapsbeteende nära en platt styv vägg och den resulterande materialskada genomförts hittills. Många numeriska studier med endast vätskeanalys har också genomförts. Under de senaste åren gjordes några studier om bubblans kollaps nära en mer komplex geometri och det rapporteras att mer komplex geometri har en effekt på bubblans kollapsbeteende, strålbildning och efterföljande vågdynamik. Det är dock mycket utmanande att införa en materialanalys och undersöka detaljerad spänningsvågförökning i materialet och dess inverkan på materialskadorna, dvs. kavitationserosion. Denna studie hanterar detta problem med hjälp av en inbyggd tvåvägs kopplad numerisk analysmetod som tar hänsyn till reflektion och överföring av plana vågor med akustisk impedans vid vätska / materialgränsen. I fluiddomänen används den lokalt homogena modellen av tvåfasmedium för komprimerbar gas-vätska för att fånga gas-vätskegränssnittet. Komprimerbarheten av tvåfasflöde beaktas också i denna modell så att utbredningen av tryckvågen också kan beaktas. De styrande ekvationerna är de 3D-komprimerbara tvåfasiga gasvätska Navier-Stokes-ekvationerna. I materialdomänen är de styrande ekvationerna sammansatta av rörelseekvationer och tidsdifferentialkonstitutiva ekvationer förutsatt att materialet är ett homogent isotropiskt elastiskt medium, vilket kan simulera spänningsvågutbredningen i materialet. Resultaten visar att stressvågorna är koncentrerade längst ner i gropen oavsett den ursprungliga bubbelpositionen. Man har också funnit att yttrycket i vätskesidan inte nödvändigtvis korrelerar med spänningarna i materialet, vilket tyder på vikten av materialanalys. Vidare orsakar en snabb bubbelskollaps under högtrycksförhållanden en gasfasgenerering vid botten av gropen och dess gasfas dras samman och kollapsas av tryckvågen, vilket leder till tryck och spänningstoppar vid botten av gropen. Vidare bekräftas det genom studien av effekten av den ursprungliga bubbelpositionen på dess kollapsbeteende att när den ursprungliga bubbelpositionen förskjuts horisontellt kollapsar bubblan asymmetriskt och tryckvågorna tenderar att riktas bort från en grop. Denna undersökning avslöjar numeriskt att en enda bubbla kollapsar nära en grop på en vägg resulterar i hög spänningsenergikoncentration längst ner i gropen, vilket ger upphov till djupare erosionsprogression längst ner i gropen.

Page generated in 0.5098 seconds