Spelling suggestions: "subject:"sittingdown spectroscopy."" "subject:"cavityring spectroscopy.""
11 |
Absolute Number Density Measurement of OH Radicals in Low Temperature Atmospheric Pressure Plasmas using Cavity Ringdown SpectroscopySrivastava, Nimisha 09 December 2011 (has links)
Low-temperature non–thermal plasmas are of growing interest due to their applications in various fields, such as plasma-assisted combustion, plasma medicine, material processing, etc. Hydroxyl radical (OH) is one of the key agents and most important reactive species generated in plasmas. We employ cavity ringdown spectroscopy (CRDS), both a pulsed laser and a continuous wave (cw) laser to measure absolute number densities of OH radicals in low-temperature plasmas. A 2.45 GHz microwave plasma source was used to excite two different types of plasma cavities: an atmospheric plasma jet and microwave plasma torch (MPT). The atmospheric microwave plasma jet was thoroughly explored and operated with different plasma gases. Plasma jets with argon (Ar), helium (He), Ar/N2, Ar/O2, He/N2, He/O2 and Ar/H2O were investigated. The absolute number densities of OH radicals were measured along the jet axis in all of plasma jets using pulsed CRDS. Effects of plasma power and gas flow rates on OH radical generation were also studied. We have reported for the first time that OH radicals exist in the far downstream region of a plasma jet axis. The far downstream is a location where the ratio of distance from the plasma jet orifice over the plasma jet column length is larger than 3. For an Ar plasma jet length of 3 mm, OH radicals were detected at a farthest distance ratio of 7.6. The OH density profiles along the axis in all the plasma jets indicate that OH radicals have the highest number density in the vicinity of the jet tip and gradually decreases in the downstream. Optical emission spectroscopy and digital imaging were simultaneously employed to identify the different radicals generated in plasma jets and to study the fine structures of the plasma jets. Pulsed CRDS was also employed to measure OH radical density in an Ar MPT. By using high temporal resolved imaging, it was observed that the widely reported converging point in Ar MPT is actually a time-averaged visual effect. Absolute number densities of OH radicals and water molecules were measured in an alternating current (AC) glow discharge using near infrared cw CRDS.
|
12 |
Modifications to a Cavity Ringdown Spectrometer to Improve Data Acquisition RatesBostrom, Gregory Alan 04 March 2015 (has links)
Cavity ringdown spectroscopy (CRDS) makes use of light retention in an optical cavity to enhance the sensitivity to absorption or extinction of light from a sample inside the cavity. When light entering the cavity is stopped, the output is an exponential decay with a decay constant that can be used to determine the quantity of the analyte if the extinction or absorption coefficient is known. The precision of the CRDS is dependent on the rate at which the system it acquires and processes ringdowns, assuming randomly distributed errors. We have demonstrated a CRDS system with a ringdown acquisition rate of 1.5 kHz, extendable to a maximum of 3.5 kHz, using new techniques that significantly changed the way in which the ringdowns are both initiated and processed. On the initiation side, we combined a custom high-resolution laser controller with a linear optical feedback configuration and a novel optical technique for initiating a ringdown. Our optical injection "unlock" method switches the laser off-resonance, while allowing the laser to immediately return to resonance, after terminating the unlock, to allow for another ringdown (on the same cavity resonance mode). This part of the system had a demonstrated ringdown initiation rate of 3.5 kHz. To take advantage of this rate, we developed an optimized cost-effective FGPA-based data acquisition and processing system for CRDS, capable of determining decay constants at a maximum rate of 4.4 kHz, by modifying a commercial ADC-FPGA evaluation board and programming it to apply a discrete Fourier transform-based algorithm for determining decay constants. The entire system shows promise with a demonstrated ability to determine gas concentrations for H2O with a measured concentration accuracy of ±3.3%. The system achieved an absorption coefficient precision of 0.1% (95% confidence interval). It also exhibited a linear response for varying H2O concentrations, a 2.2% variation (1σ) for repeated measurements at the same H2O concentration, and a corresponding precision of 0.6% (standard error of the mean). The absorption coefficient limit of detection was determined to be 1.6 x 10-8 cm-1 (root mean square of the baseline residual). Proposed modifications to our prototype system offer the promise of more substantial gains in both precision and limit of detection. The system components developed here for faster ringdown acquisition and processing have broader applications for CRDS in atmospheric science and other fields that need fast response systems operating at high-precision.
|
13 |
Investigation of Aerosol Optical and Chemical Properties Using Humidity Controlled Cavity Ring-Down SpectroscopyZhu, Xijing 04 December 2017 (has links)
Scientists have been observing a change in the climate since the beginning of the 20th century that cannot be attributed to any of the natural influences of the past. Natural and anthropogenic substances and processes perturb the Earth's energy budget, contributing to climate change. In particular, aerosols (particles suspended in air) have long been recognized to be important in processes throughout the atmosphere that affect climate. They directly influence the radiative balance of the Earth's atmosphere, affect cloud formation and properties, and are also key air pollutants that contribute to a variety of respiratory and cardiovascular diseases. Despite their importance, aerosol particles are less well-characterized than greenhouse gases with respect to their sources, temporal and spatial concentration distribution, and physical and chemical properties. This uncertainty is mainly caused by the variable and insufficiently understood sources, formation and transformation processes, and complex composition of atmospheric particles. Instruments that can precisely and accurately measure and characterize the aerosol physical and chemical properties are in great demand. Atmospheric relative humidity (RH) has a crucial impact on the particles' optical properties; the RH dependence of the particle extinction coefficient is an important parameter for radiative forcing and thus climate change modeling. In this work a Humidity-Controlled Cavity Ring-Down (HC-CRD) aerosol optical instrument is described and its ability to measure RH dependent extinction coefficients and related hygroscopicity parameters is characterized.
The HC-CRD is capable of simultaneously measuring the aerosol extinction coefficient at three wavelengths (λ = 355, 532, and 1064 nm) and three different RHs (typically 20%, 50%, and 80%). A range of chemicals and their mixtures were used to produce laboratory generated aerosols. Three mixture systems include one inorganic salts mixture system consisting of (NH4)2SO4, NH4HSO4, Na2SO4, NaHSO4 serve as surrogates of the ionic salts found in the atmosphere. Two organic mixture systems were investigated: mixtures of NaCl, D-glucose, sucrose, and glycine are benchmarks for compounds emitted from biomass burning. Finally, mixtures of (NH4)2SO4 (ammonium sulfate, AS) with a series of dicarboxylic acids including malonic acid, adipic acid, and azelaic acid are used as benchmarks to mimic urban pollutants.
The extinction coefficients were obtained as a function of RH from the HC-CRD measurements, from which optical growth factors f(RH) and γ(RH) values can be determined to examine their dependence on chemical composition. A volume mixing rule was used to calculate the effective refractive index of the binary substrate mixtures, since both size and composition change during water uptake. The SDA/FMC algorithm developed by O'Neill, et al. 2005 is used to extract the van de Hulst phase shift parameter (Ρeff) from three-wavelength measurements of extinction. The fine mode fraction of extinction (η) and fine mode effective radius (Reff) of laboratory generated aerosol particles can be then determined. An iterative algorithm was developed to retrieve the change in refractive index of particles as function of RH. The calculated Reff of aerosols at different RHs were used to obtain the physical size growth factor (gf), and κ(RH). The size changes as a function of water uptake describe the dependence of aerosol optical properties on chemical composition.
This work demonstrates the capability of conducting aerosol optical measurements using HC-CRD to determine the RH dependence of aerosol optical properties. The HC-CRD measurements combined with the SDA/FMC method to retrieve aerosol size for laboratory generated aerosols establish the connection between the optical properties and the aerosol particles' chemical compositions. It also underlines the importance and need for future investigation on the hygroscopic properties of atmospheric aerosols. This work is successfully developed a method that enables using the aerosols optical measurements to predict the compositions; it will greatly contribute to the atmospheric aerosol measurement and global climate modelling.
|
14 |
Cavity ringdown laser absorption spectroscopy of free radicalsMa, Tongmei., 馬彤梅. January 2004 (has links)
published_or_final_version / abstract / toc / Chemistry / Doctoral / Doctor of Philosophy
|
15 |
Optical and Laser Spectroscopic Study of Microwave Plasma-Assisted CombustionWu, Wei 07 May 2016 (has links)
Nonthermal plasma-assisted combustion (PAC) has been demonstrated to be a promising potential method to enhance combustion performance and reduce the pollutant emissions. To better understand the mechanism in PAC, we have conducted a series of studies on the combustion enhancement by plasma using a home-developed PAC platform which employs a nonthermal microwave argon plasma and a suit of optical diagnostic tools including optical imaging, optical emission spectroscopy, and cavity ringdown spectroscopy. A new PAC system in which a continuous atmospheric argon microwave plasma jet is employed to enhance combustion of methane/air mixtures was reported. Reactive species in PAC were characterized in a state-resolved manner including the simultaneously measurements of OH(A) and OH(X) radicals in the PAC flames. Roles of the state-resolved OH(A) and OH(X) radicals in microwave PAC of premixed methane/air mixture were explored. It was concluded that if both OH(A) and OH(X) radicals assisted the ignition and flame stabilization processes, then we may hypothesize that the role of OH(A) was more dominant in the ignition enhancement but the role of OH(X) was more dominant in the flame stabilization. The effect of fuel injection configurations was investigated in the comparative study between PAC of the premixed and nonpremixed methane/air mixtures. It was found that emissions from the CH (A-X) and C2 Swan systems only exist in the nonpremixed PAC which suggest that the reaction pathways are different between premixed and nonpremixed PAC. The PAC of premixed methane/oxygen/argon mixtures was investigated. A U-shaped dual-layer curve of fuel ignition/flame stabilization limit showing the effects of the plasma power on the fuel ignition and flame stabilization was observed and reported. A parametric study of the microwave PAC of the premixed ethylene/air mixtures was conducted. Behavior of the OH, CH, and C2 radicals and their dependence on plasma power, argon flow rate, and total ethylene/air mixture flow rate were also studied.
|
16 |
Spectroscopic Studies of the A2E'' State of NO3Codd, Terrance Joseph January 2014 (has links)
No description available.
|
17 |
High Precision Comb-Assisted Molecular Spectroscopy in the Mid-InfraredAlsaif, Bidoor 06 1900 (has links)
In several fields, such as biology, chemistry, combustion and environmental science, laser absorption spectroscopy represents an invaluable tool for the detection and identification of a variety of molecular species in the gas phase. For this detection to be quantitative, it is of paramount importance to rely on accurate spectroscopic parameters for the involved absorption lines in terms of line strength, line center frequency, pressure broadening, and pressure shift coefficients. The mid-infrared region offers the most favorable conditions for sensitive and chemically selective detection. The sensitivity derives from the presence of intense fundamental ro-vibrational transitions of molecules, whereas chemical selectivity relates to the unique absorption spectrum that molecules possess in the mid-IR region, thereby known as the fingerprint region.
In this thesis, we combine the accelerating technology of optical frequency combs (OFC), which are powerful tools for accurate optical frequency measurements, with the wide tunability and single line emission in the mid-IR of extended cavity quantum cascade lasers (EC-QCL), to perform highly resolved, accurate and sensitive measurements in the fingerprint region, from 7.25 to 8 μm. Specifically, we have been able to lock for the first time the optical frequency of an EC-QCL to an OFC by utilizing nonlinear optics in the form of sum frequency generation (SFG) (Lamperti, AlSaif et al., 2018) and have exploited this comb-locked EC-QCL for an accurate survey of the entire
ν1 ro-vibrational band of one of the most important greenhouse gases, nitrous oxide (N2O). The developed spectrometer is able to operate over a wide region of ~ 100 cm-1, in a fully automated fashion, while affording a 63 kHz uncertainty on the retrieved line center frequencies. The measurement allowed us to determine very accurately rotational constants of both ground and excited states of the ν1 band of N2O through the measurements of tens of lines of the P and R branches (AlSaif et al., JQSRT 2018). The spectrometer was then upgraded with a more recent and narrower linewidth EC-QCL to perform sub-Doppler saturated spectroscopy on the same N2O sample at a spectral resolution below 1 MHz, the sharpest ever observed with this type of laser. Finally, we worked at adding high sensitivity to the apparatus by introducing the gas in a high-finesse passive resonator and by developing a system to measure the intra-cavity absorption with cavity ring-down spectroscopy (CRDS) together with comb calibration.
|
18 |
Molecular insights into the redox of atmospheric mercury through laser spectroscopyCohen, Rongrong Wu 09 December 2022 (has links) (PDF)
The widespread pollution of mercury motivates research into its atmospheric chemistry and transport. Gaseous elemental mercury (Hg(0)) dominates mercury emission to the atmosphere, but the rate of its oxidation to mercury compound (Hg(II)) plays a significant role in controlling where and when mercury deposits to ecosystems. Atomic bromine is regarded as the main oxidant for Hg(0) oxidation, known to initiate the oxidation via a two-step process in the atmosphere – formation of BrHg (R1) and subsequent reactions of BrHg with abundant free radicals Y, i.e., NO2, HOO, etc. (R2), where the reaction of BrHg +Y could also lead to the reduction of Hg(I) to Hg(0) (R3). A different oxidation pathway of BrHg + O3 (R4) is currently regarded as the dominant Hg(II) oxidation pathway in the atmosphere. Hg + Br + M → BrHg + M (R1) BrHg + Y + M → BrHgY + M (R2) BrHg + Y → BrY +Hg (R3) BrHg + O3 → BrHgO + O2 (R4) While the rate constants of R1 have been experimentally measured a decade ago, this research focuses on the experimental kinetic studies on the reaction of R2-R4 to better assist the efforts to predict how emission reductions impact the spatial distribution of mercury entry into ecosystems. The kinetic studies of BrHg redox chemistry are conducted by utilizing laser photolysis-laser induced fluorescence-cavity ringdown spectroscopy (LP-LIF-CRDS) systems, where BrHg radicals are generated via laser photolysis and monitored in the reaction via LIF and CRDS measurements. We report mainly on our experimental kinetic studies of the redox reactions of BrHg with relatively abundant trace gases such as NO2, NO, O3, O2, and VOCs, especially on the temperature and pressure dependence of the reaction rate constants using our LP-LIF system. We present the development and the characterization of a novel LP-CRDS system, which is a powerful tool to study reactions during which fluorescence quenching interferes with LIF measurement, and to study the spectroscopy of Hg(I) and Hg(II) compounds.
|
19 |
Laser Spectroscopy Studying Organic and Inorganic Intermediates in The Atmospheric Oxidation ProcessChen, Ming-Wei 20 October 2011 (has links)
No description available.
|
20 |
High resolution infrared spectroscopy: setting up an experiment to investigate small clusters / Spectroscopie infrarouge à haute résolution: mise au point d'un dispositif expérimental pour l'étude des petits agrégatsDidriche, Keevin 06 November 2008 (has links)
The role of clusters in planetary atmospheres and the interstellar medium is potentially important. Investigating such a role requires basic experimental information, however lacking. The goal of this thesis was to develop an efficient experimental set-up to produce clusters in the laboratory in concentrations large enough to allow their high resolution spectra to be recorded, thus providing the necessary data allowing the physico-chemical properties of the clusters to be studied.<p>The study of this subject however suffers from the lack of basic experimental data. The goal is therefore to produce clusters in the laboratory in concentration large enough to record their high resolution spectrum. This is the initial aim of the present thesis.<p>During this work, we have built and extensively tested a new experimental set-up called FANTASIO (``Fourier trANsform, Tunable diode and quadrupole mAss spectrometers interfaced to a Supersonic expansIOn'). With the help of this new device, various experiments on jet-cooled species have been performed.<p>The cartography of the supersonic expansion was established, using the mass spectrometer as a moving pressure probe. This enabled us to characterize the geometrical properties of the supersonic jet produced by circular and slit nozzles and to determine the position of the virtual nozzle. The effect of the axisymmetric expansion geometry on the R(0) lineshape in the nu_3 band of N_2O, recorded by FTIR, was also investigated.<p>The rotational temperature of the jet-cooled molecules was determined to be a few K by measuring the intensity of lines in spectra recorded by FTIR spectroscopy.<p>Vibrational energy transfer occuring in the expansion between N_2O molecules and different collision partners was investigated on the nu_2+nu_3-nu_2 band of N_2O, again using FTIR spectroscopy. The trend of these transfers was found to be related to the energy difference between the v_2=1 level of N_2O and the closest vibrational state in the collision partner, with the largest population.<p>The sensitivity of the set-up was enhanced by a factor of 5 by increasing the absorption path length, using a multipass system. A procedure to remove the residual gas contribution from the IR spectra was developped, based on the mass spectrometer. Thanks to this sensitivity increase, broadband absorption features of clusters were observed for a C_2H_2-Ar mixture in circular and slit expansions.<p>The optical sensitivity of FANTASIO was again increased by the implementation of the CW-CRDS system. The enhancement over FTIR was calculated to be over a factor 750. Thanks to this drastic improvement, spectral signatures of various clusters were recorded, such as C_2H_2-Ar, C_2H_2 multimers, C_2H_2-N_2O and C_2H_2-CO_2, at high resolution.<p>The role of clustering in generating unusual line shapes of acetylene in an axisymmetric expansion was investigated. We demonstrated that C_2H_2 aggregates produced in the expansion are responsible for central dips observed in the monomer absorption. These acetylene clusters thus appear to be formed in the centre of the expansion, while, unexpectedly, acetylene-Ar complexes are formed at the edge of the conical expansion.<p>Various research prospects were explored during this thesis thanks to the FANTASIO device, opening new research directions. FANTASIO is today operational and defines a useful tool to achieve the study of small clusters by infrared spectroscopy./<p><p>Le rôle des agrégats dans les atmosphères planétaires et dans le milieu interstellaire est potentiellement important. Cependant, les études sur ce sujet souffrent du manque de données expérimentales. Le but de cette thèse était de développer un dispositif expérimental efficace pour produire au laboratoire des agrégats en quantité suffisante pour permettre l'enregistrement de leur spectre infrarouge à haute résolution et donc l'étude de leurs propriétés physico-chimiques.<p>Durant ce travail, nous avons construit et testé un nouveau dispositif expérimental appelé FANTASIO, basé sur un jet supersonique couplé à un spectromètre de masse, un spectromètre à transformée de Fourier et un système CRDS. Grâce à cet appareillage, différentes expériences sur des molécules à basse température ont été menées.<p>L'expansion supersonique a été cartographiée en utilisant le spectromètre de masse comme une sonde de pression mobile. Cette cartographie nous a permis d'établir les propriétés géométriques des jets supersoniques produits par les orifices circulaire et de type fente, et de déterminer la position de l'orifice virtuel. L'effet de la géométrie de l'expansion sphérique sur le profil de la raie R(0) de la bande nu_3 de N_2O, enregistré par FTIR, a aussi été étudié.<p>Une température rotationnelle de quelques K a été déterminée pour les molécules refroidies en jet supersonique par mesure de la distribution d'intensité de raies dans les spectres enregistrés par FTIR.<p>Le transfert d'énergie vibrationnelle entre des molécules de N_2O et différents partenaires collisionnels a été étudié en analysant l'intensité de la bande nu_2+nu_3-nu_2 de N_2O, enregistré également par spectroscopie FTIR. Il a été trouvé que la tendance de ces transferts est liée à la différence d'énergie entre le niveau v_2=1 de N_2O et l'état vibrationnel le plus proche et le plus peuplé du partenaire collisionnel.<p>La sensibilité du dispositif a été augmentée d'un facteur 5 dû à l'allongement du chemin d'absorption, grâce à l'utilisation d'un système multipassage. Une procédure basée sur l'utilisation du spectromètre de masse et visant à enlever la contribution du gaz chaud résiduel dans les spectres infrarouges a été mise au point. Grâce à cette augmentation de sensibilité, des structures d'absorption non résolues d'agrégats ont été observées dans des expansions en trou et en fente d'un mélange de C_2H_2-Ar.<p>La sensibilité optique de FANTASIO a encore été augmentée par l'ajout au dispositif d'un système CW-CRDS. L'amélioration par rapport au spectromètre à transformée de Fourier a été calculée comme étant supérieure à un facteur 750. Grâce à cette importante amélioration, les signatures spectrales de divers agrégats, tels que C_2H_2-Ar, des multimères de C_2H_2, C_2H_2-N_2O et C_2H_2-CO_2, ont été enregistrées à haute résolution.<p>Le rôle de l'agrégation dans la génération de profils de raie inhabituels dans une expansion en trou de l'acétylène a été étudié. Nous avons démontré que les agrégats de C_2H_2 produits dans le jet supersonique sont responsables des creux observés dans le profil d'absorption du monomère. Ces agrégats apparaissent donc comme étant formés au centre de l'expansion, tandis que, de manière inattendue, les agrégats de C_2H_2-Ar sont formés aux bords de l'expansion conique.<p>Plusieurs idées de recherche ont été explorées durant cette thèse grâce au dispositif FANTASIO, ouvrant de nouvelles directions de recherche. FANTASIO est aujourd'hui opérationnel et se présente comme un outil utile dans l'étude des petits agrégats par spectroscopie infrarouge. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
Page generated in 0.1059 seconds