• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 12
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 2
  • 1
  • Tagged with
  • 109
  • 109
  • 54
  • 35
  • 34
  • 23
  • 19
  • 16
  • 14
  • 13
  • 12
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Antagonistic Pleiotropy: The Role of Smurf2 in Cancer and Aging: A Dissertation

Ramkumar, Charusheila 01 June 2012 (has links)
In response to telomere shortening, oxidative stress, DNA damage or aberrant activation of oncogenes, normal somatic cells exit the cell cycle and enter an irreversible growth arrest termed senescence. The limited proliferative capacity imposed by senescence on cells impedes the accumulation of mutations necessary for tumorigenesis and prevents proliferation of cells at risk of neoplastic transformation. Opposite to the tumor suppressor function, accumulation of senescent cells in adult organisms is thought to contribute to aging by depleting the renewal capacity of tissues and stem/progenitor cells, and by interfering with tissue homeostasis and functions. The Antagonistic Pleiotropy Theory of senescence proposes that senescence is beneficial early in life by acting as a tumor suppressor, but harmful late in life by contributing to aging. Recent studies have provided evidence strongly supporting the tumor suppressor function of senescence, however, direct evidence supporting the role of senescence in aging remains largely elusive. In this thesis, I describe studies to test the Antagonistic Pleiotropy Theory of senescence in tumorigenesis and aging. The approach that I have taken is to alter the senescence response in vivo by changing the expression of a senescence regulator in mice. The consequence of altered senescence response on tumorigenesis and stem cell self-renewal was investigated. The senescence regulator I studied is Smurf2, which has been shown previously to activate senescence in culture. I hypothesized that the senescence response will be impaired by Smurf2 deficiency in vivo. Consequently, Smurf2-deficient mice will develop tumors at an increased frequency, but also gain enhanced self-renewal capacity of stem/progenitor cells with age. I generated a Smurf2-deficient mouse model, and found that Smurf2 deficiency attenuated p16 expression and impaired the senescence response in primary cells and tissues. Smurf2-deficient mice exhibited an increased susceptibility to spontaneous tumorigenesis, indicating that Smurf2 is a tumor suppressor. At the premalignant stage of tumorigenesis, a defective senescence response was documented in the Smurf2-deficient mice, providing a mechanistic link between impaired senescence response and increased tumorigenesis. The majority of tumors developed in Smurf2-deficent mice were B-cell lymphomas with an origin in germinal centers of the spleen and a phenotype resembling human diffuse large B-cell lymphoma (DLBCL). I discovered that Smurf2 mediated ubiquitination of YY1, a master regulator of germinal centers. Stabilization of YY1 in the absence of Smurf2 was responsible for increased cell proliferation and drove lymphomagenesis in Smurf2-deficient mice. Consistently, a significant decrease of Smurf2 expression was observed in human primary DLBCL samples, and more importantly, a low level of Smurf2 expression in DLBCL correlated with poor survival prognosis. Moreover, I found that hematopoietic stem cells (HSCs) in Smurf2-deficient mice had enhanced function compared to wild-type controls. This enhanced stem cell function was associated with increased cell proliferation and decreased p16 expression, suggesting that defective senescence response in Smurf2-deficient mice leads to increased self-renewal capacity of HSCs. My study, for the first time, offers direct genetic evidence of an important tumor suppressor function for Smurf2 as well as its function in contributing to stem cell aging. Collectively, these findings provide strong evidence supporting the Antagonistic Pleiotropy Theory of senescence in tumorigenesis and aging.
92

Requirement and Function of Hippo Pathway Signaling in the Mammalian Gastrointestinal Tract: A Dissertation

Cotton, Jennifer L. 21 October 2016 (has links)
In cancer, aberrant activation of developmental signaling pathways such as the Hippo Pathway has been shown to drive proliferation and invasion of cancer cells. Therefore, understanding the normal function of the Hippo Pathway during embryonic development can provide critical insight into how aberrant activity contributes to tumorigenesis. This dissertation explores the role of the Hippo Pathway members YAP and TAZ in gastrointestinal (GI) development and tumorigenesis. I use mouse genetics to systematically dissect the roles of YAP/TAZ in the endoderm-derived gastrointestinal epithelia and mesoderm-derived gastrointestinal mesenchyme during mammalian development. In the GI epithelium, I demonstrate that YAP/TAZ are dispensable for development and homeostasis. However, YAP/TAZ are required for Wnt pathway-driven tumorigenesis. I find that YAP/TAZ are direct transcriptional targets of Wnt/TCF4 signaling. In the GI mesenchyme, I describe a previously unknown requirement for YAP/TAZ activity during mammalian GI development. YAP/TAZ are involved in normal GI mesenchymal differentiation and function as transcriptional co-repressors in a progenitor cell population. In this way, YAP/TAZ act as molecular gatekeepers prior to Hedgehog-mediated differentiation into smooth muscle cells. This work unveils a previously unknown requirement for Hippo pathway signaling in the mammalian GI tract and a novel mechanism wherein YAP/TAZ function as transcriptional co-repressors to maintain a mesenchymal progenitor cell population.
93

Telomere Length Dynamics in Human T Cells: A Dissertation

O'Bryan, Joel M. 14 October 2011 (has links)
Telomere length has been shown to be a critical determinant of T cell replicative capacity and in vivo persistence in humans. We evaluated telomere lengths in virus-specific T cells to understand how they may both shape and be changed by the maintenance of memory T cells during a subsequent virus re-infection or reactivation. We used longitudinal peripheral blood samples from healthy donors and samples from a long-term HCV clinical interferon therapy trial to test our hypotheses. To assess T cell telomere lengths, I developed novel modifications to the flow cytometry fluorescence in situ hybridization (flowFISH) assay. These flowFISH modifications were necessary to enable quantification of telomere length in activated, proliferating T cells. Adoption of a fixation-permeabilization protocol with RNA nuclease treatment prior to telomere probe hybridization were required to produce telomere length estimates that were consistent with a conventional telomere restriction fragment length Southern blot assay. We hypothesized that exposure to a non-recurring, acute virus infection would produce memory T cells with longer telomeres than those specific for recurring or reactivating virus infections. We used two acute viruses, vaccinia virus (VACV) and influenza A virus (IAV) and two latent-reactivating herpesviruses, cytomegalovirus (CMV) and varicella zoster virus (VZV) for these studies. Combining a proliferation assay with flowFISH, I found telomeres in VACV-specific CD4 + T cells were longer than those specific for the recurring exposure IAV; data which support my hypothesis. Counter to my hypothesis, CMV-specific CD4 + T cells had longer telomeres than IAV-specific CD4 + T cells. We assessed virus-specific CD4 + T cell telomere length in five donors over a period of 8-10 years which allowed us to develop a linear model of average virus-specific telomere length changes. These studies also found evidence of long telomere, virus-specific CD45RA + T cell populations whose depletion may precede an increased susceptibility to latent virus reactivation. I tested the hypothesis that type I interferon therapy would accelerate T cell telomere loss using PBMC samples from a cohort of chronic hepatitis C virus patients who either did or did not receive an extended course of treatment with interferon-alpha. Accelerated telomere losses occurred in naïve T cells in the interferon therapy group and were concentrated in the first half of 48 months of interferon therapy. Steady accumulation of CD57 + memory T cells in the control group, but not the therapy group, suggested that interferon also accelerated memory turnover. Based on our data, I present proposed models of memory T cell maintenance and impacts of T cell telomere length loss as we age.
94

The Diverse Roles of γδ T Cells in Cancer: From Rapid Immunity to Aggressive Lymphoma

Schönefeldt, Susann, Wais, Tamara, Herling, Marco, Mustjoki, Satu, Bekiaris, Vasileios, Moriggl, Richard, Neubauer, Heidi A. 02 May 2023 (has links)
γδ T cells are unique players in shaping immune responses, lying at the intersection between innate and adaptive immunity. Unlike conventional αβ T cells, γδ T cells largely populate non-lymphoid peripheral tissues, demonstrating tissue specificity, and they respond to ligands in an MHC-independent manner. γδ T cells display rapid activation and effector functions, with a capacity for cytotoxic anti-tumour responses and production of inflammatory cytokines such as IFN-γ or IL-17. Their rapid cytotoxic nature makes them attractive cells for use in anti-cancer immunotherapies. However, upon transformation, γδ T cells can give rise to highly aggressive lymphomas. These rare malignancies often display poor patient survival, and no curative therapies exist. In this review, we discuss the diverse roles of γδ T cells in immune surveillance and response, with a particular focus on cancer immunity. We summarise the intriguing dichotomy between pro- and anti-tumour functions of γδ T cells in solid and haematological cancers, highlighting the key subsets involved. Finally, we discuss potential drivers of γδ T-cell transformation, summarising the main γδ T-cell lymphoma/leukaemia entities, their clinical features, recent advances in mapping their molecular and genomic landscapes, current treatment strategies and potential future targeting options.
95

Pesquisa de células-tronco tumorais em pacientes com linfoma não-Hodgkin / Research on cancer stem cells in patients with non-Hodgkin lymphoma

Silva, André Luiz Siqueira da 06 May 2014 (has links)
Células-tronco (CT) são células com um alto poder de indiferenciação, plasticidade celular e autorrenovação. Baseado na autorrenovação das CT, pesquisas recentes sugerem que uma falha durante este processo pode levar ao surgimento de um novo tipo de célula, sendo esta responsável pelo aparecimento, propagação e manutenção de diversos tipos de neoplasias. Além disso, apresenta resistência às formas de tratamento convencionais do câncer. Tais células foram denominadas de células-tronco tumorais (CTT). As CTT já foram caracterizadas em leucemias e em diversos tipos de tumores sólidos, porém, até o presente momento, não foram descritas em linfoma não- Hodgkin (LNH). Por esta razão, o presente estudo teve como objetivo investigar a presença de CTT em pacientes com LNH. Biópsias de linfonodos e medulas ósseas (MO) de pacientes com LNH foram as fontes utilizadas para isolar e cultivar as CT mesenquimais. Uma vez caracterizadas as CTT, estas foram inoculadas em camundongos imunodeprimidos para observar uma possível formação de tumor. As células isoladas de biópsias de linfonodo não apresentaram CD133 positivo, marcador de membrana presente nas CTT, bem como não expressaram os genes de indiferenciação (Nanog e Oct-4) e não formaram tumores quando inoculadas nos animais. Por outro lado, as células isoladas de MO apresentaram subpopulações de células positivas para o CD133, expressaram os genes de indiferenciação e, após inoculadas, desenvolveram tumores em camundongos imunodeprimidos. Com isto, concluise que as células isoladas dos linfonodos possam ser fibroblastos, indicando, assim, uma dificuldade de se isolar as CTT deste material. Enquanto que, como já bem descrito e estabelecido na literatura, CT foram facilmente isoladas de MO, entretanto, quando isoladas de pacientes LNH foi ainda possível caracterizar a presença de uma subpopulação de CTT / Stem cells (SC) are undifferentiated cells, with high capacity of cellular plasticity and self-renewal. Based on the self-renewal, recent research suggests that a failure during this process, it can lead to the emergence of a new type of cell, which is responsible for the development, propagation and maintenance of several types of malignancies. Moreover, it is resistant to the conventional treatment of cancer. These cells are denominated as cancer stem cells (CSC). CSC were already characterized in leukemia and in several types of solid tumors. However, until the present moment nothing was described in non- Hodgkin lymphoma (NHL). For this reason, the present study aimed to investigate the presence of CSC in patients with NHL. Biopsies of lymph nodes and bone marrow (BM) from patients with NHL were used for isolate and cultivate MSC. The techniques used to characterize these cells were flow cytometry and PCR. Once CSC were characterized, these cells were inoculated into immunodeficient animals to observe a possible tumor formation. Cells isolated from lymph node biopsies did not show the presence of CD133, a membrane marker present in the CSC, as well as did not express differentiation genes (Nanog and Oct-4) and no ability to form tumors in immunodeficient mice. In another hands, cells isolated from BM showed a subpopulation of CD133 positive, expressed undifferentiated genes and also after the inoculation was possible to observe the tumor formation in immunodeficient mice. In conclusion, isolated cells from lymph nodes could be fibroblasts, indicating a difficulty to isolate CSC from this material. Whereas, as already describe and establish in the literature, SC were easily isolate from MO. However, when isolated from NHL patients was possible to characterize the presence of CSC subpopulation
96

Análise do impacto das proteínas E6/E7 de diferentes variantes moleculares de HPV-16 sobre as vias de transdução de sinal mediadas por MAPK / Analysis of the impact of E6/E7 proteins of different molecular variants of HPV-16 upon MAPK signaling pathways

Hochmann Valls, Jimena Paola 07 July 2016 (has links)
A infecção persistente por HPV-16 está fortemente associada ao risco de desenvolvimento de neoplasias do colo do útero, vagina, vulva, pênis, canal anal e orofaringe. O estudo detalhado da variabilidade nucleotídica intra-típica de HPV-16 resultou em importantes achados no que concerne à filogenia e evolução viral, e à história natural das infecções. Variantes Asiático-Americanas (AA) e E-350G de HPV-16 foram associadas com maior risco de persistência da infecção viral e desenvolvimento de câncer de colo de útero quando comparadas à variante Européia protótipo (E-P ou E-350T), embora esta ainda apresente alto risco quando comparada aos outros tipos virais. Mais recentemente, diferenças funcionais entre as proteínas E6/E7 das distintas variantes moleculares de HPV- 16 estão sendo descritas, a fim de explicar as diferenças nas associações epidemiológicas observadas. Dados do nosso grupo apontaram para a transcrição aumentada do gene MEK2 especificamente em queratinócitos humanos primários (PHKs) transduzidos com E6/E7 da variante E-350G. Pelo exposto, objetivou-se: (1) Analisar os níveis de ativação de proteínas efetoras das vias de transdução de sinal mediadas por MAPK e PI3K/AKT em queratinócitos imortalizados por E6/E7 de três variantes moleculares de HPV-16 (AA, E-P, E-350G); (2) Analisar os efeitos das proteínas E6/E7 dessas variantes sob as vias de MAPK quanto à indução de fatores de transcrição; (3) Analisar o potencial transformante de PHKs imortalizados pelas diferentes variantes, e em cooperação com a proteína celular c-MYC; (4) Analisar o potencial de migração e invasão em PHKs imortalizados pelas diferentes variantes de HPV-16, e em cooperação com a proteína celular c-MYC. Neste estudo observou-se que a variante AA de HPV-16 induziu a maior ativação das vias de sinalização estudadas (MAPK, e PI3K/AKT). Ademais, PHKs imortalizados por esta variante apresentaram maior capacidade de migração, de invasão através de uma matriz de colágeno, além de maior potencial transformante. Adicionalmente, as células imortalizadas pela variante AA apresentaram maior expressão da proteína mesenquimal vimentina e diminuição dos níveis da proteína epitelial E-caderina, sugerindo ativação parcial de Transição Epitélio Mesênquima (EMT) nestes queratinócitos. Ademais, quando o oncogene c-MYC foi co-transduzido nas diferentes linhagens infectadas por E6/E7 de HPV-16, foi observado que em PHKs imortalizados pela variante AA também houve maior ativação da via de MAPK-ERK, maior migração, e um potencial transformante semelhante, em relação às células co-transduzidas pela variante E-350G e c-MYC. Em conjunto, estes dados sugerem que a variante AA de HPV-16 possui vantagem seletiva sob as outras variantes em promover transformação celular, migração e invasão, e isto poderia explicar, ao menos em parte, a maior prevalência desta variante no câncer cervical. Os resultados gerados neste estudo são de extrema relevância para avaliar o impacto da variabilidade intra-típica de HPV-16 sobre o potencial oncogênico observado em estudos epidemiológicos / Persistent infection with HPV-16 is strongly associated with risk of developing neoplasia in the uterine cervix, vagina, vulva, penis, anal canal and oropharynx. The detailed study of HPV-16 intra-typical nucleotide variability resulted in important findings regarding phylogeny and viral evolution, and the natural history of infections. Asian-American (AA) and E-350G variants of HPV-16 were associated with increased risk of persistent viral infection and development of cervical cancer compared to the European prototype (E-P or E-350T), although this variant still presents higher risk when compared to other viral types. More recently, functional differences between the E6/E7 proteins of distinct molecular variants of HPV-16 are being described, in order to explain the differences in the epidemiological associations observed. Data from our group pointed to increased transcription of the MEK2 gene specifically in primary human keratinocytes (PHKs) transducing E6/E7 of the E-350G variant. Consequently, the aims of this study were: 1) To examine the activation levels of effector proteins of the signal transduction pathways mediated by MAPK and PI3K/AKT in PHKs immortalized by E6/E7 of three different molecular variants of HPV-16 (AA, E-P, E-350G); (2) To analyze the effects of E6/E7 of different molecular variants of HPV-16 upon MAPK pathways concerning the induction of transcription factors; (3) To analyze the transforming potential of PHKs immortalized by different molecular variants of HPV-16, and in cooperation with the cellular protein c- MYC; (4) To analyze the potential of migration and invasion in PHKs immortalized by different molecular variants of HPV-16, and in cooperation with the cellular protein c- MYC. In this study we observed that the AA variant of HPV-16 induced higher activation of both signaling pathways studied (MAPK, and PI3K/AKT). Furthermore, this variant presented increased migration capacity, higher invasion through a collagen matrix, and greater transforming potential. Moreover, cells immortalized by the AA variant showed higher expression of the mesenchymal protein vimentin and a decrease of the epithelial protein E-cadherin, suggesting partial activation of Epithelial Mesenchymal Transition (EMT). In addition, when the c-MYC oncogene was co-transduced in the different cells lines infected with HPV-16 E6/E7, we observed that in PHKs immortalized by the AA variant there was also an enhanced activation of the MAPK-ERK pathway, a higher ability to migrate, and similar transformation potential in comparison with cells co-transduced with the E-350G variant and c-MYC. Taken together, this data suggest that the AA molecular variant of the HPV-16 has a selective advantage over the other variants to promote cell transformation, migration and invasion, and this could partly explain the higher prevalence of this variant in cervical cancer. The results generated in this study are very important to assess the impact of intra-typical variability of HPV-16 on the oncogenic potential observed in epidemiological studies
97

Functional Analysis of Ing1 and Ing4 in Cell Growth and Tumorigenesis: a Dissertation

Coles, Andrew H. 02 May 2008 (has links)
The five member Inhibitor of Growth (ING) gene family has been proposed to participate in the regulation of cell growth, DNA repair, inflammation, chromatin remodeling, and tumor suppression. All ING proteins contain a PHD motif implicated in binding to methylated histones and are components of large chromatin remodeling complexes containing histone acetyltransferase (HAT) and histone deacetylase (HDAC) enzymes, suggesting a role for ING proteins in regulating gene transcription. Additionally, forced overexpression studies performed in vitro have indicated that several ING proteins can interact with the p53 tumor suppressor protein and/or the NF-кB protein complex. Since these two proteins play well-established roles in numerous biological processes, several models have been proposed in the literature that ING proteins act as key regulators of cell growth and tumor suppression not only through their ability to modify gene transcription but also through their ability to alter p53 and NF-кB activity. However, these models have yet to be substantiated by in vivo experimentation. Research described in this dissertation utilizes a genetic approach to analyze the functional role of two ING proteins, Ing1b and Ing4, in regulating cell growth, inflammation, and tumorigenesis. Loss of p37Ing1b increased proliferation and DNA damage-induced apoptosis irrespective of p53 status in primary cells and mice. However, all other p53 responses were unperturbed. Additionally, p37Ing1b suppressed the formation of spontaneous follicular B-cell lymphomas in mice. Analysis of B-cells from these mice indicates that p37Ing1b inhibits the proliferation of B cells regardless of p53 status, and loss of p53 greatly accelerates the rate of B-cell lymphomagenesis in p37Ing1b-null mice, with double null mice presenting with aggressive diffuse large B-cell lymphomas (DLBL). Marker gene analysis in p37Ing1b/p53 null tumors indicates that these mice develop both non-germinal center and germinal center B cell-like DLBL, and also documents upregulation of NF-кB activity in both B-cells and tumors. Similarly, Ing4 -/- mice did not have altered p53 growth arrest or apoptosis, and did not develop spontaneous tumors. However, Ing4 -/- cells displayed reduced proliferation, and Ing4 -/- mice and macrophages were hypersensitive to treatment with LPS and exhibited decreased IкB gene expression and increased NF-кB activity. These studies demonstrate that Ing proteins can function to suppress spontaneous tumorigenesis and/or inflammatory responses without altering p53 activity, and identifies NF-кB as a biologically-relevant in vivo target of Ing1 and Ing4 signaling.
98

Pesquisa de células-tronco tumorais em pacientes com linfoma não-Hodgkin / Research on cancer stem cells in patients with non-Hodgkin lymphoma

André Luiz Siqueira da Silva 06 May 2014 (has links)
Células-tronco (CT) são células com um alto poder de indiferenciação, plasticidade celular e autorrenovação. Baseado na autorrenovação das CT, pesquisas recentes sugerem que uma falha durante este processo pode levar ao surgimento de um novo tipo de célula, sendo esta responsável pelo aparecimento, propagação e manutenção de diversos tipos de neoplasias. Além disso, apresenta resistência às formas de tratamento convencionais do câncer. Tais células foram denominadas de células-tronco tumorais (CTT). As CTT já foram caracterizadas em leucemias e em diversos tipos de tumores sólidos, porém, até o presente momento, não foram descritas em linfoma não- Hodgkin (LNH). Por esta razão, o presente estudo teve como objetivo investigar a presença de CTT em pacientes com LNH. Biópsias de linfonodos e medulas ósseas (MO) de pacientes com LNH foram as fontes utilizadas para isolar e cultivar as CT mesenquimais. Uma vez caracterizadas as CTT, estas foram inoculadas em camundongos imunodeprimidos para observar uma possível formação de tumor. As células isoladas de biópsias de linfonodo não apresentaram CD133 positivo, marcador de membrana presente nas CTT, bem como não expressaram os genes de indiferenciação (Nanog e Oct-4) e não formaram tumores quando inoculadas nos animais. Por outro lado, as células isoladas de MO apresentaram subpopulações de células positivas para o CD133, expressaram os genes de indiferenciação e, após inoculadas, desenvolveram tumores em camundongos imunodeprimidos. Com isto, concluise que as células isoladas dos linfonodos possam ser fibroblastos, indicando, assim, uma dificuldade de se isolar as CTT deste material. Enquanto que, como já bem descrito e estabelecido na literatura, CT foram facilmente isoladas de MO, entretanto, quando isoladas de pacientes LNH foi ainda possível caracterizar a presença de uma subpopulação de CTT / Stem cells (SC) are undifferentiated cells, with high capacity of cellular plasticity and self-renewal. Based on the self-renewal, recent research suggests that a failure during this process, it can lead to the emergence of a new type of cell, which is responsible for the development, propagation and maintenance of several types of malignancies. Moreover, it is resistant to the conventional treatment of cancer. These cells are denominated as cancer stem cells (CSC). CSC were already characterized in leukemia and in several types of solid tumors. However, until the present moment nothing was described in non- Hodgkin lymphoma (NHL). For this reason, the present study aimed to investigate the presence of CSC in patients with NHL. Biopsies of lymph nodes and bone marrow (BM) from patients with NHL were used for isolate and cultivate MSC. The techniques used to characterize these cells were flow cytometry and PCR. Once CSC were characterized, these cells were inoculated into immunodeficient animals to observe a possible tumor formation. Cells isolated from lymph node biopsies did not show the presence of CD133, a membrane marker present in the CSC, as well as did not express differentiation genes (Nanog and Oct-4) and no ability to form tumors in immunodeficient mice. In another hands, cells isolated from BM showed a subpopulation of CD133 positive, expressed undifferentiated genes and also after the inoculation was possible to observe the tumor formation in immunodeficient mice. In conclusion, isolated cells from lymph nodes could be fibroblasts, indicating a difficulty to isolate CSC from this material. Whereas, as already describe and establish in the literature, SC were easily isolate from MO. However, when isolated from NHL patients was possible to characterize the presence of CSC subpopulation
99

Análise do impacto das proteínas E6/E7 de diferentes variantes moleculares de HPV-16 sobre as vias de transdução de sinal mediadas por MAPK / Analysis of the impact of E6/E7 proteins of different molecular variants of HPV-16 upon MAPK signaling pathways

Jimena Paola Hochmann Valls 07 July 2016 (has links)
A infecção persistente por HPV-16 está fortemente associada ao risco de desenvolvimento de neoplasias do colo do útero, vagina, vulva, pênis, canal anal e orofaringe. O estudo detalhado da variabilidade nucleotídica intra-típica de HPV-16 resultou em importantes achados no que concerne à filogenia e evolução viral, e à história natural das infecções. Variantes Asiático-Americanas (AA) e E-350G de HPV-16 foram associadas com maior risco de persistência da infecção viral e desenvolvimento de câncer de colo de útero quando comparadas à variante Européia protótipo (E-P ou E-350T), embora esta ainda apresente alto risco quando comparada aos outros tipos virais. Mais recentemente, diferenças funcionais entre as proteínas E6/E7 das distintas variantes moleculares de HPV- 16 estão sendo descritas, a fim de explicar as diferenças nas associações epidemiológicas observadas. Dados do nosso grupo apontaram para a transcrição aumentada do gene MEK2 especificamente em queratinócitos humanos primários (PHKs) transduzidos com E6/E7 da variante E-350G. Pelo exposto, objetivou-se: (1) Analisar os níveis de ativação de proteínas efetoras das vias de transdução de sinal mediadas por MAPK e PI3K/AKT em queratinócitos imortalizados por E6/E7 de três variantes moleculares de HPV-16 (AA, E-P, E-350G); (2) Analisar os efeitos das proteínas E6/E7 dessas variantes sob as vias de MAPK quanto à indução de fatores de transcrição; (3) Analisar o potencial transformante de PHKs imortalizados pelas diferentes variantes, e em cooperação com a proteína celular c-MYC; (4) Analisar o potencial de migração e invasão em PHKs imortalizados pelas diferentes variantes de HPV-16, e em cooperação com a proteína celular c-MYC. Neste estudo observou-se que a variante AA de HPV-16 induziu a maior ativação das vias de sinalização estudadas (MAPK, e PI3K/AKT). Ademais, PHKs imortalizados por esta variante apresentaram maior capacidade de migração, de invasão através de uma matriz de colágeno, além de maior potencial transformante. Adicionalmente, as células imortalizadas pela variante AA apresentaram maior expressão da proteína mesenquimal vimentina e diminuição dos níveis da proteína epitelial E-caderina, sugerindo ativação parcial de Transição Epitélio Mesênquima (EMT) nestes queratinócitos. Ademais, quando o oncogene c-MYC foi co-transduzido nas diferentes linhagens infectadas por E6/E7 de HPV-16, foi observado que em PHKs imortalizados pela variante AA também houve maior ativação da via de MAPK-ERK, maior migração, e um potencial transformante semelhante, em relação às células co-transduzidas pela variante E-350G e c-MYC. Em conjunto, estes dados sugerem que a variante AA de HPV-16 possui vantagem seletiva sob as outras variantes em promover transformação celular, migração e invasão, e isto poderia explicar, ao menos em parte, a maior prevalência desta variante no câncer cervical. Os resultados gerados neste estudo são de extrema relevância para avaliar o impacto da variabilidade intra-típica de HPV-16 sobre o potencial oncogênico observado em estudos epidemiológicos / Persistent infection with HPV-16 is strongly associated with risk of developing neoplasia in the uterine cervix, vagina, vulva, penis, anal canal and oropharynx. The detailed study of HPV-16 intra-typical nucleotide variability resulted in important findings regarding phylogeny and viral evolution, and the natural history of infections. Asian-American (AA) and E-350G variants of HPV-16 were associated with increased risk of persistent viral infection and development of cervical cancer compared to the European prototype (E-P or E-350T), although this variant still presents higher risk when compared to other viral types. More recently, functional differences between the E6/E7 proteins of distinct molecular variants of HPV-16 are being described, in order to explain the differences in the epidemiological associations observed. Data from our group pointed to increased transcription of the MEK2 gene specifically in primary human keratinocytes (PHKs) transducing E6/E7 of the E-350G variant. Consequently, the aims of this study were: 1) To examine the activation levels of effector proteins of the signal transduction pathways mediated by MAPK and PI3K/AKT in PHKs immortalized by E6/E7 of three different molecular variants of HPV-16 (AA, E-P, E-350G); (2) To analyze the effects of E6/E7 of different molecular variants of HPV-16 upon MAPK pathways concerning the induction of transcription factors; (3) To analyze the transforming potential of PHKs immortalized by different molecular variants of HPV-16, and in cooperation with the cellular protein c- MYC; (4) To analyze the potential of migration and invasion in PHKs immortalized by different molecular variants of HPV-16, and in cooperation with the cellular protein c- MYC. In this study we observed that the AA variant of HPV-16 induced higher activation of both signaling pathways studied (MAPK, and PI3K/AKT). Furthermore, this variant presented increased migration capacity, higher invasion through a collagen matrix, and greater transforming potential. Moreover, cells immortalized by the AA variant showed higher expression of the mesenchymal protein vimentin and a decrease of the epithelial protein E-cadherin, suggesting partial activation of Epithelial Mesenchymal Transition (EMT). In addition, when the c-MYC oncogene was co-transduced in the different cells lines infected with HPV-16 E6/E7, we observed that in PHKs immortalized by the AA variant there was also an enhanced activation of the MAPK-ERK pathway, a higher ability to migrate, and similar transformation potential in comparison with cells co-transduced with the E-350G variant and c-MYC. Taken together, this data suggest that the AA molecular variant of the HPV-16 has a selective advantage over the other variants to promote cell transformation, migration and invasion, and this could partly explain the higher prevalence of this variant in cervical cancer. The results generated in this study are very important to assess the impact of intra-typical variability of HPV-16 on the oncogenic potential observed in epidemiological studies
100

Etude des rôles des modifications post-traductionnelles de la protéine Tax du virus HTLV-1 dans ses activités transcriptionnelles et transformantes / Functions of post-translational modifications of HTLV-1 Tax protein on its transcriptional and transforming activities

Lodewick, Julie 09 June 2008 (has links)
La protéine Tax du virus HTLV-1 a les propriétés d'un oncogène viral et joue un rôle important dans l'induction de la transformation cellulaire menant à l'ATL. L'activité oncogène de Tax résulte d'effets pléiotropes sur divers mécanismes cellulaires y compris l'activation de l'expression de gènes cellulaires spécifiques par la voie NF-&61547;B et la dérégulation de la progression du cycle cellulaire. Dans ce travail, nous avons mis en évidence que Tax est une protéine hautement modifiée dans diverses lignées cellulaires y compris dans les lymphocytes T transformés par HTLV-1. L'ensemble des modifications post-traductionnelles de Tax forment une suite hiérarchisée qui contrôlent la localisation intracellulaire de Tax, sa capacité d'activer les kinases IKK et la voie de signalisation des facteurs NF-&61547;B et sa capacité d'induire un arrêt dans la progression de la mitose. En effet, la phosphorylation de Tax contrôle son ubiquitination et son passage dans le noyau où elle est sumoylée et acétylée. L’ubiquitination et la sumoylation de Tax agissent de manière concertée pour permettre l’activation de l’expression des gènes par la voie NF-& / Doctorat en Sciences agronomiques et ingénierie biologique / info:eu-repo/semantics/nonPublished

Page generated in 0.1261 seconds