• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 377
  • 287
  • 34
  • 30
  • 23
  • 23
  • 12
  • 11
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 888
  • 888
  • 625
  • 234
  • 161
  • 142
  • 133
  • 114
  • 114
  • 114
  • 86
  • 83
  • 74
  • 72
  • 72
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Gene expression analysis of squamous cell carcinoma of the oesophagus using a novel real time PCR probe system

Malik, Neelam. January 2010 (has links)
Squamous cell carcinoma of the oesophagus (OSCC) is a common malignancy that occurs with high frequency in certain parts of the world, including South Africa. The aetiology of OSCC has remained unclear although many studies suggest that it is caused by a combination of variable risk factors. Recent reports implicate a variety of genetic factors in the carcinogenesis of OSCC but their involvement is yet to be defined. / Thesis (M.Med)-University of KwaZulu-Natal, Durban, 2010.
292

Das Basalzellkarzinom der periokulären Region. Auswertung des Patientengutes der Universitätsaugenklinik Leipzig von 2003-2006. Epidemiologische, klinische und therapeutische Aspekte.

Weidermann, Frances 01 June 2015 (has links) (PDF)
Das Basalzellkarzinom ist nicht nur die häufigste Neoplasie der Haut generell, es stellt auch die häufigste maligne Entität im Bereich der Augenlider dar. Es handelt sich um eine Erkrankung vornehmlich des höheren Lebensalters, jedoch sind auch zunehmend jüngere Patienten betroffen. Trotz geringer Metastasierungstendenz kann es bei Tiefeninfiltration zu schweren Krankheitsverläufen kommen. Aufgrund wachsender Inzidenz und damit stetig steigender Kosten im Gesundheitswesen sollte die Behandlungsstrategie kontinuierlich überprüft und optimiert werden. Ziel der vorliegenden Arbeit ist es, ein ausgewähltes Patientenkollektiv im Zeitraum von 2003 bis 2006 hinsichtlich epidemiologischer, klinischer und therapeutischer Aspekte zu analysieren und mit der Literatur zu vergleichen. Therapie der Wahl ist die chirurgische Exzision. Es wurden 216 Fälle von 204 Patienten auf Grundlage der Krankenakte detailliert untersucht und ausgewertet. Zwar konnten keine signifikanten Prädiktoren zur Vorhersage des Behandlungsverlaufes und der Rezidiventwicklung gefunden werden, anhand der 216 klinischen Fälle können die aktuelle Datenlage aber unterstützt und Empfehlungen zur Therapie und Nachbehandlung erweitert werden.
293

Late Local and Pulmonary Recurrence of Renal Cell Carcinoma

Fröhner, Michael, Manseck, Andreas, Lossnitzer, Arndt, Wirth, Manfred P. 17 February 2014 (has links) (PDF)
Locally recurrent renal cell carcinoma and multiple pulmonary metastases were successfully resected in a patient 20 years after nephrectomy. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
294

Defining the roles of autophagy in ovarian carcinoma

Spowart, Jaeline E. 17 July 2012 (has links)
Ovarian cancer is a significant concern for women’s health as it is the most lethal of all gynaecological malignancies. One of the reasons for the high mortality of this disease is that traditionally used chemotherapeutic treatments tend to have poor initial or sustained efficacy against ovarian tumours. Resistance to such treatments may in part be mediated by autophagy, a cell survival process in which unnecessary or damaged components of the cytoplasm are engulfed within a double-membraned vesicle known as an autophagosome and ultimately degraded upon fusion of the autophagosome with a lysosome. Autophagy has been shown to be employed by cells to aid in their survival under stresses such as nutrient deprivation, hypoxia, chemotherapy treatment, and growth factor withdrawal. As these stresses are commonly encountered by ovarian cancer cells, it is possible that autophagy promotes ovarian cancer cell survival. This thesis aims to investigate which stimuli induce autophagy in ovarian cancer cells and whether or not this induction can promote cell survival. In addition, there is a particular focus on the comparison of autophagy utilization between subtypes of ovarian cancer, as the subtypes are in fact considered different diseases and may vary in their usage of autophagy. The first chapter of this thesis provides relevant background information on autophagy as well as ovarian cancer and its subtypes. In the second chapter, I describe studies in which tumours from a large cohort of patients with ovarian cancer are assessed for LC3A, a marker of autophagy, in addition to markers of other cellular processes including hypoxia. Here I found that LC3A was significantly associated with poor patient survival in patients with the clear cell subtype of ovarian cancer, but not other subtypes. I also found that LC3A expression was associated with markers of hypoxia in the clear cell patient tumours and that clear cell carcinoma cell lines preferentially induced autophagy in response to hypoxia in vitro as compared to cell lines of the high-grade serous subtype. These results indicate that clear cell ovarian tumours are uniquely dependent upon autophagy in response to hypoxia. In the third chapter, I investigated the autophagic response to treatment with the standard ovarian cancer chemotherapy drugs carboplatin and paclitaxel in a syngeneic mouse model of ovarian cancer. I found that these drugs did indeed induce autophagy and that the cancer cells utilized autophagy to promote resistance to these chemotherapeutics. In addition, when the tumour cells were grown in syngeneic mice, treatment with the autophagy inhibitor hydroxychloroquine resulted in a significant suppression of tumour growth. Together, my findings indicate that further investigation into the use of autophagy inhibitors in ovarian cancer patients is warranted and that different specific rational drug combinations for each subtype will likely yield optimal results. / Graduate
295

SATB2 is a Modulator of p63(alpha) in Cancer and Development

Chung, Jacky 14 August 2013 (has links)
p63(alpha) belongs to the p53-family of proteins and has full-length (TA) as well as truncated ((delta)N) p63(alpha) isoforms. Previous studies have shown that TA and (delta)Np63(alpha) play multiple roles in cancer and development. In cancer, (delta)Np63(alpha)-mediated transcriptional repression promotes oncogenesis while transactivation by TAp63(alpha) is critical during development. Despite their importance, little is known regarding how TA or (delta)Np63(alpha) is regulated and factors influencing the function of p63(alpha) have yet to be identified. Here, I identify Special AT-rich Binding Protein 2 (SATB2) as a protein that forms a complex with and modulates the function of p63(alpha). SATB2 is detected in multiple head and neck squamous cell carcinoma (HNSCC) cell lines that also show overexpression of (delta)Np63(alpha). Histological analysis on tumor specimens revealed that SATB2 is predominantly expressed in advanced-stage HNSCC cancers. SATB2 increases DNA-binding capabilities of (delta)Np63(alpha), augmenting (delta)Np63(alpha) repression of apoptotic gene expression. Knockdown of SATB2 in HNSCC cells sensitizes cancer cells towards chemotherapy- and radiation-induced apoptosis. These results indicate that SATB2 functions as a co-factor and promotes the transrepression function of (delta)Np63(alpha) in HNSCC. In addition to examining the role of SATB2 in HNSCC, I also investigated the effect of SATB2 on the ability of TAp63(alpha) to induce gene expression. In particular, perp has been shown to be a critical downstream target of p63 during development. ChIP analysis revealed that while SATB2 increases TAp63(alpha)-binding to apoptotic gene promoters, SATB2 decreases TAp63(alpha) localization on the perp promoter and inhibits p63(alpha)-mediated perp induction. SATB2 more readily interacts with human disease-associated p63(alpha) mutations that are found in the SAM domain, further inhibiting transcriptional properties of these mutants. Together, my results suggest that SATB2 is an important modulator of p63(alpha) in cancer and development.
296

SATB2 is a Modulator of p63(alpha) in Cancer and Development

Chung, Jacky 14 August 2013 (has links)
p63(alpha) belongs to the p53-family of proteins and has full-length (TA) as well as truncated ((delta)N) p63(alpha) isoforms. Previous studies have shown that TA and (delta)Np63(alpha) play multiple roles in cancer and development. In cancer, (delta)Np63(alpha)-mediated transcriptional repression promotes oncogenesis while transactivation by TAp63(alpha) is critical during development. Despite their importance, little is known regarding how TA or (delta)Np63(alpha) is regulated and factors influencing the function of p63(alpha) have yet to be identified. Here, I identify Special AT-rich Binding Protein 2 (SATB2) as a protein that forms a complex with and modulates the function of p63(alpha). SATB2 is detected in multiple head and neck squamous cell carcinoma (HNSCC) cell lines that also show overexpression of (delta)Np63(alpha). Histological analysis on tumor specimens revealed that SATB2 is predominantly expressed in advanced-stage HNSCC cancers. SATB2 increases DNA-binding capabilities of (delta)Np63(alpha), augmenting (delta)Np63(alpha) repression of apoptotic gene expression. Knockdown of SATB2 in HNSCC cells sensitizes cancer cells towards chemotherapy- and radiation-induced apoptosis. These results indicate that SATB2 functions as a co-factor and promotes the transrepression function of (delta)Np63(alpha) in HNSCC. In addition to examining the role of SATB2 in HNSCC, I also investigated the effect of SATB2 on the ability of TAp63(alpha) to induce gene expression. In particular, perp has been shown to be a critical downstream target of p63 during development. ChIP analysis revealed that while SATB2 increases TAp63(alpha)-binding to apoptotic gene promoters, SATB2 decreases TAp63(alpha) localization on the perp promoter and inhibits p63(alpha)-mediated perp induction. SATB2 more readily interacts with human disease-associated p63(alpha) mutations that are found in the SAM domain, further inhibiting transcriptional properties of these mutants. Together, my results suggest that SATB2 is an important modulator of p63(alpha) in cancer and development.
297

The combination of pan-ErbB tyrosine kinase inhibitor CI-1033 and lovastatin: A potential novel therapeutic approach in squamous cell carcinoma of the head and neck

Guimond, Tanya 28 September 2011 (has links)
The ErbB family of receptors are key regulators of growth, differentiation, migration and survival of epithelial cells. CI-1033 is an irreversible pan-ErbB tyrosine kinase inhibitor that has the ability to inhibit EGFR function but has shown limited therapeutic efficacy. Lovastatin targets the activity of HMG-CoA reductase, the rate-limiting step in the mevalonate pathway. In this study, the ability of lovastatin to potentiate the cytotoxic effects of CI-1033 was evaluated. The combination of lovastatin and CI-1033 exhibited some cooperative cytotoxic activity in a squamous cell carcinoma–derived cell line. This combination resulted in enhanced cell death by induction of a potent apoptotic response. Furthermore, this drug combination inhibited EGF-induced EGFR autophosphorylation and activation of the downstream signaling effectors, ERK and AKT. These findings suggest that combining lovastatin and tyrosine kinase inhibitors may represent a novel combinational therapeutic approach in squamous cell carcinoma of the head and neck.
298

Cell Death of Human Oral Squamous Cell Carcinoma Cell Line Induced by Herpes Simplex Virus Thymidine Kinase Gene and Ganciclovir

Nishikawa, Masaya, Hayashi, Yasushi, Yamamoto, Noriyuki, Fukui, Takafumi, Fukuhara, Hirokazu, Mitsudo, Kenji, Tohnai, Iwai, Ueda, Minoru, Mizuno, Masaaki, Yoshida, Jun 11 1900 (has links)
No description available.
299

Suicide gene therapy using adenovirus vector for human oral squamous carcinoma cell line In vitro

Yamamoto, Noriyuki, Hayashi, Yasushi, Kagami, Hideaki, Fukui, Takafumi, Fukuhara, Hirokazu, Tohnai, Iwai, Ueda, Minoru, Mizuno, Masaaki, Yoshida, Jun 06 1900 (has links)
No description available.
300

Discovery of novel downstream target genes regulated by the hedgehog pathway

Ingram, Wendy Jill Unknown Date (has links)
Sonic hedgehog (Shh) is a secreted morphogen involved in patterning a wide range of structures in the developing embryo. When cells receive the Shh signal a cascade of effects begin which in turn regulate downstream target genes. The genes controlled by Sonic hedgehog provide messages instructing cells how to differentiate or when to divide. Disruption of the hedgehog signalling cascade leads to a number of developmental disorders and plays a key role in the formation of a range of human cancers. Patched, the receptor for Shh, acts as a tumour suppressor and is mutated in naevoid basal cell carcinoma syndrome (NBCCS). NBCCS patients display a susceptibility to tumour formation, particularly for basal cell carcinoma (BCC). The discovery of Patched mutations in sporadic BCCs and other tumour types further highlights the importance of this pathway to human cancer. The identification of genes regulated by hedgehog is crucial for understanding how disruption of this pathway leads to neoplastic transformation. It is assumed that the abnormal expression of such genes plays a large role in directing cells to divide at inappropriate times. Only a small number of genes controlled by Shh have been described in vertebrate tissues. In the work presented in this thesis a Sonic hedgehog responsive embryonic mouse cell line, C3H/10T1/2, was used as a model system for hedgehog target gene discovery. Known downstream target genes were profiled to determine their induction kinetics, building up a body of knowledge on the response to Shh for this cell type. During this work, it was discovered that C3H/10T1/2 cells do not become fully competent to respond to Shh stimulation until the cells reach a critical density, a factor that had to be taken into account when determining timepoints of interest for further investigation. Several techniques were employed to identify genes that show expression changes between Shh stimulated and control cells. In one of these techniques, RNA from cell cultures activated with Shh was used to interrogate cDNA microarrays, and this provided many insights into the downstream transcriptional consequences of hedgehog stimulation. Microarrays consist of thousands of spots of DNA of known sequence gridded onto glass slides. Experiments using this technology allow the expression level of thousands of genes to be measured simultaneously. Independent stimulation methods combined with northern blotting were used to investigate individual genes of interest, allowing genuine targets to be confirmed and false positives eliminated. This resulted in the identification of eleven target genes. Seven of these are induced by Sonic hedgehog (Thrombomodulin (Thbd), Glucocorticoid induced leucine zipper (Gilz), Brain factor 2 (Bf2), Nuclear receptor subfamily 4, group A, member 1 (Nr4a1), Insulin-like growth factor 2 (Igf2), Peripheral myelin protein 22 (Pmp22), Lim and SH3 Protein 1 (Lasp1)), and four are repressed (Secreted frizzled related proteins 1 and 2 (Sfrp1 and Sfrp2), Macrophage inflammatory protein-1 gamma (Mip-1?), and Anti-mullerian hormone (Amh)). The majority of these represent novel downstream genes not previously reported as targets of Shh. The new target genes have a diverse range of functions, and include transcriptional regulators and molecules known to be involved in regulating cell growth or apoptosis. The corroboration of genes previously implicated in hedgehog signalling, along with the finding of novel targets, demonstrates both the validity and power of the C3H/10T1/2 system for Shh target gene discovery. The identification of novel Sonic hedgehog responsive genes provides candidates whose abnormal expression may be decisive in initiating tumour formation and future studies will investigate their role in development and disease. It is expected that such findings will provide vital clues to the aetiology of various human cancers, and that an understanding of their roles may ultimately provide greater opportunities in the future design of anti-tumour therapies.

Page generated in 0.0705 seconds