• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 390
  • 140
  • 59
  • 46
  • 18
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 790
  • 790
  • 192
  • 136
  • 134
  • 114
  • 110
  • 91
  • 87
  • 80
  • 78
  • 63
  • 59
  • 58
  • 50
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
441

Characterization Of A Novel Interactor/substrate For The Pro-apoptotic Serine Protease Omi/htra2

Stratico, Valerie Anne 01 January 2004 (has links)
OmiHtrA2 is a highly conserved mammalian serine protease that belongs to the HtrA family of proteins. Omi shares homology with the bacterially expressed heat shock protease HtrA, which functions as a protease at higher temperatures and a chaperone at lower temperatures. Additionally, Omi shares sequence similarity with the mammalian homologs L56/HtrA1 and PRSP/HtrA3. Omi was first isolated as an interacting protein of Mxi2, an alternatively spliced form of the p38 stress-activated kinase, using a modified yeast two-hybrid system. Omi localizes in the mitochondria and in response to apoptotic stimuli the mature form of this protein translocates to the cytoplasm. In the cytoplasm Omi participates in both the caspase-dependent as well as caspase-independent apoptosis. Additionally, recent studies suggest that Omi may have another unique function, maintaining homeostasis within the mitochondria. In an effort to further elucidate the function of Omi, a yeast two-hybrid screening was performed to isolate novel interacting proteins. This screening identified a novel protein (HOPS), as a specific interactor of Omi. The predicted amino acid sequence of this protein does not provide any information about its potential function in mammalian cells. However, experiments show that HOPS is cleaved in vitro by Omi. Furthermore, in response to apoptotic stimuli, HOPS is also degraded in vivo. This study suggests that HOPS could be a physiological substrate of Omi that is cleaved and removed during apoptosis.
442

Use Of Cerium Oxide Nanoparticles For Protection Against Radiation-induced Cell Death

Colon, Jimmie 01 January 2006 (has links)
The ability of engineered cerium oxide nanoparticles to confer radioprotection was examined. Rat astrocytes were treated with cerium oxide nanoparticles to a final concentration of 10 nanomolar, irradiated with a single 10 Gy dose of ionizing radiation and cell death was evaluated by propidium iodine uptake at 24 and 48 hours after radiation insult. Treatment of rat astrocytes with nanoceria resulted in an approximate 3-fold decrease in radiation induced death. These results suggest that the nanoceria are conferring protection from radiation induced cell death. Further experiments with human cells were conducted. Human normal and tumor cells (MCF-7 and CRL8798) were treated with the same dosage of cerium oxide nanoparticles, irradiated and evaluated for cell survival. Treatment of normal cells (MCF-7) conferred nearly 99% protection from radiation-induced cell death while the same concentration of nanoceria showed almost no protection in tumor cells (CRL8798). TUNEL analysis results of similarly treated cells demonstrated that nanoceria reduced radiation-induced cell death by 3-fold in normal breast cells but not in MCF-7 tumor cell lines when cultured under the same conditions. We concluded that cerium oxide nanoparticles confer radioprotection in a normal human breast line (CRL 8798) but not in a human breast tumor line (MCF-7). It is hoped that the outcome of this study will guide future endeavors toward a better elucidation of the molecular pathways involved in the protection of cells with nanoceria against radiation-induced cell death, as well as the minimization of the bystander effect in radiation therapy.
443

The Endocytic Protein Numb Regulates App Metabolism And Notch Signaling: Implications For Alzheimer's Disease

Kyriazis, George 01 January 2008 (has links)
Increased production of amyloid beta (A-beta) peptide, via altered proteolytic cleavage of amyloid protein precursor (APP), and abnormalities in neuronal calcium homeostasis play central roles in the pathogenesis of Alzheimer's disease (AD). Notch1, a membrane receptor that controls cell fate decisions during development of the nervous system, has been linked to AD because it is a substrate for the gamma-secretase protein complex in which mutations cause early-onset inherited AD. Numb is an evolutionarily conserved endocytic adapter involved in the internalization of transmembrane receptors. Mammals produce four Numb isoforms that differ in two functional domains, a phosphotyrosine-binding domain (PTB) and a proline-rich region (PRR). Recent studies showed that the PTB domain of Numb interacts with the cytoplasmic tails of APP and Notch but the functional relevance of these interactions with respect to AD pathogenesis is not clear. In the current studies, we proposed to investigate the biological consequences of the interaction of the Numb proteins with APP and Notch in neural cells stably overexpressing each of the four human Numb proteins. In the first part of our studies, we found that expression of the Numb isoforms lacking the insert in the PTB (SPTB-Numb) caused the abnormal accumulation of cellular APP in the early endosomes, and increased the levels of C-terminal APP fragments and A-beta. By contrast, expression of the Numb isoforms with the insert in PTB (LPTB-Numb) leads to the depletion of cellular APP and coincides with significantly lower production of APP derivatives and A-beta. The contrasting effects of the Numb isoforms on APP metabolism were not attributed to differences in the expression of APP nor the activities of the various APP-processing secretases. In the second part of our studies, we found that expression of SPTB-Numb protein enhances neuronal vulnerability to serum deprivation-induced cell death by a mechanism involving the dysregulation of cellular calcium homeostasis. Neural cells expressing SPTB-Numb exhibited enhanced Notch activity, which markedly upregulated the expression of transient receptor potential canonical 6 (TRPC6) channels enhancing calcium entry in response to store depletion. We also found that serum deprivation increased TRPC6 expression, mediating the serum deprivation-induced death in neural cells. Interestingly, expression of LPTB-Numb protein suppressed serum deprivation-induced activation of Notch and the subsequent upregulation of TRPC6 and cell death. Finally, we showed that the Numb proteins differentially impact Notch activation by altering the endocytic trafficking and processing of Notch. Taken together, these studies demonstrate that aberrant expression of the Numb proteins may influence APP metabolism and Notch-mediated cellular responses to injury by altering their endocytic trafficking and processing.
444

Dynamic effects of Wolbachia on Drosophila Oogenesis and coordination of infection with stem cell niche morphogenesis

Fast, Eva M. 22 January 2016 (has links)
Wolbachia are widespread obligate intracellular bacteria that are maternally transmitted and modulate reproduction of their invertebrate host. Mosquitoes transinfected with Wolbachia have reduced capacity for transmitting vector borne diseases and can replace native populations in the field because of a reproductive advantage. The cellular mechanisms of how reproduction is altered by Wolbachia are poorly understood. In this work Wolbachia-induced reproductive changes in the model organism Drosophila were used to pinpoint underlying cellular processes affected by the bacteria. Specifically, egg production (or fecundity) of Wolbachia-infected Drosophila mauritiana was compared to non-infected flies that had been generated by antibiotic treatment of infected flies. Immediately before the fecundity experiment backcrossing of both fly lines ensured an equivalent nuclear genetic background. Initially egg production in Wolbachia-infected flies was increased by 4-fold but in less than 30 generations this changed to a 0.84 fold decrease with a slight advantage for the non-infected line. Additional backcrossing experiments determined that selection on the host nuclear genome is one of the factors underlying this reversion of fecundity gains. Other non-Mendelian factors, such as the microbiota, may also play a role in this rapid change. Wolbachia alterations in egg production were always linked to Wolbachia induced changes in programmed cell death (PCD) in the germarium during oogenesis and germline stem cell (GSC) division. Germline stem cells are maintained and regulated through their interaction with the germline stem cell niche (GSCN). Interestingly, these cells are both frequently infected with Wolbachia and possess a high bacterial titer. A developmental time course revealed the mechanism of how Wolbachia accumulate in the niche cells. The data suggest that the bacteria actually coordinate their replication with the differentiation of the niche cells. Future work on understanding the cellular and molecular basis of Wolbachia - host interaction will not only give insight into novel mechanisms of host manipulation by a pathogen, but will also expand our current understanding of stem cell niche morphogenesis and modulation of stem cell proliferation. / 2018-06-05T00:00:00Z
445

Post-Transcriptional Control of RIPK1 in Macrophage Inflammation and Necroptosis

Zhou, Zier 08 December 2022 (has links)
Receptor-interacting protein kinase 1 (RIPK1) is a major upstream mediator of inflammation and cell death. These processes are key to common inflammatory diseases such as atherosclerosis, where macrophages play an important role in their progression. Closely linked to the expression of downstream genes, long non-coding RNAs (lncRNAs) are critical to controlling cellular processes in health and disease. As post-transcriptional regulatory mechanisms for RIPK1 are largely unknown, this project seeks to study the stability of Ripk1 mRNA and RIPK1 protein, along with Ripk1 mRNA interactions with relevant lncRNAs under various conditions. Using transcription and translation inhibitors, we determined that both Ripk1 mRNA and RIPK1 protein are relatively unstable with half-lives of approximately 3 h. Their turnover in macrophages is further influenced by the timing and duration of inflammation. We also implemented a novel RNA pull-down procedure to capture Ripk1 mRNA and attached lncRNAs for next-generation sequencing. Through differential expression analysis, we discovered significant upregulation of known lncRNA AC125611 and novel lncRNA MSTRG.5894.1 in Ripk1-targeted samples subject to inflammation. MSTRG.7477.1 was upregulated during necroptosis, while MSTRG.5684.5 was upregulated during both inflammation and necroptosis. GapmeR-mediated knockdowns of AC125611 and MSTRG.5684.5 under inflammatory conditions resulted in decreased Ripk1 mRNA expression and RIPK1 protein expression, respectively. Meanwhile, MSTRG.7477.1 knockdowns were connected to decreased RIPK1 at both the mRNA and protein levels. Our research ultimately advances the current understanding of RIPK1 regulation by focusing on Ripk1 mRNA-lncRNA associations and turnover of its mRNA and protein in macrophages, paving the way for future investigations into their capacity to act as therapeutic targets.
446

PUMA and the innate immune response during pneumococcal infection in the lung

Kennedy, Daniel Edward, II 06 August 2021 (has links)
Background: The p53-up-regulated modulator of apoptosis (PUMA) protein is a pro-apoptotic, BH3-only member of the BCL2 family of effector proteins responsible for promoting organized cell death. PUMA is required for resolution of pneumococcal pneumonia in mice, as mice deficient of PUMA exhibit greater numbers of S. pneumoniae CFU within tissues and higher mortality rates than observed in Puma+/+ mice. Methods: Puma+/+ and Puma-/- mice were intranasally challenged with TIGR4 pneumococcus and sacrificed 24 h post-infection. Differences in cytokine levels from blood and whole lung tissue were detected by MILLIPLEX MAP Mouse Cytokine/Chemokine Magnetic Bead Panel. Lung transcriptomes from Puma+/+ and Puma-/- mice were prepared from total lung RNA using NEBNext Poly(A) mRNA Magnetic Isolation Module and NEBNext Ultra RNA Library Prep Kit for Illumina. Libraries were read by Illumina NovaSeq and transcript reads were referenced to Mus musculus. Results: Puma-/- mice exhibited significant differences in G-CSF, GM-CSF, IFN-gamma, IL-1-alpha and -beta, -6, -9, -10, -12 (p40 and p70), -13, and -17, IP-10, KC, MCP-1, MIP- iv 1alpha and -beta, MIP-2, RANTES, and TNF-alpha compared to Puma+/+ mice. Puma-/- lungs exhibited higher levels of IL-12, IFN-gamma, and IP-10. Loss of PUMA also resulted in expression of the pro-angiogenic genes Adam19 and Neurexin2. Additionally, Puma+/+ and Puma-/- mice displayed similar levels of colonization, but Puma-/- mice were more susceptible to subsequent dissemination to the lungs and blood. Conclusion: Polymorphonuclear cells (PMNs) were previously demonstrated to be one of the innate cell types responsible for Puma-dependent resolution of pneumococcal pneumonia in mice. Observations reported here suggest that this resolution is propelled by suppressing the inflammatory response via the inhibition of IL-12/IFN-gamma/IP-10 pro-inflammatory axis. Pulmonary tissue transcriptomic analysis also suggests PUMA-dependent positive regulation of homeostatic control of pulmonary vasculature, smooth muscle innervation, and maintenance of the interstitium. Gene ontological analysis further demonstrated Puma's modulatory role in Type I and II IFN signaling. For the first time, we report Puma's regulatory effects on pro-inflammatory cytokine signaling and gene expression during pneumococcal pneumonia.
447

Local Redox Imbalance Induced by Intraorganellar Accumulation of Misfolded Proteins / オルガネラ内に蓄積した凝集タンパク質が引き起こす局所的なレドックス破綻

Oku, Yuki 25 March 2019 (has links)
学位プログラム名: 京都大学大学院思修館 / 京都大学 / 0048 / 新制・課程博士 / 博士(総合学術) / 甲第21931号 / 総総博第6号 / 新制||総総||1(附属図書館) / 京都大学大学院総合生存学館総合生存学専攻 / (主査)教授 阪井 康能, 教授 山口 栄一, 教授 積山 薫 / 学位規則第4条第1項該当 / Doctor of Philosophy / Kyoto University / DGAM
448

Discovery and Optimization of Novel Small-Molecule Inhibitors of Glutathione Peroxidase 4

Lin, Annie January 2023 (has links)
Despite rapid advances in clinical oncology, acquired drug resistance still poses a significant threat to the long-term efficacy of current treatment regimens. Because most chemotherapy drugs aim to activate apoptosis in cancer cells, expansion of the pharmacopeia to include treatments targeting novel tumor cell death mechanisms is a promising anti-cancer strategy. Induction of ferroptosis, an iron-dependent form of regulated cell death, shows particular therapeutic potential as aggressive metastatic and drug-resistant cancer cell states have been demonstrated to possess an exquisite dependency on glutathione peroxidase 4 (GPX4), a key suppressor of the ferroptotic cell death pathway. However, current GPX4 inhibitors are limited by poor pharmacokinetic properties that preclude their clinical use. The development of novel drug-like GPX4 inhibitors would benefit from the discovery of new chemical scaffolds to both enhance our understanding of the structural basis of small molecule binding and inhibition as well as facilitate the rational design of future GPX4-targeted therapeutics. In this dissertation, we employed three high-throughput screening strategies to identify novel scaffolds of interest for GPX4 inhibitor development. First, a Lead-Optimized Compound (LOC) library was screened and we conducted further characterization and structure-activity relationship (SAR) studies on hit compound LOC880. Compared to the original hit, analogs QW-095 and QW-105 showed improved binding affinity and GPX4 inhibitory activity in vitro and also induced lipid peroxidation in cells suggestive of ferroptotic death. Further enhancement of the potency and ferroptosis specificity of this scaffold is still needed, but the potentially noncovalent and allosteric mechanism of action presents a novel approach for targeting GPX4. Second, we conducted extensive SAR analyses on another promising hit from the LOC library screen, LOC1886, which led to the identification of the lead compound QW-314. This analog showed significantly improved potency and ferroptosis specificity in multiple cancer cell contexts, including a drug-tolerant persister cell model of minimal residual disease. Characteristic markers of GPX4 inhibition and ferroptosis are also observed in cells treated with QW-314, including GPX4 protein degradation and induction of lipid peroxidation, and QW-314 exhibited excellent selectivity for GPX4 over another glutathione peroxidase family selenoprotein GPX1 in an in vitro assay using cell lysates. Moreover, we determined a baseline of pharmacokinetic measures including aqueous solubility and metabolic stability in human and mouse liver microsomes for further medicinal chemistry optimization. Lastly, we screened a DNA-encoded library (DEL) and an Enamine Diversity library, identifying 10 additional chemical starting points for future investigation.
449

Altered lipid metabolism in persister cells drives ferroptosis sensitivity

Reznik, Eduard January 2024 (has links)
Mounting evidence implicates persister cancer cells as the key element of minimal residual disease (MRD) from which cancer relapse occurs. The observation that persister cells are differentially and specifically sensitive to ferroptosis, a unique form of metabolically-linked cell death, presents a critical weak point through which identification and targeting of persister cells in MRD may become possible. To identify biomarkers for targetable cells, the drivers of ferroptosis sensitivity in persister cells must be identified. Using three chemotherapeutics and cell lines, we derived persister models across diverse tissues of origin and found that: 1) activating transcription factor 4 (ATF4), previously demonstrated as central to lung cancer persister state formation, is differentially expressed in prostate and fibrosarcoma persisters vs parentals, 2) proteins key to ferroptosis are underexpressed in persisters, and revert expression upon persister to parental reversion, 3) the lung persister lipidome is significantly rewired to drive ferroptosis and 4) upon persister to parental reversion and re-acquisition of ferroptosis resistance, the lipid signature also reverts back to a parental-like state, and 5) although ATF4 elimination in persisters does not revert ferroptosis sensitivity, mitochondrial elimination in persisters does abrogate ferroptotic sensitivity. Collectively, these findings reveal the mechanism of persister ferroptosis sensitivity across multiple cancer types, opening up the possibility of leveraging ferroptosis for elimination of minimal residual disease.
450

Mechanisms Underlying Ras-Induced Methuosis in Human Glioblastoma Cells

Bhanot, Haymanti 29 December 2011 (has links)
No description available.

Page generated in 0.0966 seconds