• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 88
  • 22
  • 11
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 146
  • 146
  • 33
  • 22
  • 19
  • 18
  • 17
  • 15
  • 13
  • 13
  • 12
  • 11
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Sphingosine 1-phosphate enhances excitability of sensory neurons through sphingosine 1-phosphate receptors 1 and/or 3

Li, Chao January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid that has proven to be an important signaling molecule both as an extracellular primary messenger and as an intracellular second messenger. Extracellular S1P acts through a family of five S1P receptors, S1PR1-5, all of which are G protein-coupled receptors associated with different G proteins. Previous work from our laboratory shows that externally applied S1P increases the excitability of small-diameter sensory neurons by enhancing the action potential firing. The increased neuronal excitability is mediated primarily, but not exclusively, through S1PR1. This raises the question as to which other S1PRs mediate the enhanced excitability in sensory neurons. To address this question, the expression of different S1PR subtypes in small-diameter sensory neurons was examined by single-cell quantitative PCR. The results show that sensory neurons express the mRNAs for all five S1PRs, with S1PR1 mRNA level significantly greater than the other subtypes. To investigate the functional contribution of other S1PRs in augmenting excitability, sensory neurons were treated with a pool of three individual siRNAs targeted to S1PR1, R2 and R3. This treatment prevented S1P from augmenting excitability, indicating that S1PR1, R2 and/or R3 are essential in mediating S1P-induced sensitization. To study the role of S1PR2 in S1P-induced sensitization, JTE-013, a selective antagonist at S1PR2, was used. Surprisingly, JTE-013 by itself enhanced neuronal excitability. Alternatively, sensory neurons were pretreated with FTY720, which is an agonist at S1PR1/R3/R4/R5 and presumably downregulates these receptors. FTY720 pretreatment prevented S1P from increasing neuronal excitability, suggesting that S1PR2 does not mediate the S1P-induced sensitization. To test the hypothesis that S1PR1 and R3 mediate S1P-induced sensitization, sensory neurons were pretreated with specific antagonists for S1PR1 and R3, or with siRNAs targeted to S1PR1 and R3. Both treatments blocked the capacity of S1P to enhance neuronal excitability. Therefore my results demonstrate that the enhanced excitability produced by S1P is mediated by S1PR1 and/or S1PR3. Additionally, my results indicate that S1P/S1PR1 elevates neuronal excitability through the activation of mitogen-activated protein kinase kinase. The data from antagonism at S1PR1 to regulate neuronal excitability provides insight into the importance of S1P/S1PR1 axis in modulating pain signal transduction.
142

Réponse sélective de nanoparticules fonctionnelles à des stimuli endogènes

Phan, Huu Trong 05 1900 (has links)
L'un des principaux défis de la nanomédecine est la capacité à cibler sélectivement les sites pathologiques. Le ciblage repose généralement sur la réponse sélective à une ou certaines caractéristiques des tissus ciblés (stimuli endogènes). Cette thèse s’intéresse à l’étude de la réponse sélective des nanoparticules fonctionnelles à deux stimuli endogènes bien caractérisés : la densité surfacique élevée d’un récepteur biologique sur une membrane cellulaire et le milieu acide des endosomes. Dans un premier temps, nous démontrons que les nanoparticules peuvent s’adsorber sélectivement sur les surfaces présentant une densité de récepteurs supérieure à un certain seuil, en fonctionnalisant leur surface avec une monocouche de polymères bimodaux (un poly (éthylène glycol) non-fonctionnel et un PEG portant un ligand). Les paramètres de conception de la monocouche comme la longueur relative des chaînes, la densité surfacique globale de la monocouche ou la densité surfacique de ligands peuvent être modulées pour améliorer la sélectivité des nanoparticules. Dans un second temps, nous rapportons des nanoparticules lipidiques capables de déstabiliser des membranes lipidiques à pH acide grâce à un lipide bascule pH-sensible. Nous montrons que le changement de conformation du lipide bascule augmente son aire interfaciale et provoque une dynamique membranaire qui peut se traduire macroscopiquement par des changements morphologiques et relargage du contenu des nanoparticules lipidiques. En améliorant le ciblage sélectif pour les membranes cellulaires, d’une part, et la livraison intracellulaire, d’autre part, ce travail servira à concevoir des nanoparticules multifonctionnelles sélectives et ciblées, pour une meilleure efficacité de vectorisation de médicaments ou d’acides nucléiques. / One of the main challenges of nanomedicine is the ability to selectively target disease sites. Targeting efficiency is generally based on a selective response to characteristics (endogenous stimuli) of the targeted tissues. This thesis focuses on the selective response of functional nanoparticles to two endogenous stimuli: the cell surface over-expressing a specific receptor and the acid medium of endosome. First, we report that nanoparticles surface-functionalized with a bimodal monolayer of polymers containing nonfunctional polyethylene glycol (1) and ligand-functionalized PEG exhibit selective adsorption to receptor surface with a surface density of receptor above a certain threshold. We show that design parameters of the bimodal monolayer, including the relative length of two chains, the total surface density of the monolayer or the surface density of ligand can be modulated to enhance the selectivity of the nanoparticle adsorption. Secondly, we report lipid nanoparticles that induce membrane destabilization under acidic condition thanks to a pH-switchable lipid. We show that the conformational change of the pH-switchable lipid increases the area occupied at the interface, causing membrane dynamics phenomena, that result in morphological changes and release of the cargo from lipid nanoparticles. By improving the ability of nanoparticles to selectively target cell surfaces and escape endosomal membrane, the selective responses of functional nanoparticles reported in this thesis will potentially serve to design multifunctional nanoparticles for selective targeting and efficient delivery of drugs and genetic materials.
143

Mechanisms of the downregulation of prostaglandin E₂-activated protein kinase A after chronic exposure to nerve growth factor or prostaglandin E₂

Malty, Ramy Refaat Habashy 07 October 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Chronic inflammatory disorders are characterized by an increase in excitability of small diameter sensory neurons located in dorsal root ganglia (DRGs). This sensitization of neurons is a mechanism for chronic inflammatory pain and available therapies have poor efficacy and severe adverse effects when used chronically. Prostaglandin E₂ (PGE₂) is an inflammatory mediator that plays an important role in sensitization by activating G-protein coupled receptors (GPCRs) known as E-series prostaglandin receptors (EPs) coupled to the protein kinase A (PKA) pathway. EPs are known to downregulate upon prolonged exposure to PGE₂ or in chronic inflammation, however, sensitization persists and the mechanism for this is unknown. I hypothesized that persistence of PGE₂-induced hypersensitivity is associated with a switch in signaling caused by prolonged exposure to PGE₂ or the neurotrophin nerve growth factor (NGF), also a crucial inflammatory mediator. DRG cultures grown in the presence or absence of either PGE₂ or NGF were used to study whether re-exposure to the eicosanoid is able to cause sensitization and activate PKA. When cultures were grown in the presence of NGF, PGE₂-induced sensitization was not attenuated by inhibitors of PKA. Activation of PKA by PGE₂ was similar in DRG cultures grown in the presence or absence of NGF when phosphatase inhibitors were added to the lysis and assay buffers, but significantly less in cultures grown in the presence of NGF when phosphatase inhibitors were not added. In DRG cultures exposed to PGE₂ for 12 hours-5 days, sensitization after re-exposure to PGE₂ is maintained and resistant to PKA inhibition. Prolonged exposure to the eicosanoid caused complete loss of PKA activation after PGE₂ re-exposure. This desensitization was homologous, time dependent, reversible, and insurmountable by a higher concentration of PGE₂. Desensitization was attenuated by reduction of expression of G-protein receptor kinase 2 and was not mediated by PKA or protein kinase C. The presented work provides evidence for persistence of sensitization by PGE₂ as well as switch from the signaling pathway mediating this sensitization after long-term exposure to NFG or PGE₂.
144

Tsg-6 : an inducible mediator of paracrine anti-inflammatory and myeloprotective effects of adipose stem cells

Xie, Jie 29 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI). / Tumor necrosis factor-induced protein 6 (TSG-6) has been shown to mitigate inflammation. Its presence in the secretome of adipose stem / stromal cells (ASC) and its role in activities of ASC have been overlooked. This thesis described for the first time the release of TSG-6 from ASC, and its modulation by endothelial cells. It also revealed that protection of endothelial barrier function was a novel mechanism underlying the anti-inflammatory activity of both ASC and TSG-6. Moreover, TSG-6 was found to inhibit mitogen-activated lymphocyte proliferation, extending the understanding of its pleiotropic effects on major cell populations involved in inflammation. Next, enzyme-linked immunosorbent assays (ELISA) were established to quantify secretion of TSG-6 from human and murine ASC. To study the importance of TSG-6 to specific activities of ASC, TSG-6 was knocked down in human ASC by siRNA. Murine ASC from TSG-6-/- mice were isolated and the down-regulation of TSG-6 was verified by ELISA. The subsequent attempt to determine the efficacy of ASC in ameliorating ischemic limb necrosis and the role of TSG-6, however, was hampered by the highly variable ischemic tissue necrosis in the BALB/c mouse strain. Afterwards in a mouse model of cigarette smoking (CS), in which inflammation also plays an important role, it was observed, for the first time, that 3-day CS exposure caused an acute functional exhaustion and cell cycle arrest of hematopoietic progenitor cells; and that 7-week CS exposure led to marked depletion of phenotypic bone marrow stem and progenitor cells (HSPC). Moreover, a dynamic crosstalk between human ASC and murine host inflammatory signals was described, and specifically TSG-6 was identified as a necessary and sufficient mediator accounting for the activity of the ASC secretome to ameliorate CS-induced myelotoxicity. These results implicate TSG-6 as a key mediator for activities of ASC in mitigation of inflammation and protection of HSPC from the myelotoxicity of cigarette smoke. They also prompt the notion that ASC and TSG-6 might potentially play therapeutic roles in other scenarios involving myelotoxicity.
145

Effects of carbon nanotubes on airway epithelial cells and model lipid bilayers : proteomic and biophysical studies

Li, Pin January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Carbon nanomaterials are widely produced and used in industry, medicine and scientific research. To examine the impact of exposure to nanoparticles on human health, the human airway epithelial cell line, Calu-3, was used to evaluate changes in the cellular proteome that could account for alterations in cellular function of airway epithelia after 24 h exposure to 10 μg/mL and 100 ng/mL of two common carbon nanoparticles, singleand multi-wall carbon nanotubes (SWCNT, MWCNT). After exposure to the nanoparticles, label-free quantitative mass spectrometry (LFQMS) was used to study differential protein expression. Ingenuity Pathway Analysis (IPA) was used to conduct a bioinformatics analysis of proteins identified by LFQMS. Interestingly, after exposure to a high concentration (10 μg/mL; 0.4 μg/cm2) of MWCNT or SWCNT, only 8 and 13 proteins, respectively, exhibited changes in abundance. In contrast, the abundance of hundreds of proteins was altered in response to a low concentration (100 ng/mL; 4 ng/cm2) of either CNT. Of the 281 and 282 proteins that were significantly altered in response to MWCNT or SWCNT, respectively, 231 proteins were the same. Bioinformatic analyses found that the proteins common to both kinds of nanotubes are associated with the cellular functions of cell death and survival, cell-to-cell signaling and interaction, cellular assembly and organization, cellular growth and proliferation, infectious disease, molecular transport and protein synthesis. The decrease in expression of the majority proteins suggests a general stress response to protect cells. The STRING database was used to analyze the various functional protein networks. Interestingly, some proteins like cadherin 1 (CDH1), signal transducer and activator of transcription 1 (STAT1), junction plakoglobin (JUP), and apoptosis-associated speck-like protein containing a CARD (PYCARD), appear in several functional categories and tend to be in the center of the networks. This central positioning suggests they may play important roles in multiple cellular functions and activities that are altered in response to carbon nanotube exposure. To examine the effect of nanotubes on the plasma membrane, we investigated the interaction of short purified MWCNT with model lipid membranes using a planar bilayer workstation. Bilayer lipid membranes were synthesized using neutral 1, 2-diphytanoylsn-glycero-3-phosphocholine (DPhPC) in 1 M KCl. The ion channel model protein, Gramicidin A (gA), was incorporated into the bilayers and used to measure the effect of MWCNT on ion transport. The opening and closing of ion channels, amplitude of current, and open probability and lifetime of ion channels were measured and analyzed by Clampfit. The presence of an intermediate concentration of MWCNT (2 μg/ml) could be related to a statistically significant decrease of the open probability and lifetime of gA channels. The proteomic studies revealed changes in response to CNT exposure. An analysis of the changes using multiple databases revealed alterations in pathways, which were consistent with the physiological changes that were observed in cultured cells exposed to very low concentrations of CNT. The physiological changes included the break down of the barrier function and the inhibition of the mucocillary clearance, both of which could increase the risk of CNT’s toxicity to human health. The biophysical studies indicate MWCNTs have an effect on single channel kinetics of Gramicidin A model cation channel. These changes are consistent with the inhibitory effect of nanoparticles on hormone stimulated transepithelial ion flux, but additional experiments will be necessary to substantiate this correlation.
146

Characterization of Hepatitis C Virus Infection of Hepatocytes and Astrocytes

Liu, Ziqing January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Approximately 2.8% of the world population is currently infected with hepatitis C virus (HCV). Neutralizing antibodies (nAbs) are often generated in chronic hepatitis C patients yet fail to control the infection. In the first two chapters of this study, we focused on two alternative routes of HCV transmission, which may contribute to HCV’s immune evasion and establishment of chronic infection. HCV was transmitted via a cell-cell contact-mediated (CCCM) route and in the form of exosomes. Formation of HCV infection foci resulted from CCCM HCV transfer and was cell density-dependent. Moreover, CCCM HCV transfer occurred rapidly, involved all four known HCV receptors and intact actin cytoskeleton, and led to productive HCV infection. Furthermore, live cell imaging revealed the temporal and spatial details of the transfer process. Lastly, HCV from HCV-infected hepatocytes and patient plasma occurred in both exosome-free and exosome-associated forms and the exosome-associated HCV remained infectious, even though HCV infection did not significantly alter exosome secretion. In the third chapter, we characterized HCV interaction with astrocytes, one of the putative HCV target cells in the brain. HCV infection causes the central nervous system (CNS) abnormalities in more than 50% of chronically infected subjects but the underlying mechanisms are largely unknown. We showed that primary human astrocytes (PHA) were very inefficiently infected by HCV, either in the free virus form or through cell-cell contact. PHA expressed all known HCV receptors but failed to support HCV entry. HCV IRES-mediated translation was functional in PHA and further enhanced by miR122 expression. Nevertheless, PHA did not support HCV replication regardless of miR122 expression. To our great surprise, HCV exposure induced robust IL-18 expression in PHA and exhibited direct neurotoxicity. In summary, we showed that CCCM HCV transfer and exosome-mediated HCV infection constituted important routes for HCV infection and dissemination and that astrocytes did not support productive HCV infection and replication, but HCV interactions with astrocytes and neurons alone might be sufficient to cause CNS dysfunction. These findings provide new insights into HCV infection of hepatocytes and astrocytes and shall aid in the development of new and effective strategies for preventing and treating HCV infection.

Page generated in 0.1169 seconds