• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 16
  • 13
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 116
  • 116
  • 20
  • 20
  • 19
  • 17
  • 16
  • 14
  • 13
  • 11
  • 9
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

INHIBITION OF METABOLISM AND INDUCTION OF APOPTOSIS IN TRIPLE NEGATIVE BREAST CANCER CELLS BY LIPPIA ORIGANOIDES PLANT EXTRACTS.

Vishak Raman (5930177) 15 May 2019 (has links)
<p>According to the Global Cancer Incidence, Mortality, and Prevention (GLOBOCAN) study for 2018, 2,089,000 women will have been diagnosed with breast cancer worldwide, with 627,000 breast cancer-related mortalities. It is estimated that between 15 – 20 % of breast cancer diagnoses are of the triple-negative subtype. Triple-negative breast cancers (TNBCs) do not express the receptors for estrogen, progesterone, and human epidermal growth factor 2, and hence cannot be treated using hormone receptor-targeted therapy. </p> <p>TNBCs are commonly of the basal-like phenotype, with high expression levels of proteins involved in epithelial-mesenchymal transition, extracellular-matrix (ECM) remodeling, cell cycle progression, survival and drug resistance, invasion, and metastasis. 5-year survival rates are significantly lower for TNBC patients, and the disease is characterized by poorer grade at the time of diagnosis as well as higher 5-year distant relapse rates, with a greater chance of lung and CNS metastases. Current treatments for TNBC take the form of aggressive cytotoxic chemotherapy regimens with multiple adverse side-effects. An important goal of on-going studies is to identify new compounds with significant TNBC-specificity, in order to improve patient survival outcomes while preserving a high quality of life during treatment.</p> <p> For several decades, compounds originally isolated from bioactive natural extracts, such as the taxanes and vinca<i> </i>alkaloids, have been at the forefront of chemotherapy. However, due to their non -specific mechanisms of action, treatment with these compounds eventually leads to significant toxicity to normal cells and tissues. Modern transcriptomics, metabolomics, and proteomics tools have greatly improved our understanding of the mechanisms governing cancer initiation and progression, and revealed the considerable heterogeneity of tumor cells. This has allowed for the identification of potential vulnerabilities in multiple cancers, including TNBCs. By leveraging these new technologies and insights with the tremendous diversity of bioactive compounds from organisms that remain unstudied, new classes of onco-drugs targeting pathways specific to TNBC cells could be identified in the near future.</p> <p>Here, we describe the cytotoxic effects of extracts from <i>Lippia origanoides </i>- a species of medicinal shrub native to Central and South America - on TNBC cells. We report that these extracts induce rapid, sustained, and irreversible apoptosis in TNBC cells <i>in vitro</i>, with significantly reduced cytotoxicity against normal mammary epithelial cells. The <i>L. origanoides </i>extracts LOE and L42 exploited two TNBC-specific characteristics to induce apoptosis in these cells: i) inhibiting the constitutively active survival and inflammatory NF-kB signaling pathway, and ii) significantly dysregulating the expression levels of mitochondrial enzymes required to maintain the TCA cycle and oxidative phosphorylation; metabolic pathways that are required for the maintenance of TNBC cell growth and proliferation.</p> <p>Finally, to lay the foundations for future studies on the abilities of these extracts to prevent tumor initiation and inhibit tumor growth <i>in vivo</i>, we also show that the <i>L. origanoides </i>extract, L42, is non-toxic<i> </i>to immunocompetent C57BL/6 mice, and have developed an <i>in vivo </i>model of human TNBC in athymic <i>nu/nu</i> mice. </p> <p>Collectively, our studies are the first to identify the anti-TNBC-specific properties of bioactive extracts from the <i>Lippia </i>species, and reveal that targeting NF-kB signaling and mitochondrial metabolism are potential avenues to new therapeutics against this subtype of breast cancer. Future work in our lab will focus on identifying the bioactive components (BACs) of the extract mediating its apoptotic effects, and shedding light on their protein binding partners within the cell.</p>
102

Molecular Regulation of Maternal Hepatic Adaptations to Pregnancy

Joonyong Lee (8786537) 01 May 2020 (has links)
The maternal liver exhibits robust adaptations to pregnancy to accommodate the metabolic needs of developing and growing placenta and fetus by largely unknown mechanisms. We found that achaete-scute homolog 1 (Ascl1), a basic helix-loop-helix transcription factor essential for neuronal development, is highly activated in maternal hepatocytes during the second half of gestation in mice. Our aim is to investigate whether and how Ascl1 plays a pregnancy-dependent role. We deleted the Ascl1 gene in the maternal liver using three independent mouse models from mid-gestation until term and identified multiple Ascl1-dependent phenotypes. When Ascl1 was deficient in maternal hepatocytes, maternal livers exhibited aberrant hepatocyte histology, fat accumulation, increased hepatocyte cell cycle, and enlarged size, accompanied by reduced albumin production and elevated levels of free fatty acids, ALT, and AST in the maternal blood, indicating maternal liver dysfunction. In the same situation, maternal spleen and pancreas displayed marked enlargement without an overt structural change; the placenta exhibited striking overgrowth with increased ALP production; and the cecal microbiome showed alterations in the relative abundance of several bacterial subpopulations. Moreover, litters born from maternal hepatic Ascl1 null mutated dam experienced abnormal postnatal growth after weaning. RNA-seq analysis revealed Ascl1-regulated genes in the maternal liver associated with Ascl1-dependent phenotypes. Of particular interest, we found that, in maternal hepatocytes, Ascl1 loss-of-function caused the activation of paternally imprinted gene insulin-like growth factor 2 (Igf2) encoding a major placental and fetal growth factor. IGF2 is also a known mitogen for hepatocytes and several hematopoietic lineages. Thus, IGF2 is a potential inducer of Ascl1-dependent phenotypes including placental overgrowth and maternal organ enlargement. Our studies revealed Ascl1 as a novel regulator of maternal liver physiology during pregnancy. Ascl1 activation in maternal hepatocytes is essential for normal placental growth and appropriate maternal organ adaptations, ensuring the health of both the mother and the fetus.<br>
103

Investigating the role of the von Hippel Lindau protein in tumor suppression through regulation of extracellular matrix assembly

Kurban, Ghada. January 2007 (has links)
No description available.
104

<b>FUNCTIONAL IDENTIFICATION OF FAMILY WITH SEQUENCE SIMILARITY 210 MEMBER A IN ADIPOCYTES</b>

Jiamin Qiu (17660928) 19 December 2023 (has links)
<p dir="ltr">Adipose tissue is characterized by the dominant presence of adipocytes, specialized cells adept at lipid metabolism. These adipocytes act as critical nodes, coordinating the complex processes of energy storage and mobilization according to the body's metabolic requirements. Within the adipocyte population of mammals, there are three main subtypes: white, beige, and brown adipocytes. White adipocytes are primarily dedicated to the sequestration of energy in the form of triglycerides. Conversely, beige and brown adipocytes are distinguished by their capacity for thermogenesis, the process of dissipating nutritional energy as heat. The contemporary challenge of chronic overnutrition has precipitated a global surge in obesity and cardiometabolic diseases. Addressing this issue necessitates the maintenance of white adipocyte homeostasis and the enhancement of the quantity and function of thermogenic adipocytes, which are imperative for mitigating the global obesity epidemics.</p><p dir="ltr">Mitochondrion, a multifunctional organelle, is integral to a broad spectrum of cellular processes, including anabolic and catabolic metabolism, bioenergetics, and signal transduction, all of which are essential for maintaining cellular functions and homeostasis. The efficacy of mitochondrial operations is intrinsically linked to their membrane dynamics. In this study, transmission electron microscopy and mass spectrometry were employed to investigate the proteins implicated in the cold-induced mitochondrial membrane remodeling in brown adipocytes. Through this approach, a poorly characterized protein, Family with Sequence Similarity 210 Member A (FAM210A), was identified as a mitochondrial inner membrane protein that is induced by cold stimulation. Subsequent loss-of-function experiments were conducted to elucidate the role of FAM210A in adipocytes. Mice with adipose-specific deletion of <i>Fam210a</i> (<i>Fam210a</i><sup><em>AKO</em></sup>) exhibited compromised mitochondrial cristae structure and a reduced thermogenic capacity in brown adipose tissue (BAT), resulting in an increased susceptibility to lethal hypothermia during acute cold challenge. Moreover, in mice with inducible ablation of <i>Fam210a</i> in adipocytes (<i>Fam210</i><sup><em>iAKO</em></sup>), mitochondrial alterations in BAT were negligible at thermoneutral conditions; however, they exhibited defective cold-induced mitochondrial cristae remodeling, culminating in a progressive loss of cristae and diminished mitochondrial density. Mechanistically, it was determined that FAM210A interacts with mitochondrial protease YME1L and modulates its activity toward OMA1 and OPA1 cleavage, thus compromising cold-induced mitochondrial remodeling in BAT.</p><p dir="ltr">Additionally, this research delved into the role of FAM210A in adipocytes in response to dietary stress by feeding mice with high-fat diet (HFD). The study found a consistent correlation between FAM210A expression and OPA1 cleavage in adipocytes under HFD challenge. Mice lacking FAM210A in all adipocytes and subjected to HFD exhibited lipoatrophy in white adipose tissue (WAT) and a downregulation of genes associated with adipogenesis and lipid metabolism. In contrast, mice with a brown adipocyte-specific ablation of <i>Fam210a </i>(<i>Fam210a</i><sup><em>UKO</em></sup>) displayed no significant change in WAT mass but had enlarged livers. Crucially, both <i>Fam210a</i><sup><em>AKO</em></sup> and <i>Fam210a</i><sup><em>UKO</em></sup> mice presented increased WAT inflammation, deteriorated glucose tolerance, and exacerbated insulin resistance. These findings underscore the pivotal role of FAM210A in brown adipose tissue (BAT) in the preservation of WAT homeostasis and the regulation of systemic glucose clearance in diet-induced obesity.</p><p dir="ltr">In summary, these studies characterize the mitochondrial dynamics in brown adipocytes in response to cold stress, identify a new cold-induced mitochondrial protein, FAM210A, and uncover its functions in adipocytes under cold and dietary stresses. These findings highlight the importance of mitochondrial remodeling in the adaptive response of adipocytes to evolving metabolic demands. This work establishes FAM210A as a key regulator of mitochondrial cristae remodeling, shedding light on the mechanisms that govern mitochondrial plasticity in adipocytes.</p>
105

The Metabolic Response of Various Cell Lines to Microtubule-Driven Uptake of Lipid- and Polymer-Coated Layer-by-Layer Microcarriers

Claus, Claudia, Fritz, Robert, Schilling, Erik, Reibetanz, Uta 08 May 2023 (has links)
Lipid structures, such as liposomes or micelles, are of high interest as an approach to support the transport and delivery of active agents as a drug delivery system. However, there are many open questions regarding their uptake and impact on cellular metabolism. In this study, lipid structures were assembled as a supported lipid bilayer on top of biopolymer-coated microcarriers based on the Layer-by-Layer assembly strategy. The functionalized microcarriers were then applied to various human and animal cell lines in addition to primary human macrophages (MΦ). Here, their influence on cellular metabolism and their intracellular localization were detected by extracellular flux analysis and immunofluorescence analysis, respectively. The impact of microcarriers on metabolic parameters was in most cell types rather low. However, lipid bilayer-supported microcarriers induced a decrease in oxygen consumption rate (OCR, indicative for mitochondrial respiration) and extracellular acidification rate (ECAR, indicative for glycolysis) in Vero cells. Additionally, in Vero cells lipid bilayer microcarriers showed a more pronounced association with microtubule filaments than polymer-coated microcarrier. Furthermore, they localized to a perinuclear region and induced nuclei with some deformations at a higher rate than unfunctionalized carriers. This association was reduced through the application of the microtubule polymerization inhibitor nocodazole. Thus, the effect of respective lipid structures as a drug delivery system on cells has to be considered in the context of the respective target cell, but in general can be regarded as rather low.
106

INVESTIGATING THE ROLE OF RYR2 IN CA2+ DYNAMICS, INSULIN SECRETION, AND ELECTROPHYSIOLOGICAL PROPERTIES IN PANCREATIC B-CELLS

Emily K Lavigne (13169484) 28 July 2022 (has links)
<p>  </p> <p>The role of the endoplasmic reticulum (ER) Ca2+ release channels ryanodine receptor 2 (RyR2) and inositol 1,4,5-triphosphate receptor (IP3R) in pancreatic b-cell function are emerging, but are not well defined. It has been demonstrated that ER stress brought about by RyR2 dysfunction leads to impaired insulin secretion and contributes to the etiology of type 2 diabetes (T2D). Our work contributes to the understanding of the role of RyR2 in physiological pancreatic b-cell function and how loss of RyR2 contributes to the pathophysiology of T2D.</p> <p>To investigate the role of RyR2 in pancreatic b-cell function, we utilized CRISPR-Cas9 to delete RyR2 from the rat insulinoma INS-1 cell line (RyR2KO). We found that RyR2KO cells displayed an enhanced glucose-stimulated Ca2+ integral (area under the curve; AUC) and were sensitive to inhibition by the IP3R antagonist, xestospongin C. Loss of RyR2 also resulted in a reduction in IRBIT protein levels. Therefore, we deleted IRBIT from INS-1 cells (IRBITKO) and found that IRBITKO cells also displayed an increased Ca2+ AUC in response to glucose stimulation. We discovered that total cellular insulin content and secretion were reduced in RyR2KO cells, but more modestly reduced in IRBITKO cells. We found that <em>INS2</em> mRNA levels were reduced in both RyR2KO and IRBITKO cells, but <em>INS1</em> mRNA levels were specifically decreased in RyR2KO cells. Additionally, nuclear localization of S-adenosylhomocysteinase (AHCY) was increased in both RyR2KO and IRBITKO cells. DNA methylation of exon 2 of the <em>INS1</em> and <em>INS2</em> genes was more extensively methylated in RyR2KO and IRBITKO cells compared to controls. Proteomics analysis revealed that deletion of RyR2 or IRBIT resulted in differential regulation of 314 and 137 proteins, respectively, with 41 in common. Our results suggest that RyR2 regulates IRBIT levels and activity, and together maintain insulin content and secretion, and regulate the INS-1 cell proteome, perhaps via DNA methylation.</p> <p>The role of interplay between RyR2 and IP3R in Ca2+ signaling and homeostasis in pancreatic b-cell function remains understudied. Stimulation with the sulfonylurea tolbutamide resulted in markedly delayed Ca2+ transients in both RyR2KO and IRBITKO cells. Xestospongin C significantly reduced the AUC of Ca2+ in RyR2KO and IRBITKO cells. Muscarinic receptor stimulation revealed a markedly increased AUC of Ca2+ in IRBITKO cells compared to both RyR2KO and control INS-1 cells. Assessment of PLC activity revealed that basal and stimulated PLC activity were reduced in the absence of RyR2 or IRBIT. Store-operated Ca2+ entry (SOCE) following ER Ca2+ depletion revealed a decreased SOCE amplitude only in RyR2KO cells. Given evidence that phosphatidylinositol-4,5-bisphosphate (PIP2) depletion from the plasma membrane can regulate voltage-gated Ca2+ channel inhibition, we explored electrophysiological properties of all three cell lines. The frequency of glucose-stimulated action potentials was doubled in RyR2KO cells. Additionally, whole-cell voltage-gated Ca2+ current density was doubled in RyR2KO cells, and this current was more sensitive to hydrolysis of PIP2. These results evidence crosstalk between RyR2 and IP3R, and that RyR2 plays a critical role in maintaining proper Ca2+ homeostasis, PLC activity, and electrophysiological properties in pancreatic b-cells.</p>
107

DYNAMIC CILIARY LOCALIZATION IN THE MOUSE BRAIN

Katlyn M Brewer (18308818) 03 June 2024 (has links)
<p dir="ltr">Primary cilia are hair-like structures found on nearly all mammalian cell types, including cells in the developing and adult brain. Cilia establish a unique signaling compartment for cells. For example, a diverse set of receptors and signaling proteins localize within cilia to regulate many physiological and developmental pathways including the Hh pathway. Defects in cilia structure, protein localization, or cilia function lead to genetic disorders called ciliopathies, which present with various clinical features including several neurodevelopmental phenotypes and hyperphagia associated obesity. Despite their dysfunction being implicated in several disease states, understanding their roles in CNS development and signaling has proven challenging. I hypothesize that dynamic changes to ciliary protein composition contributes to this challenge and may reflect unrecognized diversity of CNS cilia. The proteins ARL13B and ADCY3 are established ciliary proteins in the brain and assessing their localization is often used in the field to visualize cilia. ARL13B is a regulatory GTPase important for regulating cilia structure, protein trafficking, and Hh signaling, while ADCY3 is a ciliary adenylyl cyclase thought to be involved in ciliary GPCR singaling. Here, I examine the ciliary localization of ARL13B and ADCY3 in the perinatal and adult mouse brain by defining changes in the proportion of cilia enriched for ARL13B and ADCY3 depending on brain region and age. Furthermore, I identify distinct lengths of cilia within specific brain regions of male and female mice. As mice age, ARL13B cilia become relatively rare in many brain regions, including the hypothalamic feeding centers, while ADCY3 becomes a prominent cilia marker. It is important to understand the endogenous localization patterns of these proteins throughout development and under different physiological conditions as these common cilia markers may be more dynamic than initially expected. Understanding regional and development associated cilia signatures and physiological condition cilia dynamic changes in the CNS may reveal molecular mechanisms associated with ciliopathy clinical features such as obesity.</p>
108

Proline is a novel modulator of glucokinase mediating the crosstalk between glutamine and glucose metabolism in the regulation of insulin secretion by pancreatic β-cells

Mohanraj, Karthikeyan 28 June 2024 (has links)
Background and aims: Type 2 Diabetes Mellitus (T2DM) presents a significant global health challenge, characterized by impaired insulin secretion and/or action. A critical aspect of managing T2DM involves understanding the regulatory mechanisms of insulin secretion in pancreatic β-cells. Pancreatic β-cells play a pivotal role in maintaining glucose homeostasis. Although glucose is the primary stimulator of insulin secretion, certain amino acids also have regulatory roles. Traditional views have held that while glutamine contributes to insulin secretion, it does not directly influence this process in the absence of glutamate dehydrogenase (GDH) activation. We found that glutamine increases insulin secretion independently of GDH activation in INS-1 832/13 cells. Therefore, the aim of the thesis is to elucidate the role of glutamine in insulin secretion and examining its regulatory effects on glucose metabolism in pancreatic β-cells. To achieve this, we leverage advanced methodologies, including metabolomics and network analysis, to provide a comprehensive understanding of these complex mechanisms. Methods and results: Our initial findings presented a surprising challenge to the conventional belief that glutamine induces insulin secretion only in the presence of leucine. We discovered that glutamine (independent of leucine) could increase insulin secretion in a dose-dependent manner in INS-1 832/13 cells. To delve further into this phenomenon, we employed inhibitors of key enzymes in glutamine metabolism - GDH (responsible for glutamate oxidation) and glutaminase (converts glutamine to glutamate). Our results highlighted that while inhibiting GDH did not alter insulin secretion, inhibiting glutaminase significantly reduced the insulin-secretory response to glutamine in INS-1 832/13 cells. This finding indicated that the effect of glutamine on insulin secretion operates independently of glutamate oxidation. Our study also investigated the regulatory role of glutamine in insulin secretion and on the rate of glucokinase (GK) in response to glucose levels. We observed that increasing concentrations of glutamine affected both the dynamics of insulin secretion and the kinetic parameters of GK in INS-1 832/13 cells, suggesting a regulatory relationship between glutamine and glucose phosphorylation that had not been previously observed. To deepen our understanding of the intricate relationship, we developed a novel analytical approach that combined network analysis with metabolomics. This innovative method provided an unbiased assessment of the interrelationships between various metabolites, enabling a more comprehensive understanding of the metabolic pathways and their interactions. A striking outcome of our network analysis was the identification of proline as a key metabolite in the glutamine-glucose crosstalk. To validate this link, we conducted siRNA knockdown experiments targeting proline synthesis in INS-1 832/13 cells. Knockdown of these genes resulted in a significant reduction in insulin secretion in response to glutamine. Further, this effect could be rescued by the addition of proline, thereby underscoring the essential role of proline in glutamine-mediated insulin secretion. Furthermore, in vitro enzymatic assays using INS-1 832/13 cell extracts and purified rat GK revealed proline- mediated changes in kinetic parameters consistent with glutamine-mediated alterations in GK activity in live INS-1 832/13 cells. Additionally, a thermal stability assay demonstrated that the melting temperature of purified rat GK varied with proline concentration, suggesting a direct interaction of proline with GK. This effect of glutamine on insulin secretion was also observed in isolated rat islets, thereby affirming the physiological relevance of our results. Moreover, the thermal stability assay using purified human GK confirmed that this interaction is conserved in humans as well. Conclusion and outlook: This study reveals a novel mechanism by which glutamine metabolism, through proline synthesis, regulates GK activity and thereby influences insulin secretion in pancreatic β-cells. The outlook of this thesis opens promising avenues for future research and potential clinical applications, particularly in the context of T2DM management. Key areas for future exploration include translating these findings to in vivo models and clinical settings could open new therapeutic avenues for T2DM, emphasizing the importance of modulating glutamine and proline metabolism for more effective regulation of insulin secretion. Investigating the direct causal relationship between plasma proline levels and diabetic conditions could not only deepen our understanding of diabetes but also provide a potential biomarker for early risk assessment. Understanding the precise molecular interactions between proline and GK could allow the identification of potential novel binding sites for therapeutic intervention to enhance GK activity and improve glucose regulation. Extending this research to human cells and examining its implications in diabetes and other metabolic disorders is a vital next step, offering potential for significant advancements in diabetes treatment and understanding of metabolic diseases.:Table of Contents List of abbreviations List of figures List of tables 1. Introduction 1.1. Type 2 Diabetes 1.1.1. Definition, epidemiology, and risk factors 1.1.2. Pathophysiology of T2DM 1.1.3. Preserving or enhancing β-cell function 1.2. Physiology of pancreatic β-cells 1.2.1. Overview of glucose-stimulated insulin secretion 1.2.2. Regulation of glucose entry into the β-cells 1.2.3. Role of glucokinase as a glucose sensor 1.2.4. Regulation of mitochondrial metabolism in insulin secretion 1.2.5. Regulation of amino acid mediated insulin secretion 1.3. Metabolomics approach in studying β-cell function 1.4. Network analysis in metabolomics data analysis and interpretation 2. Aims of the study 3. Materials and Methods 3.1. Materials 3.1.1. INS-1 832/13 cells 3.1.2. Chemicals, solutions, and buffers for cell culture 3.1.3. Chemicals, solutions, and buffers for molecular and metabolic experiments 3.1.4. Software 3.2. Methods 3.2.1. Cell culture 3.2.1.1. Culturing INS-1 832/13 cells 3.2.1.2. Cryopreservation and thawing of INS1 832/13 cells 3.2.1.3. Isolation of rat islets 3.2.2. Expression and Purification of GST-fusion GK Proteins in E. coli. 3.2.3. Insulin secretion studies in INS1 832/13 cells 3.2.3.1. Effect of Glutamine on insulin secretion 3.2.3.2. Effect of chronic and acute exposure of glutamine on insulin secretion 3.2.3.3. Glutamine-responsive insulin secretion 3.2.3.4. Effect of glutamate oxidation in glutamine-mediated insulin secretion 3.2.3.5. Effect of glutamine on glucose-responsive insulin secretion 3.2.3.6. Effect of 2DG on glucose stimulated insulin secretion 3.2.3.7. Insulin and total protein quantification 3.2.4. Metabolomic experiments in INS-1 832/13 cells 3.2.4.1. Effect of specific perturbations on metabolomic profile 3.2.4.2. Effect of glutamine on metabolomic profile 3.2.5. Metabolomic analyses 3.2.5.1. LC-MS/MS method for characterization of metabolites 3.2.5.2. Metabolite concentration calculation 3.2.6. Network analysis 3.2.6.1. Metabolite network construction 3.2.6.2. Comparative metabolite analysis with weighted network metrics 3.2.7. GK kinetic studies 3.2.7.1. GK activity with GK activator in INS-1 832/13 cells 3.2.7.2. GK activity with glutamine in INS1 cells & rat islets 3.2.7.3. GK kinetics measurement 3.2.7.4. In vitro GK kinetic studies using cell extracts & purified GK enzyme 3.2.8. Gene expression analysis 3.2.8.1. RNA isolation 3.2.8.2. cDNA synthesis 3.2.8.3. qPCR 4. Results 4.1. Glutamine mediated insulin secretion in INS-1 832/13 cells 4.1.1. Glutamine alone stimulates insulin secretion 4.1.2. Glutamine amplifies insulin secretion independently of glutamate oxidation 4.2. Glutamine mediated insulin secretion and its impact on glucose responsiveness 4.2.1. Glutamine modulates the regulation of insulin secretion in INS-1 832/13 cells 4.2.2. Live cell GK activity measurement using 2DG uptake in INS-1 832/13 cells 4.2.3. Glutamine modulates GK activity in INS-1 832/13 cells 4.3. Identifying the glutamine-derived factor regulating GK activity 4.3.1. Network analysis to identify key metabolites associated with specific perturbations 4.3.2. Glutamine-induced insulin secretion is mediated by proline 4.3.3. Proline modulates GK activity in INS-1 832/13 cell extracts 4.3.4. Proline modulates activity of purified rat GK 4.3.5. Thermal stability assays in rat GK 4.3.6. siRNA knockdown of proline synthesis 4.4. Glutamine modulates insulin secretion and GK activity in rat islets 4.5. Proline interacts and modulate GK in human 5. Discussion 5.1. Reevaluating glutamine-mediated insulin secretion in pancreatic β-cells 5.2. Novel role of glutamine-mediated modulation of GK activity and insulin secretion in pancreatic β-cells 5.3. Network analysis as a tool to unravel complex interactions in metabolic research 5.4. Proline as a novel modulator of GK 5.5. Contrasting role of glutamine in pancreatic and liver metabolism 6. References 7. Summary 8. Zussammenfassung 9. Acknowledgements 10. Declaration / Hintergrund und Ziele: Typ-2-Diabetes mellitus (T2DM) stellt eine bedeutende globale Herausforderung für die Gesundheit dar und ist durch eine gestörte Insulinsekretion und/oder -wirkung gekennzeichnet. Ein entscheidender Aspekt bei der Behandlung von T2DM ist das Verstehen von Regulationsmechanismen der Insulinsekretion in den β-Zellen der Pankreas. Die β-Zellen der Bauchspeicheldrüse spielen eine zentrale Rolle bei der Aufrechterhaltung der Glukosehomöostase. Obwohl Glukose der primäre Stimulator der Insulinsekretion ist, spielen bestimmte Aminosäuren auch eine regulierende Rolle. Nach traditioneller Auffassung trägt Glutamin zwar zur Insulinsekretion bei, hat aber keinen direkten Einfluss auf diesen Prozess, es sei denn, er wird durch Glutamatdehydrogenase (GDH) aktiviert. Wir fanden heraus, dass Glutamin die Insulinsekretion unabhängig von der GDH-Aktivierung in INS-1 832/13-Zellen erhöht. Ziel dieser Arbeit war es daher, die Rolle von Glutamin bei der Insulinsekretion aufzuklären und seine regulierenden Effekte auf den Glukosestoffwechsel in β-Zellen der Pankreas zu untersuchen. Um dies zu erreichen, nutzen wir fortschrittliche Methoden, einschließlich Metabolomik- und Netzwerkanalysen, um ein umfassendes Verständnis dieser komplexen Mechanismen zu erlangen. Methoden und Ergebnisse: Unsere anfänglichen Ergebnisse stellten eine überraschende Inhomogenität zur herkömmlichen Annahme dar, dass Glutamin die Insulinsekretion nur in der Anwesenheit von Leucin induziert. Wir entdeckten, dass Glutamin (unabhängig von Leucin) die Insulinsekretion in INS-1 832/13-Zellen dosisabhängig steigern kann. Um dieses Phänomen näher zu untersuchen, setzten wir Hemmstoffe von Schlüsselenzymen des Glutaminstoffwechsels ein - GDH (verantwortlich für die Glutamatoxidation) und Glutaminase (konvertiert Glutamin zu Glutamat). Unsere Ergebnisse zeigten, dass die Hemmung der GDH die Insulinsekretion nicht modifizierte, während die Hemmung der Glutaminase die Insulinsekretionsantwort auf Glutamin in INS-1 832/13-Zellen deutlich verringerte. Diese Erkenntnis deutet darauf hin, dass die Wirkung von Glutamin auf die Insulinsekretion unabhängig von der Glutamatoxidation ist. In dieser Studie untersuchten wir weiterhin die regulatorische Rolle von Glutamin bei der Insulinsekretion und für die GK-Rate in Abhängigkeit vom Glukosespiegel. Wir stellten fest, dass steigende Glutaminkonzentrationen sowohl die Dynamik der Insulinsekretion als auch die kinetischen Parameter der Glucokinase (GK) in INS-1 832/13-Zellen beeinflussten, was auf eine bisher nicht erkannte regulatorische Beziehung zwischen Glutamin und Glukosephosphorylierung schließen lässt. Um unser Verständnis dieser komplexen Beziehung zu vertiefen, entwickelten wir einen neuartigen analytischen Ansatz, der die Netzwerkanalyse mit der Metabolomforschung kombinierte. Diese innovative Methode ermöglichte eine unvoreingenommene Bewertung der Wechselbeziehungen zwischen verschiedenen Metaboliten und damit ein umfassenderes Verständnis der Stoffwechselwege und ihrer Wechselwirkungen. Ein bemerkenswertes Ergebnis unserer Netzwerkanalyse war die Identifizierung von Prolin als Schlüsselmetabolit im Glutamin-Glukose-Crosstalk. Um diese Verbindung zu bestätigen, führten wir siRNA-Knockdown-Experimente durch, die auf die Prolinsynthese in INS-1 832/13-Zellen abzielten. Die Ausschaltung dieser Gene führte zu einer deutlichen Verringerung der Insulinsekretion als Reaktion auf Glutamin. Bemerkenswerterweise konnte dieser Effekt durch die Zugabe von Prolin wiederhergestellt werden, was die wesentliche Rolle von Prolin bei der Glutamin-vermittelten Insulinsekretion unterstreicht. Darüber hinaus ergaben in vitro Enzymassays mit INS-1 832/13-Zellextrakten und gereinigter Ratten-GK Prolin-vermittelte Veränderungen der kinetischen Parameter, die mit Glutamin-vermittelten Veränderungen der GK-Aktivität in lebenden INS-1 832/13-Zellen übereinstimmen. Darüber hinaus zeigte ein Thermal Stability Assay, dass die Schmelztemperatur von gereinigtem Ratten-GK mit der Prolin-Konzentration variierte, was auf eine direkte Interaktion von Prolin mit der GK hindeutet. Dieser Effekt von Glutamin auf die Insulinsekretion wurde auch in aus Ratten isolierten Langerhansschen Inseln beobachtet, was die physiologische Relevanz unserer Ergebnisse bestätigt. Darüber hinaus bestätigte der Thermal Stability Assay mit gereinigter menschlichen GK, dass diese Interaktion auch beim Menschen konserviert ist. Schlussfolgerung und Ausblick: Diese Studie enthüllt einen neuartigen Mechanismus, durch den der Glutamin-Stoffwechsel über die Prolin-Synthese die GK-Aktivität reguliert und dadurch die Insulinsekretion in den β-Zellen der Bauchspeicheldrüse beeinflusst, was bestehende Paradigmen in Frage stellt. Perspektivisch ermöglichen die Erkenntnisse dieser Arbeit vielversprechende Wege für die zukünftige Forschung und potenzielle klinische Anwendungen, insbesondere im Zusammenhang mit T2DM-Management. Zu den Schlüsselbereichen der zukünftigen Forschung gehören die Übertragung dieser Ergebnisse auf in vivo Modelle und klinische Studien, die neue therapeutische Wege für T2DM eröffnen könnten und die Bedeutung der Modulation des Glutamin- und Prolin-Stoffwechsels für eine effektivere Regulierung der Insulinsekretion unterstreichen. Die Untersuchung des direkten kausalen Zusammenhangs zwischen Plasmaprolinspiegeln und diabetischen Erkrankungen könnte nicht nur unser Verständnis von Diabetes vertiefen, sondern auch einen potenziellen Biomarker für eine frühzeitige Risikobewertung liefern. Die Entschlüsselung der genauen molekularen Wechselwirkungen zwischen Prolin und GK könnte die Identifizierung potenzieller neuer Bindungsstellen für therapeutische Eingriffe zur Steigerung der GK- Aktivität und zur Verbesserung der Glukoseregulierung ermöglichen. Die Erweiterung dieser Forschung auf menschliche Zellen und die Untersuchung ihrer Auswirkungen auf Diabetes und andere Stoffwechselstörungen ist ein wichtiger nächster Schritt, der das Potenzial für bedeutende Fortschritte bei der Behandlung von Diabetes und dem Verständnis von Stoffwechselkrankheiten bietet.:Table of Contents List of abbreviations List of figures List of tables 1. Introduction 1.1. Type 2 Diabetes 1.1.1. Definition, epidemiology, and risk factors 1.1.2. Pathophysiology of T2DM 1.1.3. Preserving or enhancing β-cell function 1.2. Physiology of pancreatic β-cells 1.2.1. Overview of glucose-stimulated insulin secretion 1.2.2. Regulation of glucose entry into the β-cells 1.2.3. Role of glucokinase as a glucose sensor 1.2.4. Regulation of mitochondrial metabolism in insulin secretion 1.2.5. Regulation of amino acid mediated insulin secretion 1.3. Metabolomics approach in studying β-cell function 1.4. Network analysis in metabolomics data analysis and interpretation 2. Aims of the study 3. Materials and Methods 3.1. Materials 3.1.1. INS-1 832/13 cells 3.1.2. Chemicals, solutions, and buffers for cell culture 3.1.3. Chemicals, solutions, and buffers for molecular and metabolic experiments 3.1.4. Software 3.2. Methods 3.2.1. Cell culture 3.2.1.1. Culturing INS-1 832/13 cells 3.2.1.2. Cryopreservation and thawing of INS1 832/13 cells 3.2.1.3. Isolation of rat islets 3.2.2. Expression and Purification of GST-fusion GK Proteins in E. coli. 3.2.3. Insulin secretion studies in INS1 832/13 cells 3.2.3.1. Effect of Glutamine on insulin secretion 3.2.3.2. Effect of chronic and acute exposure of glutamine on insulin secretion 3.2.3.3. Glutamine-responsive insulin secretion 3.2.3.4. Effect of glutamate oxidation in glutamine-mediated insulin secretion 3.2.3.5. Effect of glutamine on glucose-responsive insulin secretion 3.2.3.6. Effect of 2DG on glucose stimulated insulin secretion 3.2.3.7. Insulin and total protein quantification 3.2.4. Metabolomic experiments in INS-1 832/13 cells 3.2.4.1. Effect of specific perturbations on metabolomic profile 3.2.4.2. Effect of glutamine on metabolomic profile 3.2.5. Metabolomic analyses 3.2.5.1. LC-MS/MS method for characterization of metabolites 3.2.5.2. Metabolite concentration calculation 3.2.6. Network analysis 3.2.6.1. Metabolite network construction 3.2.6.2. Comparative metabolite analysis with weighted network metrics 3.2.7. GK kinetic studies 3.2.7.1. GK activity with GK activator in INS-1 832/13 cells 3.2.7.2. GK activity with glutamine in INS1 cells & rat islets 3.2.7.3. GK kinetics measurement 3.2.7.4. In vitro GK kinetic studies using cell extracts & purified GK enzyme 3.2.8. Gene expression analysis 3.2.8.1. RNA isolation 3.2.8.2. cDNA synthesis 3.2.8.3. qPCR 4. Results 4.1. Glutamine mediated insulin secretion in INS-1 832/13 cells 4.1.1. Glutamine alone stimulates insulin secretion 4.1.2. Glutamine amplifies insulin secretion independently of glutamate oxidation 4.2. Glutamine mediated insulin secretion and its impact on glucose responsiveness 4.2.1. Glutamine modulates the regulation of insulin secretion in INS-1 832/13 cells 4.2.2. Live cell GK activity measurement using 2DG uptake in INS-1 832/13 cells 4.2.3. Glutamine modulates GK activity in INS-1 832/13 cells 4.3. Identifying the glutamine-derived factor regulating GK activity 4.3.1. Network analysis to identify key metabolites associated with specific perturbations 4.3.2. Glutamine-induced insulin secretion is mediated by proline 4.3.3. Proline modulates GK activity in INS-1 832/13 cell extracts 4.3.4. Proline modulates activity of purified rat GK 4.3.5. Thermal stability assays in rat GK 4.3.6. siRNA knockdown of proline synthesis 4.4. Glutamine modulates insulin secretion and GK activity in rat islets 4.5. Proline interacts and modulate GK in human 5. Discussion 5.1. Reevaluating glutamine-mediated insulin secretion in pancreatic β-cells 5.2. Novel role of glutamine-mediated modulation of GK activity and insulin secretion in pancreatic β-cells 5.3. Network analysis as a tool to unravel complex interactions in metabolic research 5.4. Proline as a novel modulator of GK 5.5. Contrasting role of glutamine in pancreatic and liver metabolism 6. References 7. Summary 8. Zussammenfassung 9. Acknowledgements 10. Declaration
109

Synthetic Lethality and Metabolism in Ewing Sarcoma : Knowledge Through Silence / Létalité synthétique et Métabolisme dans le Sarcome d'Ewing : connaissance grâce au Silence

Jonker, Anneliene 08 September 2014 (has links)
Le sarcome de Ewing est la seconde tumeur pédiatrique de l’os la plus fréquente. Elle est caractérisée par une translocation chromosomique résultant à la fusion de EWSR1 avec un membre de la famille ETS. Chez 85% des patients, cette fusion conduit à l’expression de la protéine chimérique EWS-FLI1 qui est l’oncogène majeur de ce sarcome. Ce dernier agit principalement par son action transcriptionelle sur des cibles qui lui sont propres. Au niveau thérapeutique, le sarcome d’Ewing est traité par chimiothérapie, chirurgie locale et par radiothérapie. La survie à long terme des patients est de l’ordre de 70%, mais beaucoup plus basse pour les patients métastatiques et quasi nulle lors d’une récidive. Parmi maintes caractéristiques, certains cancers présentent une dérégulation énergétique. L’influence d’EWS-FLI1 sur cet aspect n’a fait l’objet d’aucune étude dans le contexte du sarcome d’Ewing. Nous avons donc étudié par profilage métabolomique des cellules de sarcome d’Ewing en présence ou en absence d’EWS-FLI1. En comparant ces deux conditions, des modulations du profil énergétique relatif au cycle de Krebs, des précurseurs de le glycosylation ainsi que des métabolites de la voie de la méthionine et du tryptophane ont été observés. En parallèle, grâce à un crible de banque de shRNAs réalisé dans des conditions expérimentales similaires à l’étude métabolomique (lignée d’Ewing avec ou sans EWS-FLI1), nous avons pu identifier des gènes présentant des caractéristiques « synthétique létales », c'est-à-dire tuant uniquement les cellules du sarcome d’Ewing en présence de son oncogène. / Ewing sarcoma, the second most commonly occurring pediatric bone tumor, is most often characterized by a chromosomal translocation between EWSR1 and FLI1. The gene fusion EWS-FLI1 accounts for 85% of all Ewing sarcoma and is considered the major oncogene and master regulator of Ewing sarcoma. EWS-FLI1 is a transcriptional modulator of targets, both directly and indirectly. Ewing sarcoma is aggressively treated with chemotherapy, localized surgery and radiation and has an overall survival of about 70%, however, survival for metastasis or relapsed cases remains low. One of the cancer hallmarks, metabolic deregulation, is most likely partly dependent on EWS-FLI1 in Ewing sarcoma cells. In order to get a better understanding of Ewing sarcoma biology and oncogenesis, it might be of high interest to investigate the influence of EWS-FLI1 in Ewing sarcoma cells. We therefore performed a global metabolic profiling of Ewing sarcoma cells with or without inhibition of EWS-FLI1. Several changes in the energy metabolism were observed throughout this study; the observed changes were consistent with an energy profile that moved from a cancer cell energy metabolism towards the energy metabolism of a more normal cell upon EWS-FLI1 inhibition, primarily based on the TCA cycle. Levels of TCA intermediates, glycosylation precursors, methionine pathway metabolites and amino acids, especially changes in the tryptophan metabolic pathway, were altered upon EWS-FLI1 inhibition. Parallel to this study, we performed a high-throughput synthetic lethality screen, in order to not only identify essential genes for cell survival and proliferation, but also to identify new synthetic lethal targets that could specifically target Ewing sarcoma cells carrying the EWS-FLI1 fusion gene.
110

Procédés de cultures de cellules VERO en milieu sans sérum : contributions au développement d'une stratégie PAT / Vero cell culture processes in serum-free medium : contributions to the development of the PAT strategy

Petiot, Emma 06 November 2009 (has links)
Ce travail apporte une contribution au développement de la stratégie PAT pour les procédés de culture de cellules animales. Il propose l'amélioration de la compréhension et de la maîtrise de la culture de cellules Vero, dédiées à la production de vaccins viraux, et cultivées sur microporteurs dans un milieu sans sérum. Une première partie a permis de cribler les effets de certains groupes de composés du milieu de culture par le suivi de la croissance en microplaques. Puis, des études cinétiques et métaboliques plus approfondies, réalisées en spinners, ont montré que le métabolisme carboné des cellules Vero est saturé par l'accumulation intracellulaire de pyruvate et qu’il est peu orienté vers la croissance. Alors que le renouvellement du milieu ou l'ajout ponctuel de glutamine amélioraient la croissance cellulaire sans ré-équilibrer le métabolisme, la substitution du glucose et de la glutamine a permis de réduire l’apoptose et d'améliorer les performances métaboliques et de croissance. Par ailleurs, les spectroscopies diélectrique et proche-infrarouge ont été évaluées pour le contrôle en-ligne du procédé, en prenant en compte les particularités des cellules adhérentes. Nous avons montré leur capacité à évaluer les concentrations de cellules, de composés du milieu, et à détecter l'apoptose. Enfin, les principales améliorations par substitution de la glutamine ont été appliquées en bioréacteurs, à la production d'un vaccin prototype contre la dengue, dans des conditions proches de celles d'un procédé industriel. Ceci a permis de limiter les renouvellements de milieu pendant l’expansion cellulaire, sans compromettre la production de particules virales infectieuses / This work contributes to the development of the PAT strategy for animal cell culture processes. The aim of this study was to improve the understanding and the control of Vero cell culture, dedicated to the production of viral vaccines, and grown on microcarriers in serum-free medium. An initial study was performed to screen the effects of certain groups of compounds of the culture medium, by the cell growth monitoring in microplates. Then, kinetic and metabolic studies conducted in spinners flasks allowed to go further and to show that the Vero cell metabolism is saturated through the pyruvate intracellular accumulation and that it is not oriented toward growth. While media renewal or punctual addition of glutamine improve the cell growth without improving the metabolism balance, the substitution of glucose and glutamine allowed to reduce apoptosis and to improve growth and metabolic performances.Furthermore, dielectric and near-infrared spectroscopies have been evaluated for the in-line process monitoring, taking into account the particularities of adherent cells. We have demonstrated their ability to quantify cell concentrations, medium component concentrations, and to detect apoptosis. Finally, major improvements by substitution of glutamine have been applied to bioreactor culture to produce a dengue vaccine prototype, with culture conditions close to industrial process. In these cases, medium renewal during the cell expansion was removed without compromising the production of infectious viral particles

Page generated in 0.0622 seconds