• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 46
  • 18
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 92
  • 92
  • 44
  • 41
  • 23
  • 18
  • 16
  • 13
  • 12
  • 11
  • 11
  • 11
  • 10
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Role of ryanodine receptors in neuronal calcium signalling and growth control

Bose, Diptiman Dipen 01 January 2002 (has links)
The versatility of Ca2+ as a messenger regulating a myriad of signalling events requires that the concentration of Ca2+ ions in the cytoplasm be highly regulated. Capacitative Ca2+ entry (CCE) or store-operated Ca2+ (SOC) entry, whereby the depletion of intracellular Ca2+ stores induces the influx of Ca2+ across the plasma membrane, plays a crucial role in Ca2+ signalling. Despite the recent advances in elucidating the entry pathway, its molecular identity, biophysical properties and store-depletion signal remains undefined. Thapsigargin (TG), a sarcoplasmic/endoplasmic reticulum Ca2+ A TPase pump (SERCA), inhibitor induces passive depletion of the internal Ca2+ stores and triggers CCE. The universality of this signal has been widely accepted and TG has proven to be a valuable tool in studying CCE. The neuronal cell line NG 115 -401 L lacks the TG activated Ca2+ influx pathway. Agonists of the ryanodine receptor (RyR); chlorom- cresol (CMC), polychlorinated biphenyl 95 (PCB), ryanodine, caffeine, and that of the inositol-1 ,4 ,5-trisphosphate receptor (IP3R), bradykinin, effectively couple to the activation of Ca2+ influx in these cells. The Ca2+ influx signal due to these agonists can be inhibited by SOC blockers such as La3+, Zn2+, Ni2+ and SF&F 96365. Thapsigargin, CMC and PCB95 share the same Ca2+ releasable pools in the 401 L cells. Our data thus suggests that the channels present in the 401 L cells are likely to be receptor-activated channels rather than the store-depletion activated channels. Cell viability studies show that thapsigargin (25 nM) can decrease viability by 75% within 24 hrs and the RyR agonist caffeine decreased viability to <60% within 24hrs. CMC, PCB95 and ryanodine also were cytotoxic at higher doses. Nuclear fragmentation patterns and activation of caspase-3 in thapsigargin and caffeine-treated cells suggest the induction of apoptosis within 12 hrs of treatment. The treated cells were shown to generate nitric oxide, a potential apoptosis inducing agent.
82

Investigation of the action of phosphatase of regenerating liver on PTEN using murine models

Campbell, Amanda Marie 09 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The addition and removal of phosphate groups is a key regulatory mechanism for many cellular processes. The balance between phosphorylation and dephosphorylation is delicate and must be maintained in order for proper cell functions to be carried out. Protein kinases and phosphatases are the keepers of this balance with kinases adding phosphate groups and phosphatases removing them. As such, mutation and/or altered regulation of these proteins can be the driving factor in disease. Phosphatase of Regenerating Liver (PRL) is a family novel of three dual specificity phosphatases (DSPs) first discovered in the regenerating liver tissue of rats. PRLs have also been shown to act as oncogenes in cell culture and in animal models. However, the physiological substrate and mechanisms of the PRLs are not yet known. Recently, our lab has developed a PRL 2 knockout mouse and found several striking phenotypes all of which correspond to a significant increase in PTEN. We also found that PRL 2 is targetable by small molecular inhibitors that can potentially be used to disrupt tumor growth and spermatogenesis. Furthermore, a PTEN heterozygous mouse model crossed into our PRL 2 knockout line was generated to investigate the relevance of PRL interaction with PTEN in cancer.
83

Estrogen receptor involvement in the response of human keratinocytes to ultraviolet B irradiation

Farrington, Daphne L. January 2014 (has links)
The signaling mechanisms involved in UVB-induced skin cancer are complex and although the scope of this work is inherently limited in focus, the findings may provide insight into how estrogen receptor signaling impacts cell growth, senescence, and apoptosis to protect keratinocytes. Additional signaling due to E2-activation of the estrogen receptor may provide back-up or redundant pathways in response to UVB.
84

Bidirectional regulation of YAP and ALDH1A1

Martien, Matthew F. 10 August 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Breast cancer is the second leading cause of cancer death for women in the United States. Approximately, 1 in 5 women will recur with cancer within 10 years of completing treatment and recent publications have suggested that breast cancer stem cells confer resistance to therapy. These reports highlight aldehyde dehydrogenase 1A1 (ALDH1A1) and Yes-associated protein (YAP) as a biomarker and key mediator of the stem cell phenotype respectively. To further understand how YAP and ALDH1A1 facilitate chemoresistance, this study investigated how ALDH1A1 specific inhibition affected YAP activity and growth of basal-like breast cancer cells, which are enriched in cancer stem cells. Intriguingly, attenuation of growth by ALDH1A1 inhibition was observed when cells were plated on a reconstituted basement membrane. Further, the inhibition of cell growth correlated with cytosolic retention of YAP and a reduction in YAP signaling. In a complementary analysis, the overexpression of YAP correlated with an increased level of ALDH1A1 transcript. Results from this study indicate a novel mechanism by which basal-like breast cancer cells utilize YAP to maintain the stem cell phenotype and also suggest ALDH1A1 as a potential therapeutic target for breast cancer therapy.
85

Ligand selective regulation of cell growth by the Ah receptor through activation of TGFβ signaling / Ligand selective regulation of cell growth by the Ah receptor through activation of TGF-beta signaling

Koch, Daniel C. 28 March 2015 (has links)
The Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor and member of the basic helix-loop-helix Per/ARNT/Sim (bHLH/PAS) family of chemosensors and developmental regulators. As a member of the PAS domain family of transcription factors responsive to exogenous signals, the AhR exerts influence on many processes relating to cellular fate. The activation of AhR is widely associated with toxic endpoints related to dioxin exposure. However, the AhR also activates endogenous gene programs related to development, cellular growth, and differentiation. The AhR is able to bind a variety of ligands, leading to a wide range of biological outcomes. Recent reports have shown that the AhR can mediate tumor suppressive effects. As a ligand-activated transcription factor, the AhR has the potential to actuate a variety of transcriptional programs that are dependent on the AhR ligand. Our central hypothesis is that AhR ligands can be identified that are capable of initiating tumor suppressive functions of the AhR. We utilized complementary cell-based and in silico virtual screening approaches to identify potential AhR ligands. We developed homology models of the AhR ligand-binding domain (LBD) for virtual ligand screening (VLS) of small molecule libraries. This led to the identification of new AhR ligands 5,7- dihydroxyflavanone!and 5-hydroxy-7-methoxyflavone. Additional small molecule libraries were screened in parallel that led to identification of flutamide as a putative AhR ligand. Flutamide is clinically approved for the treatment of prostate cancer due to its ability to antagonize androgen receptor mediated transcription. We investigated the biological effects of flutamide in AhR positive cancer cells that do not express the androgen receptor and found that flutamide inhibited the growth of HepG2 cells. Suppression of AhR expression reversed the anti-proliferative effects of flutamide. We tested 15 structural analogs of flutamide, including the flutamide metabolite 2-hydroxyflutamide for activation of AhR transcriptional activity. Flutamide is unique in its ability to activate the AhR, and suppresses hepatoma cell growth. These data suggests that flutamide-induced AhR transcriptional activity is required to initiate the tumor suppressive effects. We examined changes in cell cycle checkpoint proteins after flutamide treatment and discovered increased expression of cell cycle inhibitory proteins p27[superscript Kip1] and p15[superscript INK]. We also found that transforming Growth Factor β1 (TGFβ1), which regulates both p27[superscript Kip1] and p15[superscript INK], is upregulated by flutamide. We demonstrate that TGFβ1 is upregulated by flutamide in an AhR-dependent manner and is required for suppression of proliferation by flutamide. We identify specific and unique transcriptional signatures of the AhR upon activation by flutamide, that are distinct from the potent AhR agonist 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD). In summary, we characterize flutamide as an AhR ligand and demonstrate its AhR-dependent tumor suppressive effects in hepatoma cells. We provide the first direct evidence that AhR regulates TGFβ signaling in a ligand dependent manner. We demonstrate that the AhR-induced downstream transcriptional signature and subsequent biological effects are specific to the AhR ligand. Our studies have broad impact for characterizing the AhR as a new therapeutic target in hepatocellular carcinoma. / Graduation date: 2013 / Access restricted to the OSU Community at author's request from March 28, 2013 - March 28, 2015
86

Discovery of novel regulators of aldehyde dehydrogenase isoenzymes

Ivanova, Yvelina Tsvetanova 30 May 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Recent work has shown that specific ALDH isoenzymes can contribute to the underlying pathology of different diseases. Many ALDH isozymes are important in oxidizing reactive aldehydes resulting from lipid peroxidation, and, thus, help maintain cellular homeostasis. Increased expression and activity of ALDH isozymes are found in many human cancers and are often associated with poor prognosis. Therefore, the development of inhibitors of the different ALDH enzymes is of interest as means to treat some of these disease states. Here I describe the results of assays designed to characterize the site of interaction and the mode of inhibition for the unique compounds that function as inhibitors of aldehyde dehydrogenase 2 and determine their respective IC50 values with intent to develop structure-activity relationships for future development.
87

Expression and Function of the PRL Family of Protein Tyrosine Phosphatase

Dumaual, Carmen Michelle 06 March 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The PRL family of enzymes constitutes a unique class of protein tyrosine phosphatase, consisting of three highly homologous members (PRL-1, PRL-2, and PRL-3). Family member PRL-3 is highly expressed in a number of tumor types and has recently gained much interest as a potential prognostic indicator of increased disease aggressiveness and poor clinical outcome for multiple human cancers. PRL-1 and PRL-2 are also known to promote a malignant phenotype in vitro, however, prior to the present study, little was known about their expression in human normal or tumor tissues. In addition, the biological function of all three PRL enzymes remains elusive and the underlying mechanisms by which they exert their effects are poorly understood. The current project was undertaken to expand our knowledge surrounding the normal cellular function of the PRL enzymes, the signaling pathways in which they operate, and the roles they play in the progression of human disease. We first characterized the tissue distribution and cell-type specific localization of PRL-1 and PRL-2 transcripts in a variety of normal and diseased human tissues using in situ hybridization. In normal, adult human tissues we found that PRL-1 and PRL-2 messages were almost ubiquitously expressed. Only highly specialized cell types, such as fibrocartilage cells, the taste buds of the tongue, and select neural cells displayed little to no expression of either transcript. In almost every other tissue and cell type examined, PRL-2 was expressed strongly while PRL-1 expression levels were variable. Each transcript was widely expressed in both proliferating and quiescent cells indicating that different tissues or cell types may display a unique physiological response to these genes. In support of this idea, we found alterations of PRL-1 and PRL-2 transcript levels in tumor samples to be highly tissue-type specific. PRL-1 expression was significantly increased in 100% of hepatocellular and gastric carcinomas, but significantly decreased in 100% of ovarian, 80% of breast, and 75% of lung tumors as compared to matched normal tissues from the same subjects. Likewise, PRL-2 expression was significantly higher in 100% of hepatocellular carcinomas, yet significantly lower in 54% of kidney carcinomas compared to matched normal specimens. PRL-1 expression was found to be associated with tumor grade in the prostate, ovary, and uterus, with patient gender in the bladder, and with patient age in the brain and skeletal muscle. These results suggest an important, but pleiotropic role for PRL-1 and PRL-2 in both normal tissue function and in the neoplastic process. These molecules may have a tumor promoting effect in some tissue types, but inhibit tumor formation or growth in others. To further elucidate the signaling pathways in which the PRLs operate, we focused on PRL-1 and used microarray and microRNA gene expression profiling to examine the global molecular changes that occur in response to stable PRL-1 overexpression in HEK293 cells. This analysis led to identification of several molecules not previously associated with PRL signaling, but whose expression was significantly altered by exogenous PRL-1 expression. In particular, Filamin A, RhoGDIalpha, and SPARC are attractive targets for novel mediators of PRL-1 function. We also found that PRL-1 has the capacity to indirectly influence the expression of target genes through regulation of microRNA levels and we provide evidence supporting previous observations suggesting that PRL-1 promotes cell proliferation, survival, migration, invasion, and metastasis by influencing multi-functional molecules, such as the Rho GTPases, that have essential roles in regulation of the cell cycle, cytoskeletal reorganization, and transcription factor function. The combined results of these studies have expanded our current understanding of the expression and function of the PRL family of enzymes as well as of the role these important signaling molecules play in the progression of human disease.
88

The Direct Reprogramming of Somatic Cells: Establishment of a Novel System for Photoreceptor Derivation

Steward, Melissa Mary 22 August 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Photoreceptors are a class of sensory neuronal cells that are deleteriously affected in many disorders and injuries of the visual system. Significant injury or loss of these cells often results in a partial or complete loss of vision. While previous studies have determined many necessary components of the gene regulatory network governing the establishment, development, and maintenance of these cells, the necessary and sufficient profile and timecourse of gene expression and/or silencing has yet to be elucidated. Arduous protocols do exist to derive photoreceptors in vitro utilizing pluripotent stem cells, but only recently have been able to yield cells that are disease- and/or patient-specific. The discovery that mammalian somatic cells can be directly reprogrammed to another terminally-differentiated cell phenotype has inspired an explosion of research demonstrating the successful genetic reprogramming of one cell type to another, a process which is typically both more timely and efficient than those used to derive the same cells from pluripotent stem cell sources. Therefore, the emphasis of this study was to establish a novel system to be used to determine a minimal transcriptional network capable of directly reprogramming mouse embryonic fibroblasts (MEFs) to rod photoreceptors. The tools, assays, and experimental design chosen and established herein were designed and characterized to facilitate this determination, and preliminary data demonstrated the utility of this approach for accomplishing this aim.
89

The tumor suppressing roles of tissue structure in cervical cancer development

Nguyen, Hoa Bich 07 October 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Cervical cancer is caused by the persistent infection of human papilloma virus (HPV) in the cervix epithelium. Although effective preventative care is available, the widespread nature of infection and the variety of HPV strains unprotected by HPV vaccines necessitate a better understanding of the disease for development of new therapies. A major tumor suppressing mechanism is the inhibition of cell division by tissue structure; however, the underlining molecular circuitry for this regulation remains unclear. Recently, the Yap transcriptional co-activator has emerged as a key growth promoter that mediates contact growth arrest and limits organ size. Thus, we aimed to uncover upstream signals that connect tissue organization to Yap regulation in the inhibition of cervical cancer. Two events that disrupt tissue structure were examined including the loss of the tumor suppressor LKB1 and the expression of the viral oncogene HPV16-E6. We identified that Yap mediates cell growth regulation downstream of both LKB1 and E6. Restoration of LKB1 expression in HeLa cervical cancer cells, which lack this tumor suppressor, or shRNA knockdown of LKB1 in NTERT immortalized normal human dermal keratinocytes, demonstrated that LKB1 promotes Yap phosphorylation, nuclear exclusion, and proteasomal degradation. The ability of phosphorylation-defective Yap mutants to rescue LKB1 phenotypes, such as reduced cell proliferation and cell size, suggest that Yap inhibition contributes to LKB1 tumor suppressor function(s). Interestingly, LKB1’s suppression of Yap activity required neither the canonical Yap kinases, Lats1/2, nor metabolic downstream targets of LKB1, AMPK and mTORC1. Instead, the scaffolding protein NF2 was required for LKB1 to induce a specific actin cytoskeleton structure that associates with Yap suppression. Meanwhile, HPV16-E6 promoted Yap activation in all stages of keratinocyte differentiation. E6 activated the Rap1 small GTPase, which in turn promoted Yap activity. Since Rap1 does not mediate differentiation inhibition caused by E6, E6 may play a role in promoting cell growth through Rap1-Yap activation rather than preventing growth arrest through the disruption of differentiation. Altogether, the LKB1-NF2-Yap and E6-Rap1-Yap pathways represent two examples of a novel phenomenon, whereby the structure of a cell directly influences its gene expression and proliferation.
90

Functional Insights Into Oncogenic Protein Tyrosine Phosphatases By Mass Spectrometry

Walls, Chad Daniel 29 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Phosphatase of Regenerating Liver 3 (PRL3) is suspected to be a causative factor toward cellular metastasis when overexpressed. To date, the molecular basis for PRL3 function remains an enigma, justifying the use of 'shot-gun'-style phosphoproteomic strategies to define the PRL3-mediated signaling network. On the basis of aberrant Src tyrosine kinase activation following ectopic PRL3 expression, phosphoproteomic data reveal a signal transduction network downstream of a mitogenic and chemotactic PDGF (α and β), Eph (A2, B3, B4), and Integrin (β1 and β5) receptor array known to be utilized by migratory mesenchymal cells during development and acute wound healing in the adult animal. Tyrosine phosphorylation is present on a multitude of signaling effectors responsible for Rho-family GTPase, PI3K-Akt, Jak-STAT3, and Ras-ERK1/2 pathway activation, linking observations made by the field as a whole under Src as a primary signal transducer. Our phosphoproteomic data paint the most comprehensive picture to date of how PRL3 drives pro-metastatic molecular events through Src activation. The Src-homology 2 (SH2) domain-containing tyrosine phosphatase 2 (SHP2), encoded by the Ptpn11 gene, is a bona-fide proto-oncogene responsible for the activation of the Ras/ERK1/2 pathway following mitogen stimulation. The molecular basis for SHP2 function is pTyr-ligand-mediated alleviation of intramolecular autoinhibition by the N-terminal SH2 domain (N-SH2 domain) upon the PTP catalytic domain. Pathogenic mutations that reside within the interface region between the N-SH2 and PTP domains are postulated to weaken the autoinhibitory interaction leading to SHP2 catalytic activation in the open conformation. Conversely, a subset of mutations resides within the catalytic active site and cause catalytic impairment. These catalytically impaired SHP2 mutants potentiate the pathogenesis of LEOPARD-syndrome (LS), a neuro-cardio-facial-cutaneous (NCFC) syndrome with very similar clinical presentation to related Noonan syndrome (NS), which is known to be caused by gain-of-function (GOF) SHP2 mutants. Here we apply hydrogen-deuterium exchange mass spectrometry (H/DX-MS) to provide direct evidence that LS-associated SHP2 mutations which cause catalytic impairment also weaken the autoinhibitory interaction that the N-SH2 domain makes with the PTP domain. Our H/DX-MS study shows that LS-SHP2 mutants possess a biophysical property that is absolutely required for GOF-effects to be realized, in-vivo.

Page generated in 0.0474 seconds