• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 161
  • 161
  • 161
  • 86
  • 60
  • 59
  • 55
  • 26
  • 23
  • 22
  • 22
  • 21
  • 20
  • 20
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Purification and characterization of antibodies against killifish HIF-1α

Gonzalez-Rosario, Janet 13 May 2016 (has links)
Many fish face low oxygen concentrations (hypoxia) in their natural environments, and they respond to hypoxia through a variety of behavioral, physiological, and cellular mechanisms. Some of these responses involve changes in gene expression. In mammals, the hypoxia inducible factor (HIF) family of transcription factors are the “master regulators” of gene expression during hypoxia, but the study of HIF in fish has been hampered by the lack of reagents to detect this protein in non-mammalian vertebrates. The goals of this thesis are to affinity purify antibodies against HIF from the killifish Fundulus heteroclitus and use them to recover and quantify HIF from killifish cells and tissues. The purified, validated antibodies represent a critical reagent for future studies of the role of HIF in the molecular response of this and other fish to fluctuations in oxygen in their natural environments.
52

Eggshell calcium regulates calcium transport protein expression in an oviparous snake

Frye, Hannah 01 May 2014 (has links)
One hypothesis explaining the numerous independent evolutionary transitions from oviparity to viviparity among squamates (snakes and lizards) proposed that squamate embryonic development is independent of eggshell calcium. Recent research showed at least 25% of the calcium in hatchling oviparous squamates is extracted from the shell. Though not a direct test, these results are inconsistent with the hypothesis. To directly test the hypothesis, we removed eggshell calcium (through peeling) early in development of Pantherophis guttatus (corn snake) eggs. Survivorship to hatching did not differ between peeled and intact eggs. Yet hatchlings from peeled eggs were shorter (273.6 ± 3.4 vs. 261.0 ± 3.7 mm, p=0.0028, n=16), lighter (6.36 ±0.22 vs. 5.75 ± 0.23 g, p=0.0158, n=16), and had reduced calcium (40.8 ± 1.7 vs. 30.5 ± 1.8 mg, p
53

DIFFERENTIAL ACTIVITY AND CONTENT OF HIGH-AFFINITY GLUTAMATE TRANSPORTERS, CONTENT OF THEIR REGULATORY PROTEINS, AND CAPACITY FOR GLUTAMINE AND GLUTATHIONE SYNTHESIS IN TISSUES OF FINISHED VERSUS GROWING STEERS

Huang, Jing 01 January 2017 (has links)
Improvement of feeding regimens for production animals has been hindered by a lack of fundamental knowledge about how the capacity to regulate nutrient absorption across cell membranes affects the function of nutrient metabolizing enzymes. The objective is to determine if the activities and protein content of system X-AG glutamate transporter, its regulatory protein (GTRAP3-18 and ARL6IP1), glutamine synthetase (GS) and glutathione (GSH) content, changes in liver (Experiment 1), longissimus dorsi (LM) and subcutaneous adipose tissue (SF) (Experiment 2) as beef steers transitioned from predominantly-lean (growing) to -lipid (finished) tissue accretion phases. In liver (Experiment 1), system X-AG activity in canalicular membranes was abolished as steers developed from growing to finished stages but did not change in basolateral membranes. EAAC1 protein content in liver homogenates decreased in finished vs. growing steers, whereas GTRAP3-18 and ARL6IP1 content increased and GLT-1 content did not change. Concomitantly, hepatic GS activity decreased in finished steers whereas GS protein content did not differ. Hepatic GSH content did not differ in finished vs. growing steers. These results demonstrate a negative functional relationship between GTRAP3-18 and system X-AG activity with glutamine synthesis capacity in livers of fattened cattle. In addition to liver, skeletal muscle and adipose tissues play important roles in maintaining whole-body glutamate and nitrogen homeostasis. In Experiment 2, Western blot analysis of LM homogenates showed decreased EAAC1 and GS content, whereas GTRAP3-18 and ARL6IP1 did not differ in finished vs. growing steers. GSH content in LM was increased in finished vs. growing steers in concomitance with increased mRNA expression of GSH-synthesizing enzymes. In SF, GTRAP3-18 and ARL6IP1 content was increased, whereas EAAC1 and GS content did not differ. Concomitantly, GSH content in SF was decreased in finished vs. growing steers in parallel with decreased mRNA expression of GSH-metabolizing enzymes. These results demonstrate that the negative regulatory relationship between GTRAP3-18 and ARL6IP1 with EAAC1 and GS expression, which exists in liver, does not exist in LM and SF of fattened cattle; and antioxidant capacity in LM and SF changes and differs as steer compositional gain shifts from lean to lipid phenotype. To further explore the upstream regulatory machinery of EAAC1, transcriptome analysis (Experiment 3) was conducted to gain a greater understanding of hepatic metabolic shifts associated with the change in whole-body compositional gain of growing vs. finished beef steers. The expression of upstream regulators of EAAC1 was decreased in a manner consistent with the decreased EAAC1 activity in Experiment 1. Bioinformatic analysis found that, for amino acid metabolism, finished steers had increased capacities for ammonia, arginine, and urea production, and shunting of amino acid carbons into pyruvate. For carbohydrate metabolism, capacity for glycolysis was inhibited, whereas glycogen synthesis was stimulated in finished steers. For lipid metabolism, finished steers showed decreased capacity for fatty acid activation and desaturation, but increased capacity for fatty acid b-oxidation and lipid storage. In addition, redox capacity and inflammatory responses were decreased in finished steers. Collectively, these data describe novel regulatory relationships of system X-AG in liver and peripheral tissues, and the metabolic mechanisms that control nutrient use efficiency, as beef steers develop from lean to lipid phenotypes.
54

The Effects of a Ketone Body on Synaptic Transmission

Stanback, Alexandra Elizabeth 01 January 2019 (has links)
The ketogenic diet is commonly used to control epilepsy, especially in cases when medications cannot. The diet typically consists of high fat, low carb, and adequate protein and produces a metabolite called acetoacetate. Seizure activity is characterized by glutamate excitotoxicity and therefore glutamate regulation is a point of research for control of these disorders. Acetoacetate is heavily implicated as the primary molecule responsible for decreasing glutamate in the synapse; it is believed that acetoacetate interferes with the transport of glutamate into the synaptic vesicles. The effects on synaptic transmission at glutamatergic synapses was studied in relation to the ketogenic diet in Drosophila larvae for this thesis. Various measures of synaptic transmission were conducted. Acetoacetate decreased neurotransmission at the synapse. It was also found that acetoacetate has direct effects on the postsynaptic membrane, which indicates a novel role for the metabolite.
55

An Evaluation of Induced Shear Stress on Endothelial Cellular Adhesion Molecules

Crabb, Edward B 01 January 2019 (has links)
The pathophysiology of atherosclerotic cardiovascular disease (CVD) is highlighted by vascular dysfunction and low-grade vascular inflammation. Furthermore, the site-specific distribution of atherosclerosis throughout the arterial vasculature is primarily determined by local hemodynamic force. Therefore, this dissertation outlines three experiments designed to investigate the role of acute mental and physical (i.e., aerobic exercise), and vascular wall shear stress (SS) on the inflammatory aspects of atherosclerosis. Chapter 2 examines the effect of acute laboratory-induced mental stress on intracellular pro-inflammatory signaling pathways in peripheral blood mononuclear cells. Chapter 3 investigates the impact of acute laboratory-induced mental stress and maximal aerobic exercise on the concentration of soluble VCAM-1 (sVCAM-1) and CX3CL1/fractalkine (sCX3CL1) in human serum. Lastly, Chapter 4 examines the role of short- (30 min) and long-term (24 hr) low-to-negative oscillating SS (LOSS) and high laminar SS (HLSS) on the expression and secretion (i.e., cleavage) of cell-membrane VCAM-1 and CX3CL1 by human umbilical vein endothelial cell cultures in vitro. Together, these experiments provide evidence that acute psychological stress, maximal aerobic exercise, and HLSS influence vascular inflammation and adhesive properties of the vessel wall. More specifically, the results from Chapter 2 provide evidence that acute mental stress promotes the immune-cell mediated synthesis of pro-inflammatory cytokines in circulation. In addition, Chapter 3 and Chapter 4 demonstrate that the elevations in blood flow and hemodynamic force associated with maximal aerobic exercise, and unidirectional high SS may have the capacity to alter the expression of endothelial-bound cellular adhesion molecules, in part by eliciting their release from the vessel wall.
56

The ‘Helper’ Phenotype: A Symbiotic Interaction Between Prochlorococcus and Hydrogen Peroxide Scavenging Microorganisms

Morris, James Jeffrey 01 May 2011 (has links)
The unicellular cyanobacterium Prochlorococcus is the numerically dominant photosynthetic organism throughout the temperate and tropical open oceans, but it is difficult to grow in pure cultures. We developed a system for rendering spontaneous streptomycin-resistant mutants of Prochlorococcus axenic by diluting them to extinction in the presence of “helper” heterotrophic bacteria, allowing them to grow to high cell concentrations, and then killing the helpers with streptomycin. Using axenic strains obtained in this fashion, we demonstrated that Prochlorococcus experiences a number of growth defects in dilute axenic culture, including reduced growth rate, inability to form colonies on solid media, and higher incidence of mortality (i.e., catastrophic failure of liquid cultures). These defects were eliminated when Prochlorococcus was grown in co-culture with a phylogenetically diverse array of helper bacteria. The primary mechanism of helping was enzymatic removal of hydrogen peroxide (HOOH) from the culture medium. Axenic Prochlorococcus cultures were profoundly sensitive to HOOH additions in comparison with reported tolerance levels for all other wild-type aerobic bacteria, but in co-culture their resistance was similar to that of the helpers. Neither is dependence on helpers limited to the laboratory. Sterile-filtered seawater exposed to sunlight accumulated enough HOOH in 24h to kill ecologically relevant cell concentrations of Prochlorococcus. We also refined a method for delivering HOOH at a defined, steady rate using the buffer HEPES to more accurately simulate the steady accumulation of HOOH in natural waters. Even at the lowest production rates that could sustain the in situ HOOH concentration in the ocean, HEPES-generated HOOH was lethal to Prochlorococcus; again, co-culture with helpers prevented this effect. We speculate on the ecological consequences of Prochlorococcus’ dependency on other organisms for survival, as well as the evolutionary forces that have led to this lack of self-sufficiency.
57

Regulation of Endothelial Nitric Oxide Synthase in Pulmonary Myofibroblasts

Faughn, Jonathan David 01 August 2011 (has links)
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease leading to decreased lung volume and eventual respiratory failure. At present, the median post-diagnosis lifespan is between three and six years. Myofibroblasts are collagen-secreting cells essential for wound healing, but also implicated in the fibroproliferation and extra cellular matrix deposition commonly seen in IPF. The nitric oxide (NO) signaling pathway is implicated in protomyofibroblast to myofibroblast transition and regulation. Previous work has shown that in pulmonary myofibroblasts, endothelial nitric oxide synthase (eNOS) is the primary NOS isoform expressed. The current study used cultured rat pulmonary myofibroblasts between passages two and five as a cell model. The cells were grown in normal growth media (DMEM + 10% FBS) or serum starved (DMEM + 0% FBS) to induce cellular differentiation. In this study, immunocytochemistry was used to show localization of eNOS is dependent on cellular differentiation, with protomyofibroblasts expressing eNOS primarily in the nucleus and protomyofibroblasts expressing eNOS in the perinuclear region. We also show catalytic activity and localization of eNOS are correlated by visualizing nitric oxide production in the cells using a permeable fluorescein chromophore. By using western blot analysis on fractionated cell lysates we found eNOS expressed in the nucleus under normal growth conditions. eNOS is at least partially regulated by intracellular calcium (Ca2+) and calmodulin (CaM). Western blot analysis using native eNOS and phospho-specific eNOS antibodies on fractionated cells treated with the protein kinase C (PKC) activator phorbal 12-myristate 13-acetate (PMA) with and without addition of its antagonist ethylene glycol tetraacetic acid (EGTA) was conducted to investigate PKC’s role in eNOS regulation by phosphorylation. Indeed, PKC activation was found to mitigate expression in the nucleus, while inhibition of the activator restored the activity expression above basal levels. This finding correlates with previous data from our lab showing a decrease in activity in myofibroblasts treated with PMA and assayed amperometrically with an NO electrode.
58

The Time-Course of the Effects of Growth Hormone During Zebrafish (<i>DANIO RERIO</i>) Auditory Hair Cell Regeneration

Wang, Yajie 01 May 2012 (has links)
Growth hormone (GH) was upregulated in the zebrafish inner ear following sound exposure in a previous study. To identify the specific role of GH in hair cell regeneration and the possible cellular mechanisms of this regeneration, groups of zebrafish were divided into baseline (no sound exposure, no injection), buffer-injected and GH-injected groups. Buffer- and GH-injected fish were exposed to a 150 Hz tone at a source level of 179 dB re 1 μPa root mean squared (RMS) for 36 h. Phalloidin-staining was used to assess the effects of GH on hair cell bundle density; BrdU-labeling was used to assess the effects of GH on cellular proliferation; TUNEL-labeling was used to assess the effects of GH on apoptosis in the zebrafish inner ear following acoustic trauma. The time-course of hair cell bundle density, cell proliferation, and apoptosis was established by combining data for baseline fishes and sound-exposed fishes at post-sound exposure day 1 (psed1), psed2, and psed3. GH-injected fish exhibited greater densities of hair cells than bufferinjected controls. In addition, GH-injected fish had higher levels of cell proliferation and lower levels of apoptosis than buffer-injected controls. This suggests that GH may play an important role in zebrafish inner ear hair cell regeneration by stimulating cellular proliferation and inhibiting cellular apoptosis.
59

TRPA1 CHANNELS IN COCHLEAR SUPPORTING CELLS REGULATE HEARING SENSITIVITY AFTER NOISE EXPOSURE

Velez-Ortega, Alejandra C 01 January 2014 (has links)
TRPA1 channels are sensors for noxious stimuli in a subset of nociceptive neurons. TRPA1 channels are also expressed in cells of the mammalian inner ear, but their function in this tissue remains unknown given that Trpa1–/– mice exhibit normal hearing, balance and sensory mechanotransduction. Here we show that non-sensory (supporting) cells of the hearing organ in the cochlea detect tissue damage via the activation of TRPA1 channels and subsequently modulate cochlear amplification through active cellshape changes. We found that cochlear supporting cells of wild type but not Trpa1–/– mice generate inward currents and robust long-lasting Ca2+ responses after stimulation with TRPA1 agonists. These Ca2+ responses often propagated between different types of supporting cells and were accompanied by prominent tissue displacements. The most prominent shape changes were observed in pillar cells which here we show possess Ca2+-dependent contractile machinery. Increased oxidative stress following acoustic overstimulation leads to the generation of lipid peroxidation byproducts such as 4-hydroxynonenal (4-HNE) that could directly activate TRPA1. Therefore, we exposed mice to mild noise and found a longer-lasting inhibition of cochlear amplification in wild type than in Trpa1–/– mice. Our results suggest that TRPA1-dependent changes in pillar cell shape can alter the tissue geometry and affect cochlear amplification. We believe this novel mechanism of cochlear regulation may protect or fine-tune the organ of Corti after noise exposure or other cochlear injuries.
60

TRANSMURAL HETEROGENEITY OF CELLULAR LEVEL CARDIAC CONTRACTILE PROPERTIES IN AGING AND HEART FAILURE

Haynes, Premi 01 January 2014 (has links)
The left ventricle of the heart relaxes when it fills with blood and contracts to eject blood into circulation to meet the body’s metabolic demands. Dysfunction in either relaxation or contraction of the left ventricle can lead to heart failure. Transmural heterogeneity is thought to contribute to normal ventricular wall motion but it is not well understood how transmural modifications affect the failing left ventricle. The overall hypothesis of this dissertation is that normal left ventricles exhibit transmural heterogeneity in cellular level contractile properties and with aging and heart failure there are region-specific changes in cellular level contractile mechanisms. Age is the biggest risk factor associated with heart failure and therefore we investigated transmural changes in Ca2+ handling and contractile proteins in aging F344 rats before the onset of heart failure. We found that in 22-month old F344 rats there is a region-specific decrease in cardiac troponin I phosphorylation in the sub-epicardium that may contribute to slowed myocyte relaxation in the sub-epicardial cells of the same age. We then investigated the transmural patterns of contractile properties in myocardial tissue samples from patients with heart failure. Force and power output reduced most significantly in the samples from the mid-myocardial region when compared to sub-epicardium and sub-endocardium of the failing hearts. There was a region-specific increase in fibrosis is the mid-myocardium of the failing hearts. Myocardial power output was correlated with key sarcomeric proteins including cardiac troponin I, desmin and myosin light chain-1. The results in this dissertation reveal novel region-specific modifications in contractile properties in aging and heart failure. These transmural effects can potentially contribute to disruption in normal wall motion and lead to ventricular dysfunction.

Page generated in 0.1564 seconds