• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 97
  • 21
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 138
  • 138
  • 138
  • 43
  • 42
  • 25
  • 25
  • 22
  • 21
  • 21
  • 20
  • 18
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Potential role of histone deacetylases in the development of the chick and murine retina

Saha, Ankita 04 September 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The epigenetic state of any cell is, in part, regulated by the interaction of DNA with nuclear histones. Histone tails can be modified in a number of ways that impact on the availability of DNA to interact with transcriptional complexes, including methylation, acetylation, phosphorylation, ubiquituination, and sumoylation. Histones are acetylated by a large family of enzymes, histone acetyl transferases (HATs), and deacetylated by the histone deacetylases (HDACs). Acetylated histones are generally considered markers of genomic regions that are actively being transcribed, whereas deacetylated and methylated histones are generally markers of regions that are inactive. The goal of the present study was to 1) study the epigenetic state with regard to the presence of euchromatin and heterochromatin in the developing chick and murine retina, 2) study and compare the localization patterns of the classical HDACs in the developing chick and murine retina with respect retinal progenitors and early differentiated cell types 3) to test the hypothesis that overall HDAC activity is required for dividing retinal progenitors to leave the cell cycle and differentiate. Our results showed that the classical HDACs were ubiquitously expressed in the developing chick and murine retinas. Species specific differences as well as stage dependent variations were observed in the localization of the HDACs in the cell types that were studied in the chick and murine retina. Our preliminary results also showed that HDAC inhibition may lead to the inability of the cell types to leave the cell cycle and a subsequent increase in the number of progenitor cells present in the developing chick retina.
132

Serum response factor-dependent regulation of smooth muscle gene transcription

Chen, Meng 07 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Several common diseases such as atherosclerosis, post-angioplasty restenosis, and graft vasculopathies, are associated with the changes in the structure and function of smooth muscle cells. During the pathogenesis of these diseases, smooth muscle cells have a marked alteration in the expression of many smooth muscle-specific genes and smooth muscle cells undergo a phenotypic switch from the contractile/differentiated status to the proliferative/dedifferentiated one. Serum response factor (SRF) is the major transcription factor that plays an essential role in coordinating a variety of transcriptional events during this phenotypic change. The first goal of my thesis studies is to determine how SRF regulates the expression of smooth muscle myosin light chain kinase (smMLCK) to mediate changes in contractility. Using a combination of transgenic reporter mouse and knockout mouse models I demonstrated that a CArG element in intron 15 of the mylk1 gene is necessary for maximal transcription of smMLCK. SRF binding to this CArG element modulates the expression of smMLCK to control smooth muscle contractility. A second goal of my thesis work is to determine how SRF coordinates the activity of chromatin remodeling enzymes to control expression of microRNAs that regulate the phenotypes of smooth muscle cells. Using both mouse knockout models and in vitro studies in cultured smooth muscle cells I showed how SRF acts together with Brg1-containing chromatin remodeling complexes to regulate expression of microRNAs-143, 145, 133a and 133b. Moreover, I found that SRF transcription cofactor myocardin acts together with SRF to regulate expression of microRNAs-143 and 145 but not microRNAs-133a and 133b. SRF can, thus, further modulate gene expression through post-transcriptional mechanisms via changes in microRNA levels. Overall my research demonstrates that through direct interaction with a CArG box in the mylk1 gene, SRF is important for regulating expression of smMLCK to control smooth muscle contractility. Additionally, SRF is able to harness epigenetic mechanisms to modulate expression of smooth muscle contractile protein genes directly and indirectly via changes in microRNA expression. Together these mechanisms permit SRF to coordinate the complex phenotypic changes that occur in smooth muscle cells.
133

The influence of the Ku80 carboxy-terminus on activation of the DNA-dependent protein kinase and DNA repair is dependent on the structure of DNA cofactors

Woods, Derek S. 11 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In mammalian cells DNA double strand breaks (DSBs) are highly variable with respect to sequence and structure all of which are recognized by the DNA- dependent protein kinase (DNA-PK), a critical component for the resolution of these breaks. Previously studies have shown that DNA-PK does not respond the same way to all DSBs but how DNA-PK senses differences in DNA substrate sequence and structure is unknown. Here we explore the enzymatic mechanism by which DNA-PK is activated by various DNA substrates. We provide evidence that recognition of DNA structural variations occur through distinct protein-protein interactions between the carboxy terminal (C-terminal) region of Ku80 and DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Discrimination of terminal DNA sequences, on the other hand, occurs independently of Ku 80 C-terminal interactions and results exclusively from DNA-PKcs interactions with the DNA. We also show that sequence differences in DNA termini can drastically influence DNA repair through altered DNA-PK activation. Our results indicate that even subtle differences in DNA substrates influence DNA-PK activation and ultimately Non-homologous End Joining (NHEJ) efficiency.
134

Development and stability of IL-17-secreting T cells

Glosson, Nicole L. January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / IL-17-producing T cells are critical to the development of pathogen and tumor immunity, but also contribute to the pathology of autoimmune diseases and allergic inflammation. CD8+ (Tc17) and CD4+ (Th17) IL-17-secreting T cells develop in response to a cytokine environment that activates Signal Transducer and Activator of Transcription (STAT) proteins, though the mechanisms underlying Tc17/Th17 development and stability are still unclear. In vivo, Tc17 cells clear vaccinia virus infection and acquire cytotoxic potential, that is independent of IL-17 production and the acquisition of IFN-γ-secreting potential, but partially dependent on Fas ligand, suggesting that Tc17-mediated vaccinia virus clearance is through cell killing independent of an acquired Tc1 phenotype. In contrast, memory Th cells and NKT cells display STAT4-dependent IL-23-induced IL-17 production that correlates with Il23r expression. IL-23 does not activate STAT4 nor do other STAT4-activating cytokines induce Il23r expression in these populations, suggesting a T cell-extrinsic role for STAT4 in mediating IL-23 responsiveness. Although IL-23 is important for the maintenance of IL-17-secreting T cells, it also promotes their instability, often resulting in a pathogenic Th1-like phenotype in vitro and in vivo. In vitro-derived Th17 cells are also flexible when cultured under polarizing conditions that promote Th2 or Th9 differentiation, adopting the respective effector programs, and decreasing IL-17 production. However, in models of allergic airway disease, Th17 cells do not secrete alternative cytokines nor adopt other effector programs, and remain stable IL-17-secretors. In contrast to Th1-biased pro-inflammatory environments that induce Th17 instability in vivo, during allergic inflammatory disease, Th17 cells are comparatively stable, and retain the potential to produce IL-17. Together these data document that the inflammatory environment has distinct effects on the stability of IL-17-secreting T cells in vivo.
135

Mechanisms of translational regulation in the pancreatic β cell stress response

Templin, Andrew Thomas January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The islet beta cell is unique in its ability to synthesize and secrete insulin for use in the body. A number of factors including proinflammatory cytokines, free fatty acids, and islet amyloid are known to cause beta cell stress. These factors lead to lipotoxic, inflammatory, and ER stress in the beta cell, contributing to beta cell dysfunction and death, and diabetes. While transcriptional responses to beta cell stress are well appreciated, relatively little is known regarding translational responses in the stressed beta cell. To study translation, I established conditions in vitro with MIN6 cells and mouse islets that mimicked UPR conditions seen in diabetes. Cell extracts were then subjected to polyribosome profiling to monitor changes to mRNA occupancy by ribosomes. Chronic exposure of beta cells to proinflammatory cytokines (IL-1 beta, TNF-alpha, IFN-gamma), or to the saturated free fatty acid palmitate, led to changes in global beta cell translation consistent with attenuation of translation initiation, which is a hallmark of ER stress. In addition to changes in global translation, I observed transcript specific regulation of ribosomal occupancy in beta cells. Similar to other privileged mRNAs (Atf4, Chop), Pdx1 mRNA remained partitioned in actively translating polyribosomes during the UPR, whereas the mRNA encoding a proinsulin processing enzyme (Cpe) partitioned into inactively translating monoribosomes. Bicistronic luciferase reporter analyses revealed that the distal portion of the 5’ untranslated region of mouse Pdx1 (between bp –105 to –280) contained elements that promoted translation under both normal and UPR conditions. In contrast to regulation of translation initiation, deoxyhypusine synthase (DHS) and eukaryotic translation initiation factor 5A (eIF5A) are required for efficient translation elongation of specific stress relevant messages in the beta cell including Nos2. Further, p38 signaling appears to promote translational elongation via DHS in the islet beta cell. Together, these data represent new insights into stress induced translational regulation in the beta cell. Mechanisms of differential mRNA translation in response to beta cell stress may play a key role in maintenance of islet beta cell function in the setting of diabetes.
136

Probing cellular mechano-sensitivity using biomembrane-mimicking cell substrates of adjustable stiffness

Lin, Yu-Hung 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / It is increasingly recognized that mechanical properties of substrates play a pivotal role in the regulation of cellular fate and function. However, the underlying mechanisms of cellular mechanosensing still remain a topic of open debate. Traditionally, advancements in this field have been made using polymeric substrates of adjustable stiffness with immobilized linkers. While such substrates are well suited to examine cell adhesion and migration in an extracellular matrix environment, they are limited in their ability to replicate the rich dynamics found at cell-cell interfaces. To address this challenge, we recently introduced a linker-functionalized polymer-tethered multi-bilayer stack, in which substrate stiffness can be altered by the degree of bilayer stacking, thus allowing the analysis of cellular mechanosensitivity. Here, we apply this novel biomembrane-mimicking cell substrate design to explore the mechanosensitivity of C2C12 myoblasts in the presence of cell-cell-mimicking N-cadherin linkers. Experiments are presented, which demonstrate a relationship between the degree of bilayer stacking and mechanoresponse of plated cells, such as morphology, cytoskeletal organization, cellular traction forces, and migration speed. Furthermore, we illustrate the dynamic assembly of bilayer-bound N-cadherin linkers underneath cellular adherens junctions. In addition, properties of individual and clustered N-cadherins are examined in the polymer-tethered bilayer system in the absence of plated cells. Alternatively, substrate stiffness can be adjusted by the concentration of lipopolymers in a single polymer-tethered lipid bilayer. On the basis of this alternative cell substrate concept, we also discuss recent results on a linker-functionalized single polymer-tethered bilayer substrate with a lateral gradient in lipopolymer concentration (substrate viscoelasticity). Specifically, we show that the lipopolymer gradient has a notable impact on spreading, cytoskeletal organization, and motility of 3T3 fibroblasts. Two cases are discussed: 1. polymer-tethered bilayers with a sharp boundary between low and high lipopolymer concentration regions and 2. polymer-tethered bilayers with a gradual gradient in lipopolymer concentration.
137

Tsg-6 : an inducible mediator of paracrine anti-inflammatory and myeloprotective effects of adipose stem cells

Xie, Jie 29 January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI). / Tumor necrosis factor-induced protein 6 (TSG-6) has been shown to mitigate inflammation. Its presence in the secretome of adipose stem / stromal cells (ASC) and its role in activities of ASC have been overlooked. This thesis described for the first time the release of TSG-6 from ASC, and its modulation by endothelial cells. It also revealed that protection of endothelial barrier function was a novel mechanism underlying the anti-inflammatory activity of both ASC and TSG-6. Moreover, TSG-6 was found to inhibit mitogen-activated lymphocyte proliferation, extending the understanding of its pleiotropic effects on major cell populations involved in inflammation. Next, enzyme-linked immunosorbent assays (ELISA) were established to quantify secretion of TSG-6 from human and murine ASC. To study the importance of TSG-6 to specific activities of ASC, TSG-6 was knocked down in human ASC by siRNA. Murine ASC from TSG-6-/- mice were isolated and the down-regulation of TSG-6 was verified by ELISA. The subsequent attempt to determine the efficacy of ASC in ameliorating ischemic limb necrosis and the role of TSG-6, however, was hampered by the highly variable ischemic tissue necrosis in the BALB/c mouse strain. Afterwards in a mouse model of cigarette smoking (CS), in which inflammation also plays an important role, it was observed, for the first time, that 3-day CS exposure caused an acute functional exhaustion and cell cycle arrest of hematopoietic progenitor cells; and that 7-week CS exposure led to marked depletion of phenotypic bone marrow stem and progenitor cells (HSPC). Moreover, a dynamic crosstalk between human ASC and murine host inflammatory signals was described, and specifically TSG-6 was identified as a necessary and sufficient mediator accounting for the activity of the ASC secretome to ameliorate CS-induced myelotoxicity. These results implicate TSG-6 as a key mediator for activities of ASC in mitigation of inflammation and protection of HSPC from the myelotoxicity of cigarette smoke. They also prompt the notion that ASC and TSG-6 might potentially play therapeutic roles in other scenarios involving myelotoxicity.
138

The inhibition of mammary epithelial cell growth by the long isoform of Angiomotin

Adler, Jacob J. 07 July 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Mammary ductal epithelial cell growth is controlled by microenvironmental signals in serum under both normal physiological settings and during breast cancer progression. Importantly, the effects of several of these microenvironmental signals are mediated by the activities of the tumor suppressor protein kinases of the Hippo pathway. Canonically, Hippo protein kinases inhibit cellular growth through the phosphorylation and inactivation of the oncogenic transcriptional co-activator Yes-Associated Protein (YAP). This study defines an alternative mechanism whereby Hippo protein kinases induce growth arrest via the phosphorylation of the long isoform of Angiomotin (Amot130). Specifically, serum starvation is found to activate the Hippo protein kinase, Large Tumor Suppressor (LATS), which phosphorylates the adapter protein Amot130 at serine-175. Importantly, wild-type Amot130 potently inhibits mammary epithelial cell growth, unlike the Amot130 serine-175 to alanine mutant, which cannot be phosphorylated at this residue. The growth-arrested phenotype of Amot130 is likely a result of its mechanistic response to LATS signaling. Specifically, LATS activity promotes the association of Amot130 with the ubiquitin ligase Atrophin-1 Interacting Protein 4 (AIP4). As a consequence, the Amot130-AIP4 complex amplifies LATS tumor suppressive signaling by stabilizing LATS protein steady state levels via preventing AIP4-targeted degradation of LATS. Additionally, AIP4 binding to Amot130 leads to the ubiquitination and stabilization of Amot130. In turn, the Amot130-AIP4 complex signals the ubiquitination and degradation of YAP. This inhibition of YAP activity by Amot130 requires both AIP4 and the ability of Amot130 to be phosphorylated by LATS. Together, these findings significantly modify the current view that the phosphorylation of YAP by Hippo protein kinases is sufficient for YAP inhibition and cellular growth arrest. Based upon these results, the inhibition of cellular growth in the absence of serum more accurately involves the stabilization of Amot130 and LATS, which together inhibit YAP activity and mammary epithelial cell growth.

Page generated in 0.0803 seconds