Spelling suggestions: "subject:"cellules bêta"" "subject:"cellules zêta""
21 |
Étude de la fonction du récepteur aux acides gras GPR120/FFAR4 dans la régulation de l’homéostasie du glucoseGuillaume, Arthur 05 1900 (has links)
Le diabète de type 2 (DT2) résulte de l’incapacité des cellules β sécrétrices d’insuline à compenser la résistance à l’insuline qui s’installe chez les patients obèses. Un traitement potentiel viserait donc à augmenter la sécrétion d’insuline. Dans ce sens, les récepteurs aux acides gras GPR120 et GPR40 potentialisent la sécrétion d’insuline. Cependant, la signalisation GPR120 dans les îlots est méconnue. L’activation de GPR120 diminue la sécrétion de somatostatine (SST), un inhibiteur de la sécrétion d’insuline, par les cellules δ. Ces deux récepteurs régulent l’homéostasie du glucose et sont donc possiblement complémentaires. Nos objectifs étaient d’étudier la signalisation GPR120 dans les îlots pancréatiques, ainsi que la complémentarité des récepteurs GPR120 et GPR40 dans le contrôle de l’homéostasie glucidique. À l’aide d’îlots isolés de souris n’exprimant pas GPR120, constitutivement ou uniquement dans les cellules δ, nous avons étudié le rôle de GPR120 dans les sécrétions d’insuline, glucagon et de SST. Nous avons ensuite étudié des souris n’exprimant pas GPR40, GPR120 ou les deux, sous une diète riche en gras pendant 12 semaines pour étudier la complémentarité des deux récepteurs. L’activation de GPR120 diminue la sécrétion de SST et stimule les sécrétions d’insuline et de glucagon dans les îlots isolés. Cet effet est aboli par la délétion de GPR120 dans les cellules δ in vitro, et la double délétion de GPR120 et GPR40 ne révèle pas d’action complémentaire dans l’homéostasie glucidique. Ces résultats suggèrent que la signalisation GPR120 dans les cellules δ est responsable de l’amélioration de la fonction des îlots. Une meilleure compréhension du rôle joué par GPR120 dans la fonction des îlots et l’homéostasie du glucose est cruciale et pourrait permettre le développement de nouvelles options thérapeutiques dans le traitement du diabète. / In obese patients, type 2 diabetes stems from the failure of the insulin-secreting beta cells to compensate for insulin resistance. Increasing insulin secretion is therefore a viable treatment strategy. In this regard, G protein-coupled receptors (GPCR) are proven therapeutic targets. Activation of the GPCR for long-chain saturated and unsaturated fatty acid GPR40 and GPR120 increase insulin secretion in response to glucose. However, exactly how GPR120 potentiates insulin secretion is unknown. GPR120 and GPR40 both regulate glucose homeostasis and therefore could act in a complementary manner. We aimed to decipher GPR120 signalling in the pancreatic islets and study the complementary roles of GPR120 and GPR40 in maintaining glucose homeostasis. To this aim, we first measured insulin, glucagon and somatostatin secretion following GPR120 activation in isolated islets from mice with a global or somatostatin-cell-specific knock-out of GPR120. Then we studied glucose metabolism in mice with global deletion of GPR120, GPR40 or both, under a high fat diet for 12 weeks. We observed increased insulin and glucagon secretions mirrored by a decreased in somatostatin release following GPR120 activation in isolated islets, an effect abolished by a global or δ-specific deletion of GPR120. A double deletion of GPR120 and GPR40 did not have more impact on glucose metabolism or beta-cell function compared to a simple deletion of either receptor. A better understanding of the GPR120 role in islet function is crucial and could lead to the discovery of new therapeutic options.
|
22 |
Étude de l'implication des navettes du pyruvate découlant du métabolisme mitochondrial du glucose dans la régulation de la sécrétion d'insuline par les cellules bêta pancréatiquesGuay, Claudiane 01 1900 (has links)
Le diabète est une maladie métabolique qui se caractérise par une résistance à l’insuline des tissus périphériques et par une incapacité des cellules β pancréatiques à sécréter les niveaux d’insuline appropriés afin de compenser pour cette résistance. Pour mieux comprendre les mécanismes déficients dans les cellules β des patients diabétiques, il est nécessaire de comprendre et de définir les mécanismes impliqués dans le contrôle de la sécrétion d’insuline en réponse au glucose. Dans les cellules β pancréatiques, le métabolisme du glucose conduit à la production de facteurs de couplage métabolique, comme l’ATP, nécessaires à la régulation de l’exocytose des vésicules d’insuline. Le mécanisme par lequel la production de l’ATP par le métabolisme oxydatif du glucose déclenche l’exocytose des vésicules d’insuline est bien décrit dans la littérature. Cependant, il ne peut à lui seul réguler adéquatement la sécrétion d’insuline. Le malonyl-CoA et le NADPH sont deux autres facteurs de couplage métaboliques qui ont été suggérés afin de relier le métabolisme du glucose à la régulation de la sécrétion d’insuline. Les mécanismes impliqués demeurent cependant à être caractérisés.
Le but de la présente thèse était de déterminer l’implication des navettes du pyruvate, découlant du métabolisme mitochondrial du glucose, dans la régulation de la sécrétion d’insuline. Dans les cellules β, les navettes du pyruvate découlent de la combinaison des processus d’anaplérose et de cataplérose et permettent la transduction des signaux métaboliques provenant du métabolisme du glucose. Dans une première étude, nous nous sommes intéressés au rôle de la navette pyruvate/citrate dans la régulation de la sécrétion d’insuline en réponse au glucose, puisque cette navette conduit à la production dans le cytoplasme de deux facteurs de couplage métabolique, soit le malonyl-CoA et le NADPH. De plus, la navette pyruvate/citrate favorise le flux métabolique à travers la glycolyse en réoxydation le NADH. Une étude effectuée précédemment dans notre laboratoire avait suggéré la présence de cette navette dans les cellules β pancréatique. Afin de tester notre hypothèse, nous avons ciblé trois étapes de cette navette dans la lignée cellulaire β pancréatique INS 832/13, soit la sortie du citrate de la mitochondrie et l’activité de l’ATP-citrate lyase (ACL) et l’enzyme malique (MEc), deux enzymes clés de la navette pyruvate/citrate. L’inhibition de chacune de ces étapes par l’utilisation d’un inhibiteur pharmacologique ou de la technologie des ARN interférant a corrélé avec une réduction significative de la sécrétion d’insuline en réponse au glucose. Les résultats obtenus suggèrent que la navette pyruvate/citrate joue un rôle critique dans la régulation de la sécrétion d’insuline en réponse au glucose.
Parallèlement à notre étude, deux autres groupes de recherche ont suggéré que les navettes pyruvate/malate et pyruvate/isocitrate/α-cétoglutarate étaient aussi importantes pour la sécrétion d’insuline en réponse au glucose. Ainsi, trois navettes découlant du métabolisme mitochondrial du glucose pourraient être impliquées dans le contrôle de la sécrétion d’insuline. Le point commun de ces trois navettes est la production dans le cytoplasme du NADPH, un facteur de couplage métabolique possiblement très important pour la sécrétion d’insuline. Dans les navettes pyruvate/malate et pyruvate/citrate, le NADPH est formé par MEc, alors que l’isocitrate déshydrogénase (IDHc) est responsable de la production du NADPH dans la navette pyruvate/isocitrate/α-cétoglutarate. Dans notre première étude, nous avions démontré l’importance de l’expression de ME pour la sécrétion adéquate d’insuline en réponse au glucose. Dans notre deuxième étude, nous avons testé l’implication de IDHc dans les mécanismes de régulation de la sécrétion d’insuline en réponse au glucose. La diminution de l’expression de IDHc dans les INS 832/13 a stimulé la sécrétion d’insuline en réponse au glucose par un mécanisme indépendant de la production de l’ATP par le métabolisme oxydatif du glucose. Ce résultat a ensuite été confirmé dans les cellules dispersées des îlots pancréatiques de rat. Nous avons aussi observé dans notre modèle que l’incorporation du glucose en acides gras était augmentée, suggérant que la diminution de l’activité de IDHc favorise la redirection du métabolisme de l’isocitrate à travers la navette pyruvate/citrate. Un mécanisme de compensation à travers la navette pyruvate/citrate pourrait ainsi expliquer la stimulation de la sécrétion d’insuline observée en réponse à la diminution de l’expression de IDHc. Les travaux effectués dans cette deuxième étude remettent en question l’implication de l’activité de IDHc, et de la navette pyruvate/isocitrate/α-cétoglutarate, dans la transduction des signaux métaboliques reliant le métabolisme du glucose à la sécrétion d’insuline.
La navette pyruvate/citrate est la seule des navettes du pyruvate à conduire à la production du malonyl-CoA dans le cytoplasme des cellules β. Le malonyl-CoA régule le métabolisme des acides gras en inhibant la carnitine palmitoyl transférase 1, l’enzyme limitante dans l’oxydation des acides gras. Ainsi, l’élévation des niveaux de malonyl-CoA en réponse au glucose entraîne une redirection du métabolisme des acides gras vers les processus d’estérification puis de lipolyse. Plus précisément, les acides gras sont métabolisés à travers le cycle des triglycérides/acides gras libres (qui combinent les voies métaboliques d’estérification et de lipolyse), afin de produire des molécules lipidiques signalétiques nécessaires à la modulation de la sécrétion d’insuline. Des études effectuées précédemment dans notre laboratoire ont démontré que l’activité lipolytique de HSL (de l’anglais hormone-sensitive lipase) était importante, mais non suffisante, pour la régulation de la sécrétion d’insuline. Dans une étude complémentaire, nous nous sommes intéressés au rôle d’une autre lipase, soit ATGL (de l’anglais adipose triglyceride lipase), dans la régulation de la sécrétion d’insuline en réponse au glucose et aux acides gras. Nous avons démontré que ATGL est exprimé dans les cellules β pancréatiques et que son activité contribue significativement à la lipolyse. Une réduction de son expression dans les cellules INS 832/13 par RNA interférant ou son absence dans les îlots pancréatiques de souris déficientes en ATGL a conduit à une réduction de la sécrétion d’insuline en réponse au glucose en présence ou en absence d’acides gras. Ces résultats appuient l’hypothèse que la lipolyse est une composante importante de la régulation de la sécrétion d’insuline dans les cellules β pancréatiques.
En conclusion, les résultats obtenus dans cette thèse suggèrent que la navette pyruvate/citrate est importante pour la régulation de la sécrétion d’insuline en réponse au glucose. Ce mécanisme impliquerait la production du NADPH et du malonyl-CoA dans le cytoplasme en fonction du métabolisme du glucose. Cependant, nos travaux remettent en question l’implication de la navette pyruvate/isocitrate/α-cétoglutarate dans la régulation de la sécrétion d’insuline. Le rôle exact de IDHc dans ce processus demeure cependant à être déterminé. Finalement, nos travaux ont aussi démontré un rôle pour ATGL et la lipolyse dans les mécanismes de couplage métabolique régulant la sécrétion d’insuline. / Diabetes is a metabolic disorder characterized by a combination of insulin resistance in peripheral tissues with an inappropriate amount of insulin secreted by the pancreatic β-cells to overcome this insulin resistance. In order to help find a cure for diabetic patients, we need to elucidate the mechanisms underlying the proper control of insulin secretion in response to glucose. In pancreatic β-cells, glucose metabolism leads to the production of metabolic coupling factors, like ATP, implicated in the regulation of insulin vesicle exocytosis. The mechanism linking ATP production by the oxidative metabolism of glucose to the triggering of insulin release that involves Ca2+ and metabolically sensitive K+ channels is relatively well known. Other mechanisms are also involved in the regulation of insulin secretion in response to glucose and other nutrients, such as fatty acids and some amino acids. Malonyl-CoA and NADPH are two metabolic coupling factors that have been suggested to be implicated in the transduction of metabolic signaling coming from glucose metabolism to control the release of insulin granules. However, the mechanisms implicated remained to be defined.
The goal of the present thesis was to further our understanding of the role of the pyruvate shuttles, derived from mitochondrial glucose metabolism, in the regulation of insulin secretion. In pancreatic β-cells, pyruvate shuttles are produced by the combination of anaplerosis and cataplerosis processes and are thought to link glucose metabolism to the regulation of insulin secretion by the production metabolic coupling factors. In our first study, we wished to determine the role of the pyruvate/citrate shuttle in the regulation of glucose-induced insulin secretion. The pyruvate/citrate shuttle leads to the production in the cytoplasm of both malonyl-CoA and NADPH and also stimulates the metabolic flux through the glycolysis by re-oxidating NADH. A previous study done in the group of Dr Prentki has suggested the feasibility of the pyruvate/citrate shuttle in pancreatic β-cells. To investigate our hypothesis, we inhibited three different steps of this shuttle in INS 832/13 cells, a pancreatic β-cell line. Specifically, we repressed, using pharmacological inhibitors or RNA interference technology, the mitochondrial citrate export to the cytoplasm and the expression of malic enzyme (MEc) and ATP-citrate lyase (ACL), two key enzymes implicated in the pyruvate/citrate shuttle. The inhibition of each of those steps resulted in a reduction of glucose-induced insulin secretion. Our results underscore the importance of the pyruvate/citrate shuttle in the pancreatic β-cell signaling and the regulation of insulin secretion in response to glucose.
Other research groups are also interested in studying the implication of pyruvate cycling processes in the regulation of insulin exocytosis. They suggested a role for the pyruvate/malate and the pyruvate/isocitrate/α-ketoglutarate shuttles. Therefore, three different shuttles derived from the mitochondrial glucose metabolism could be implicated in the regulation of glucose-induced insulin release. All those three shuttles can produce NADPH in the cytoplasm. In the pyruvate/malate and the pyruvate/citrate shuttles, the NADPH is formed by cytosolic malic enzyme (MEc), whereas in the pyruvate/isocitrate/α-ketoglutarate, NADPH is produced by cytosolic isocitrate dehydrogenease (IDHc). In our first study, we established the importance of MEc expression in the regulation of insulin secretion. In our second study, we wanted to investigate the importance of IDHc expression in glucose-induced insulin secretion. The reduction of IDHc expression in INS 832/13 cells stimulated insulin release in response to glucose by a mechanism independent of ATP production coming from glucose oxidative metabolism. This stimulation was also observed in isolated rat pancreatic cells. IDHc knockdown cells showed elevated glucose incorporation into fatty acids, suggesting that isocitrate metabolism could be redirected into the pyruvate/citrate shuttle in these cells. Taken together, these results suggest that IDHc is not essential for glucose-induced insulin secretion and that a compensatory mechanism, probably involving the pyruvate/citrate shuttle, explains the enhanced insulin secretion in IDHc knockdown cells .
The pyruvate/citrate shuttle is the only pyruvate shuttle that is linked to the production of malonyl-CoA. Malonyl-CoA is a known inhibitor of carnitine palmitoyl transferase 1, the rate-limiting step in fatty acid oxidation. Therefore, the raising level of malonyl-CoA in response to glucose redirects the metabolism of fatty acids into the triglycerides/free fatty acids cycle which combine esterification and lipolysis processes. Previous studies done in the laboratory of Dr Prentki supported the concept that lipolysis of endogenous lipid stores is an important process for the appropriate regulation of insulin secretion. A first lipase, hormone-sensitive lipase (HSL), has been identified in pancreatic β-cells. HSL expression is important, but not sufficient, for the β-cell lipolysis activity. In a complementary study, we have investigated the role of another lipase, adipose triglyceride lipase (ATGL), in the regulation of insulin secretion in response to glucose and to fatty acids. We first demonstrated the expression and the activity of ATGL in pancreatic β-cells. Reducing ATGL expression using shRNA in INS 832/13 cells caused a reduction in insulin secretion in response to glucose and to fatty acids. Pancreatic islets from ATGL null mice also showed defect in insulin release in response to glucose and to fatty acids. The results demonstrate the importance of ATGL and intracellular lipid signaling in the regulation of insulin secretion.
In conclusion, the work presented in this thesis suggests a role for the pyruvate/citrate shuttle in the regulation of insulin secretion in response to glucose. This mechanism possibly implicates the production of NADPH and malonyl-CoA in the cytoplasm. The results also points to a re-evaluation of the role of IDHc in glucose-induced insulin secretion. The precise role of IDHc in pancreatic β-cells needs to be determined. Finally, the data have also documented a role of lipolysis and ATGL in the coupling mechanisms of insulin secretion in response to both fuel and non-fuel stimuli.
|
23 |
Development of electrode architectures for miniaturized biofuel cells / Développement d'architectures d'électrodes pour des biopiles miniaturiséesKarajić, Aleksandar 15 December 2015 (has links)
La demande croissante de systèmes électrochimiques miniaturisés et potentiellement implantables tels que les biocapteurs, les biopiles à combustible et les batteries a conduit à l’émergence de nouvelles technologies pour surmonter les problèmes expérimentaux liés aux grandes dimensions, aux faibles densités de courant, et à la puissance de sortie insuffisante de ces dispositifs. Dans ce travail de thèse, nous présentons de nouvelles approches pour la fabrication d’électrodes miniaturisées avec des architectures macroporeuses et coaxiales dont les applications pourraient être dans les domaines cités plus haut. De plus, nous avons démontré l’utilisation de telles électrodes macroporeuses pour la conception de biopiles fonctionnant à base de glucose et d’oxygène. Les résultats préliminaires concernant la conception d'un nouveau type de biocapteurs de glucose à base de cellules vivantes sont également présentés. La première partie de ce travail se concentre sur différentes stratégies pour la fabrication de cristaux colloïdaux (chapitre 1) qui peuvent être utilisés pour la préparation d'électrodes macroporeuses (chapitre 2) en suivant l'approche dite de matrice sacrificielle dure. La synthèse d'électrodes macroporeuses est basée sur l’électrodéposition potentio statique de matériaux conducteurs (tels que les métaux dans le contexte de ce travail) dans une matrice colloïdale à base de silice qui a été synthétisée par le procédé de Langmuir-Blodgett. Cette méthode a été utilisée pour la conception et la fabrication de cellules électrochimiques à deux électrodes macroporeuses coaxiales et miniaturisées en suivant deux procédures différentes et complémentaires: 1. La première procédure de fabrication est basée sur l'électrodéposition de couches de métaux alternées or-nickel-or, avant la dissolution de la couche de nickel intermédiaire puis une stabilisation mécanique de la structure; 2. La seconde stratégie alternative et complémentaire pour la fabrication de cellules électrochimiques coaxiales et macroporeuses repose sur l'assemblage de l'architecture finale à partir de deux électrodes cylindriques macroporeuses préparées indépendamment et adressables par voie électrochimique. La principale différence entre ces deux approches est la gamme de l’espacement inter-électrode (de quelques dizaines de micromètres (première approche) à des centaines de micromètres qui peut être obtenu par le second procédé de fabrication). En outre,nous avons démontré le fonctionnement électrochimique des deux architectures d'électrodes par l'évaluation en voltampérométrie cyclique à balayage de la réaction de réduction de l'oxygène qui a lieu à la surface des deux électrodes.Le plus grand avantage des stratégies présentées est la possibilité de contrôler finement l'épaisseur de l'électrode (et donc des surfaces actives), la séparation spatiale entre l'électrode interne et externe (c’est-à-dire le volume d'électrolyte qui peut être stocké dans l’interstice) et la taille des pores (en changeant le diamètre des particules colloïdales de silice). Dans la partie suivante (chapitre 3), nous démontrons la possibilité d'utiliser des électrodes macroporeuses pour la fabrication d'une biocathode enzymatique. Les substrats d'or macroporeux ont été choisis comme candidats prometteurs pour améliorer les performances électrochimiques (courant et puissance de sortie) d'une biopile enzymatique à glucose/oxygène en raison de leur surface active élevée. [...] Enfin, notre contribution au développement d'un nouveau type de biocapteur à base de cellulesentières est décrite dans le chapitre 4. [...] / The increasing demand for miniaturized and eventually implantable electrochemicaltools such as biosensors, biofuel cells and batteries has led to the development of newtechnologies to overcome existing problems related to large dimensions, low current densities,and insufficient power output of such devices. In the present work we describe new approachesfor the fabrication of miniaturized, macroporous and coaxial electrode architectures that couldfind their practical application for the fabrication of the systems mentioned above.Furthermore, we have demonstrated the functionality of macroporous electrodes with respectto the design of miniaturized glucose/oxygen biofuel cells. Preliminary results regarding thedesign of a new type of whole-cell based glucose biosensors are also presented.The first part of this work is focusing on different strategies for the fabrication of colloidalcrystals (Chapter 1) that can be used for the synthesis of macroporous electrodes (Chapter2) byfollowing the so-called hard template approach. The synthesis of macroporous electrodes isbased on the potentiostatic electrodeposition of conductive materials (such as metals in thepresent work) into a silica based colloidal template that has been synthesized by the Langmuir-Blodgett procedure. This method has been used for the design and fabrication of miniaturizedcoaxial and macroporous two electrode-electrochemical cells by following two different andcomplementary procedures: 1. The first fabrication procedure is based on the electrodepositionof alternating gold-nickel-gold metal layers, subsequent etching of the intermediate nickel layerand a structural stabilization; 2. The second alternative and complementary strategy for thefabrication of coaxial and macroporous double electrochemical cells relies on assembling thefinal architecture from two independently prepared and electrochemically addressablecylindrical macroporous electrodes. The main difference between these two approaches is therange of inter-electrode distances (from tens of micrometers (first approach) to hundreds ofmicrometers that can be achieved by second fabrication procedure). Also, we demonstrate theelectrochemical functionality of both electrode architectures by cyclo-voltammetricinvestigation of the oxygen reduction reaction that takes place at the surface of bothelectrodes.The biggest advantage of the presented strategies is the possibility to fine tune the electrodethickness (and therefore active surface areas), the spatial separation between inner and outerelectrode (the volume of electrolyte that can be stored between them) and the pore size (bychanging the diameter of silica colloidal particles).In the following segment (Chapter 3), we demonstrate the possibility to use macroporouselectrodes for the fabrication of an enzymatic biocathode. The macroporous gold substrateswere chosen as promising candidates to improve the electrochemical performances (currentand power output) of an enzymatic glucose/oxygen biofuel cells due to their high active surface area. [...] Finally, our contribution to the development of a new type of whole cell based biosensor isdescribed in Chapter 4. [...]
|
24 |
Étude de l'implication des navettes du pyruvate découlant du métabolisme mitochondrial du glucose dans la régulation de la sécrétion d'insuline par les cellules bêta pancréatiquesGuay, Claudiane 01 1900 (has links)
Le diabète est une maladie métabolique qui se caractérise par une résistance à l’insuline des tissus périphériques et par une incapacité des cellules β pancréatiques à sécréter les niveaux d’insuline appropriés afin de compenser pour cette résistance. Pour mieux comprendre les mécanismes déficients dans les cellules β des patients diabétiques, il est nécessaire de comprendre et de définir les mécanismes impliqués dans le contrôle de la sécrétion d’insuline en réponse au glucose. Dans les cellules β pancréatiques, le métabolisme du glucose conduit à la production de facteurs de couplage métabolique, comme l’ATP, nécessaires à la régulation de l’exocytose des vésicules d’insuline. Le mécanisme par lequel la production de l’ATP par le métabolisme oxydatif du glucose déclenche l’exocytose des vésicules d’insuline est bien décrit dans la littérature. Cependant, il ne peut à lui seul réguler adéquatement la sécrétion d’insuline. Le malonyl-CoA et le NADPH sont deux autres facteurs de couplage métaboliques qui ont été suggérés afin de relier le métabolisme du glucose à la régulation de la sécrétion d’insuline. Les mécanismes impliqués demeurent cependant à être caractérisés.
Le but de la présente thèse était de déterminer l’implication des navettes du pyruvate, découlant du métabolisme mitochondrial du glucose, dans la régulation de la sécrétion d’insuline. Dans les cellules β, les navettes du pyruvate découlent de la combinaison des processus d’anaplérose et de cataplérose et permettent la transduction des signaux métaboliques provenant du métabolisme du glucose. Dans une première étude, nous nous sommes intéressés au rôle de la navette pyruvate/citrate dans la régulation de la sécrétion d’insuline en réponse au glucose, puisque cette navette conduit à la production dans le cytoplasme de deux facteurs de couplage métabolique, soit le malonyl-CoA et le NADPH. De plus, la navette pyruvate/citrate favorise le flux métabolique à travers la glycolyse en réoxydation le NADH. Une étude effectuée précédemment dans notre laboratoire avait suggéré la présence de cette navette dans les cellules β pancréatique. Afin de tester notre hypothèse, nous avons ciblé trois étapes de cette navette dans la lignée cellulaire β pancréatique INS 832/13, soit la sortie du citrate de la mitochondrie et l’activité de l’ATP-citrate lyase (ACL) et l’enzyme malique (MEc), deux enzymes clés de la navette pyruvate/citrate. L’inhibition de chacune de ces étapes par l’utilisation d’un inhibiteur pharmacologique ou de la technologie des ARN interférant a corrélé avec une réduction significative de la sécrétion d’insuline en réponse au glucose. Les résultats obtenus suggèrent que la navette pyruvate/citrate joue un rôle critique dans la régulation de la sécrétion d’insuline en réponse au glucose.
Parallèlement à notre étude, deux autres groupes de recherche ont suggéré que les navettes pyruvate/malate et pyruvate/isocitrate/α-cétoglutarate étaient aussi importantes pour la sécrétion d’insuline en réponse au glucose. Ainsi, trois navettes découlant du métabolisme mitochondrial du glucose pourraient être impliquées dans le contrôle de la sécrétion d’insuline. Le point commun de ces trois navettes est la production dans le cytoplasme du NADPH, un facteur de couplage métabolique possiblement très important pour la sécrétion d’insuline. Dans les navettes pyruvate/malate et pyruvate/citrate, le NADPH est formé par MEc, alors que l’isocitrate déshydrogénase (IDHc) est responsable de la production du NADPH dans la navette pyruvate/isocitrate/α-cétoglutarate. Dans notre première étude, nous avions démontré l’importance de l’expression de ME pour la sécrétion adéquate d’insuline en réponse au glucose. Dans notre deuxième étude, nous avons testé l’implication de IDHc dans les mécanismes de régulation de la sécrétion d’insuline en réponse au glucose. La diminution de l’expression de IDHc dans les INS 832/13 a stimulé la sécrétion d’insuline en réponse au glucose par un mécanisme indépendant de la production de l’ATP par le métabolisme oxydatif du glucose. Ce résultat a ensuite été confirmé dans les cellules dispersées des îlots pancréatiques de rat. Nous avons aussi observé dans notre modèle que l’incorporation du glucose en acides gras était augmentée, suggérant que la diminution de l’activité de IDHc favorise la redirection du métabolisme de l’isocitrate à travers la navette pyruvate/citrate. Un mécanisme de compensation à travers la navette pyruvate/citrate pourrait ainsi expliquer la stimulation de la sécrétion d’insuline observée en réponse à la diminution de l’expression de IDHc. Les travaux effectués dans cette deuxième étude remettent en question l’implication de l’activité de IDHc, et de la navette pyruvate/isocitrate/α-cétoglutarate, dans la transduction des signaux métaboliques reliant le métabolisme du glucose à la sécrétion d’insuline.
La navette pyruvate/citrate est la seule des navettes du pyruvate à conduire à la production du malonyl-CoA dans le cytoplasme des cellules β. Le malonyl-CoA régule le métabolisme des acides gras en inhibant la carnitine palmitoyl transférase 1, l’enzyme limitante dans l’oxydation des acides gras. Ainsi, l’élévation des niveaux de malonyl-CoA en réponse au glucose entraîne une redirection du métabolisme des acides gras vers les processus d’estérification puis de lipolyse. Plus précisément, les acides gras sont métabolisés à travers le cycle des triglycérides/acides gras libres (qui combinent les voies métaboliques d’estérification et de lipolyse), afin de produire des molécules lipidiques signalétiques nécessaires à la modulation de la sécrétion d’insuline. Des études effectuées précédemment dans notre laboratoire ont démontré que l’activité lipolytique de HSL (de l’anglais hormone-sensitive lipase) était importante, mais non suffisante, pour la régulation de la sécrétion d’insuline. Dans une étude complémentaire, nous nous sommes intéressés au rôle d’une autre lipase, soit ATGL (de l’anglais adipose triglyceride lipase), dans la régulation de la sécrétion d’insuline en réponse au glucose et aux acides gras. Nous avons démontré que ATGL est exprimé dans les cellules β pancréatiques et que son activité contribue significativement à la lipolyse. Une réduction de son expression dans les cellules INS 832/13 par RNA interférant ou son absence dans les îlots pancréatiques de souris déficientes en ATGL a conduit à une réduction de la sécrétion d’insuline en réponse au glucose en présence ou en absence d’acides gras. Ces résultats appuient l’hypothèse que la lipolyse est une composante importante de la régulation de la sécrétion d’insuline dans les cellules β pancréatiques.
En conclusion, les résultats obtenus dans cette thèse suggèrent que la navette pyruvate/citrate est importante pour la régulation de la sécrétion d’insuline en réponse au glucose. Ce mécanisme impliquerait la production du NADPH et du malonyl-CoA dans le cytoplasme en fonction du métabolisme du glucose. Cependant, nos travaux remettent en question l’implication de la navette pyruvate/isocitrate/α-cétoglutarate dans la régulation de la sécrétion d’insuline. Le rôle exact de IDHc dans ce processus demeure cependant à être déterminé. Finalement, nos travaux ont aussi démontré un rôle pour ATGL et la lipolyse dans les mécanismes de couplage métabolique régulant la sécrétion d’insuline. / Diabetes is a metabolic disorder characterized by a combination of insulin resistance in peripheral tissues with an inappropriate amount of insulin secreted by the pancreatic β-cells to overcome this insulin resistance. In order to help find a cure for diabetic patients, we need to elucidate the mechanisms underlying the proper control of insulin secretion in response to glucose. In pancreatic β-cells, glucose metabolism leads to the production of metabolic coupling factors, like ATP, implicated in the regulation of insulin vesicle exocytosis. The mechanism linking ATP production by the oxidative metabolism of glucose to the triggering of insulin release that involves Ca2+ and metabolically sensitive K+ channels is relatively well known. Other mechanisms are also involved in the regulation of insulin secretion in response to glucose and other nutrients, such as fatty acids and some amino acids. Malonyl-CoA and NADPH are two metabolic coupling factors that have been suggested to be implicated in the transduction of metabolic signaling coming from glucose metabolism to control the release of insulin granules. However, the mechanisms implicated remained to be defined.
The goal of the present thesis was to further our understanding of the role of the pyruvate shuttles, derived from mitochondrial glucose metabolism, in the regulation of insulin secretion. In pancreatic β-cells, pyruvate shuttles are produced by the combination of anaplerosis and cataplerosis processes and are thought to link glucose metabolism to the regulation of insulin secretion by the production metabolic coupling factors. In our first study, we wished to determine the role of the pyruvate/citrate shuttle in the regulation of glucose-induced insulin secretion. The pyruvate/citrate shuttle leads to the production in the cytoplasm of both malonyl-CoA and NADPH and also stimulates the metabolic flux through the glycolysis by re-oxidating NADH. A previous study done in the group of Dr Prentki has suggested the feasibility of the pyruvate/citrate shuttle in pancreatic β-cells. To investigate our hypothesis, we inhibited three different steps of this shuttle in INS 832/13 cells, a pancreatic β-cell line. Specifically, we repressed, using pharmacological inhibitors or RNA interference technology, the mitochondrial citrate export to the cytoplasm and the expression of malic enzyme (MEc) and ATP-citrate lyase (ACL), two key enzymes implicated in the pyruvate/citrate shuttle. The inhibition of each of those steps resulted in a reduction of glucose-induced insulin secretion. Our results underscore the importance of the pyruvate/citrate shuttle in the pancreatic β-cell signaling and the regulation of insulin secretion in response to glucose.
Other research groups are also interested in studying the implication of pyruvate cycling processes in the regulation of insulin exocytosis. They suggested a role for the pyruvate/malate and the pyruvate/isocitrate/α-ketoglutarate shuttles. Therefore, three different shuttles derived from the mitochondrial glucose metabolism could be implicated in the regulation of glucose-induced insulin release. All those three shuttles can produce NADPH in the cytoplasm. In the pyruvate/malate and the pyruvate/citrate shuttles, the NADPH is formed by cytosolic malic enzyme (MEc), whereas in the pyruvate/isocitrate/α-ketoglutarate, NADPH is produced by cytosolic isocitrate dehydrogenease (IDHc). In our first study, we established the importance of MEc expression in the regulation of insulin secretion. In our second study, we wanted to investigate the importance of IDHc expression in glucose-induced insulin secretion. The reduction of IDHc expression in INS 832/13 cells stimulated insulin release in response to glucose by a mechanism independent of ATP production coming from glucose oxidative metabolism. This stimulation was also observed in isolated rat pancreatic cells. IDHc knockdown cells showed elevated glucose incorporation into fatty acids, suggesting that isocitrate metabolism could be redirected into the pyruvate/citrate shuttle in these cells. Taken together, these results suggest that IDHc is not essential for glucose-induced insulin secretion and that a compensatory mechanism, probably involving the pyruvate/citrate shuttle, explains the enhanced insulin secretion in IDHc knockdown cells .
The pyruvate/citrate shuttle is the only pyruvate shuttle that is linked to the production of malonyl-CoA. Malonyl-CoA is a known inhibitor of carnitine palmitoyl transferase 1, the rate-limiting step in fatty acid oxidation. Therefore, the raising level of malonyl-CoA in response to glucose redirects the metabolism of fatty acids into the triglycerides/free fatty acids cycle which combine esterification and lipolysis processes. Previous studies done in the laboratory of Dr Prentki supported the concept that lipolysis of endogenous lipid stores is an important process for the appropriate regulation of insulin secretion. A first lipase, hormone-sensitive lipase (HSL), has been identified in pancreatic β-cells. HSL expression is important, but not sufficient, for the β-cell lipolysis activity. In a complementary study, we have investigated the role of another lipase, adipose triglyceride lipase (ATGL), in the regulation of insulin secretion in response to glucose and to fatty acids. We first demonstrated the expression and the activity of ATGL in pancreatic β-cells. Reducing ATGL expression using shRNA in INS 832/13 cells caused a reduction in insulin secretion in response to glucose and to fatty acids. Pancreatic islets from ATGL null mice also showed defect in insulin release in response to glucose and to fatty acids. The results demonstrate the importance of ATGL and intracellular lipid signaling in the regulation of insulin secretion.
In conclusion, the work presented in this thesis suggests a role for the pyruvate/citrate shuttle in the regulation of insulin secretion in response to glucose. This mechanism possibly implicates the production of NADPH and malonyl-CoA in the cytoplasm. The results also points to a re-evaluation of the role of IDHc in glucose-induced insulin secretion. The precise role of IDHc in pancreatic β-cells needs to be determined. Finally, the data have also documented a role of lipolysis and ATGL in the coupling mechanisms of insulin secretion in response to both fuel and non-fuel stimuli.
|
25 |
Intelligent multielectrode arrays : improving spatiotemporal performances in hybrid (living-artificial), real-time, closed-loop systems / Matrice d’électrodes intelligentes : un outil pour améliorer les performances spatiotem- porelles des systèmes hybrides (vivant-artificiel), en boucle fermée et en temps réel / Redes de eletrodos inteligentes : melhorando a performance espaço-temporal de sistemas híbridos (vivo e artificial), em laço fechado e em tempo realBontorin alves, Guilherme 22 September 2010 (has links)
Cette thèse présente un système bioélectronique prometteur, l’Hynet. Ce Réseau Hybride (vivant-artificiel) est conçu pour l’étude du comportement à long terme des cellules électrogénératrices, comme les neurones et les cellules betas, en deux aspects : l’individuel et en réseau. Il est basé sur une boucle fermée et sur la communication en temps réel entre la culture cellulaire et une unité artificielle (Matériel, Logiciel). Le premier Hynet utilise des Matrices d’électrodes (MEA) commerciales qui limitent les performances spatiotemporelles du Hynet. Une nouvelle Matrice d’électrodes intelligente (iMEA) est développée. Ce nouveau circuit intégré, analogique et mixte, fournit une interface à forte densité, à forte échelle et adaptative avec la culture. Le nouveau système améliore le traitement des données en temps réel et une acquisition faible bruit du signal extracellulaire. / This thesis presents a promising new bioelectronics system, the Hynet. The Hynet is a Hybrid (living-artificial) Network, developed to study the long-term behavior of electrogenic cells (such as Neurons or Beta-cells), both individually and in a network. It is based on real-time closed-loop communication between a cell culture (bioware) and an artificial processing unit (hardware and software). In the first version of our Hynet, we use commercial Multielectrode Arrays (MEA) that limits its spatiotemporal performances. A new Intelligent Multielectrode Array (iMEA) is therefore developed. This new analog/mixed integrated circuit provides a large-scale, high-density, and adaptive interface with the Bioware, which improves the real-time data processing and the low-noise acquisition of the extracellular signal. / Esta dissertação de doutorado apresenta um sistema bioeletrônico auspicioso, o Hynet. Esta Rede Híbrida (viva e artificial), é concebida para o estudo do comportamento à longo prazo de células eletrogeneradoras (como neurônios ou células beta), em dois aspectos : individual e em redes. Ele é baseado na comunicação bidirecional, em laço fechado e em tempo real entre uma cultura celular (Bioware) e uma unidade artificial (Hardware ou Software). Um primeiro Hynet é apresentado, mas o uso de Matrizes de Eletrodos (MEA) comerciais limita a performance do sistema. Finalmente, uma nova Matriz de Eletrodos Inteligente (iMEA) é desenvolvida. Este novo circuito integrado fornece uma interface adaptativa, em alta densidade e grande escala, com o Bioware. O novo sistema melhora o processamento de dados em tempo real e a aquisição baixo ruído do sinal extracelular.
|
Page generated in 0.0638 seconds