Spelling suggestions: "subject:"cellwall"" "subject:"cellwalls""
1 |
Modulação da degradação enzimática de galactomanano por sua própria estrutura fina / Modulation of enzymatic degradation of galactomannan by its fine structureEncarnação, Thalita Beatriz Carrara da 26 November 2012 (has links)
Sementes de Sesbania virgata (Cav.) Pers. acumulam suas reservas de carbono no endosperma na forma de um polissacarídeo de parede celular, o galactomanano. Os galactomananos são polissacarídeos constituídos de uma cadeia principal de resíduos de D-manose ligadas β-1,4, ramificada por resíduos de D-galactose α-1,6 ligados. A mobilização deste ocorre após a germinação e envolve três enzimas hidrolíticas (α-galactosidase, endo-β-mananase e exo-β-manosidase). A α-galactosidase é a primeira enzima atuar sobre o galactomanano hidrolisando as ligações α-1,6 das galactoses ramificadas a cadeia principal de manano (ligados β-1,4), permitindo a ação da endo-β-mananase, que hidrolisará o polissacarídeo a oligossacarídeos, onde a β-manosidase atuará (ligações β-1,4), transformando oligossacarídeos a monossacarídeos a serem utilizados no desenvolvimento do embrião. Buscando a compreensão das características da α-galactosidase e modo de ação sobre o galactomanano, procedeu-se com a purificação, em três etapas,e caracterização bioquímica (pH ótimo, temperatura ótima e aspectos cinéticos) da α-galactosidase de sementes de Sesbania virgata (Cav.) Pers. Além disso, visando evidenciar a modulação da enzima endo-β-mananase pela distribuição de ramificações de galactose no galactomanano (estrutura fina do galactomanano), procedeu-se com hidrólises enzimáticas do galactomanano de Sesbania virgata (Cav.) Pers. utilizando a enzima endo-β-mananase de Aspergillus niger (Megazyme®) somente ou em conjunto com a α-galactosidase semipurificada de Sesbania virgata (Cav.) Pers. (Capítulo 1) ou com a α-galactosidase comercial de Cyamopsis tetragonoloba (Megazyme®), seguido de análise dos oligossacarídeos por HPAEC-PAD (High Performance Anion Exchange Chromatography with Pulsed Amperometric Detection). Também procedeu-se com hidrólises enzimáticas de galactomananos de 6 espécies com razão manose:galactose variando de 1:1 a 150:1 com endo-β-mananase de Aspergillus niger (Megazyme®) e análise dos oligossacarídeos produzidos por HPAEC-PAD. A α-galactosidase semipurificada possui, aproximadamente, 42 kDa de peso molecular em condições desnaturantes e, aproximadamente 72 kDa de peso molecular na forma nativa, sugerindo que a enzima assuma estrutura quartenária. A temperatura ótima apresentada se encontra na faixa de 50°C a 55°C, pH ótimo na faixa de 4,4 a 5,4, Km= 1,8276 mM e a velocidade máxima de 0,5024 μmolGal.min-1.mgprot-1. A espectrometria de massas gerou os fragmentos: ALADYV-HSK-RMPGSLGHEE-QDAK-TT-GDIEDNWNSM-TSIADS NDKW-ASYAGPGGWN-DPDMLEVGNG-GMTTEEYR-AP-LLVGCDIR-VAVIL-WNR, estando a proteína referente a esta sequência relacionada à mobilização de reserva. Durante a purificação e sequenciamento interno da α-galactosidase e demais proteínas foram detectadas isoformas da α-galactosidase de pesos moleculares variados (42 kDa a 20 kDa). Sugere-se que estas isoformas encontradas inicialmente na purificação estejam relacionadas com outras funções da α-galactosidase, enquanto as isoformas encontradas após todas as etapas de purificação e identificação por espectrometria de massas estejam relacionadas com ativação e adaptação da α-galactosidase durante todo o processo de mobilização de reservas. Os dados gerados das comparações dos oligossacarídeos produzidos em cada hidrólise sugerem que as ramificações do galactomanano podem modular o reconhecimento de sítios de clivagem pela endo-β-mananase: (1) existe a produção de oligossacarídeos limites de digestão F1, F2 e F3 após hidrólise do galactomanano com endo-β-mananase, como demonstrado para xiloglucanos; (2) os oligossacarídeos F1 possuem proporções distintas quando da hidrólise do galactomanano com endo-β-mananase em diferentes concentrações (ExP I e EXP IV), evidenciando preferência por sítios com menor grau de galactosilação; (3) a presença da α-galactosidase diminui a produção dos oligossacarídeos F2 e F3, mostrando que estes não possuem resistência intrínseca a hidrólise e que a reação atinge o equilíbrio mesmo quando ainda existem sítios de clivagem ainda disponíveis (EXP III); (4) polissacarídeos com estruturas diferentes, razão manose:galactose variando entre 150:1 a 1:1, são digeridos em diferentes taxas de hidrólise pela mesma enzima, evidenciando que a ramificação com galactose dificulta a ação da endo-β-mananase. Dessa forma, sugere-se que a estrutura do polissacarídeo galactomanano também contenha, pelo menos, parte da informação requerida para seu próprio metabolismo, código para a sua degradação, estando esta informação contida na distribuição das ramificações com resíduos de D-galactose. Sendo assim, sugere-se que as diferentes isoformas da α-galactosidase relacionadas à degradação da reserva de galactomanano de sementes de Sesbania virgata (Cav.) Pers. seriam produto da ação proteolítica da própria enzima a fim de melhorar a afinidade da α-galactosidase ao substrato durante o processo de mobilização de reserva. O aumento da afinidade da α-galactosidase ao substrato durante todo o processo de mobilização garantiria a liberação das ramificações com galactose de forma contínua, permitindo e aumentando a eficiência da ação da enzima endo-β-mananase aos sítios de clivagem, garantindo a degradação do polissacarídeo a oligossacarídeos de forma regulada, passível de bloqueio, pelo acúmulo de oligossacarídeos e galactose livre que inibem a ação das enzimas endo-β-mananase e α-galactosidase, respectivamente, e dificultando a ação de microorganismos, propiciando ao embrião a maior quantidade de açúcares para o seu desenvolvimento, aumentando as chances de sucesso no estabelecimento da plântula / The seeds of Sesbania virgata (Cav.) Pers. have an endosperm which accumulates galactomannan as a storage polysaccharide in the cell walls. Galactomannans are composed of a linear backbone of β-(1,4)-linked D-mannose residues with D-galactose α-(1,6)-linkages substitutions. The galactomannans are hydrolysed after protrusion of the radicle. This process is perfomed by three enzymes (α-galactosidase, endo-β-mannanase and exo-β-manosidase). The α-galactosidase is the first enzyme to cleave the polysaccharides, removing the D-galactose residues, allowing the performance of the endo-β-mannanase, which hydrolyses the mannan backbone to mannan oligosaccharides. The last part of the process includes exo-β-manoside, that cleaves the mannan oligosaccharides to mannose residues, which could be used by the embryo during growth. Aiming at understanding the function of ?-galactosidase in the process of galatomanannan degradation, we studied its mode of action on mannans and galactomannans. The α-galactosidase of Sesbania virgata (Cav.) Pers. was purified and characterized (pH and temperature optimum and the enzyme kinetics). We found that the semipurified α-galactosidase molecular weight was 42kDa at denaturating conditions, but in native conditions was 72kDa, suggesting that the enzyme has a quaternary structure. The enzyme optimum pH was between 4,4-5,4, optimum temperature between 50°C-55°C, Km= 1,8276 mM and Vmáx= 0,5024 μmolGal.min-1.mgprot-1. Mass spectrometry measures resulted the following fragments: ALADYV-HSK-RMPGSLGHEE-QDAK-TT-GDIEDNWNSMTSIADS-NDKW-ASYAGPGGWN-DPDMLEVGNG-GMTTEEYR-AP-LLVGCDIR-VAVIL-WNR, being the protein from this sequence related with storage mobilization. Possible α-galactosidase isoforms were detected during the purification, suggesting other functions for the enzyme. The α-galactosidase isoforms detected after all purification steps and with measured mass spectrometry (from 42kDa to 20kDa) should be related to the storage mobilization. We suggest that the α-galactosidase isoforms in Sesbania virgata (Cav.) Pers. seeds represents products of the enzyme self-digestion, this process being correlated with the enzyme/polysaccharide affinity and at last, correlated to the galactomannan mobilization. An extract semipurified from Sesbania virgata (Cav.) Pers. and enriched with α-galactosidase activity, was used along with endo-β-mannanase from Aspergillus niger (Megazyme®) or both endo-β-mannanase and α-galactosidase (semipurified from Sesbania virgata seeds - Chapter 1- or commercial enzyme from Cyamopsis tetragonoloba - Megazyme®) were used to study the fine structure of galactomannans. Hydrolysis of galactomannans from six species with different mannose:galactose (1:1 to 150:1) ratio were performed with endo-β-mananase from Aspergillus niger. The oligosaccharides from all hydrolysis were analyzed by HPAEC-PAD (High Performance Anion Exchange Chromatography with Pulsed Amperometric Detection). The hydrolysis fragments data (HPAEC-PAD) suggest that the side-chains of the polysaccharides can modulate the hydrolytic sites recognition on the galactomannan by the endo-β-mannanase. This conclusion is supported by: (1) the presence of limited digest oligosaccharides F1 and dimmers (F2) and trimers (F3) of the F1 oligosaccharides; (2) the presence of different F1 oligosaccharides proportions after hydrolysis with endo-β-mannanase at different concentrations, showing preference on less-branched hydrolytic sites; (3) the α-galactosidase digestion avoided the accumulation of oligosaccharides F2 and F3, showing that these oligosaccharides do not present intrinsic resistance to hydrolysis and that the reaction reaches an equilibrium even when sites of hydrolysis are still available; (4) polymers with different fine structure (ratio mannose:galactose 1:1 to 150:1) were hydrolysed at different rates by the endo-β-mannanase, showing that galactose branching interferes on the enzyme action. Considering that, the branching pattern of the polysaccharide seems to have direct influence on the interaction of the enzyme with substrate; we suggest that the structure of the galactomannan holds part of information required for its own degradation. The higher enzyme x substrate affinity, ensure the galactose branches digestion, improving the endo-β-mannanase action, ensuring the degradation of the polysaccharides to oligosaccharides. This highly regulated degradation process prevents microorganisms predation and increases the plantlet establishement
|
2 |
Delineation Of Signal Transduction Events During The Induction Of SOCS3 By Mycobacterium Bovis BCG : Possible Implications For Immune Subversion MechanismsYeddula, Narayana 07 1900 (has links)
Pathogenic Mycobacteria are among the most unrelenting pathogens known to mankind as one-third of the world population is latently infected with Mycobacterium tuberculosis, the causative agent of pulmonary tuberculosis. Despite many species of mycobacteria elicits robust host T cell responses as well as production of cytokines like interferon-γ (IFN- γ) that are essential for the control of infection, the mounted immune response contain, but does not eliminate the infection. One potential mechanism by which mycobacteria may achieve a state of long-term persistence amid a robust host immune response is by modulating the signaling cascades leading to macrophage activation. Activation of proinflammatory responses by the host macrophages upon infection with mycobacteria requires the involvement of a variety of signaling events. Studies have indicated that macrophages infected with pathogenic mycobacteria produce significantly less tumor necrosis factor (TNF)-α and other proinflammatory molecules compared with infection with nonpathogenic mycobacteria, which likely play a role in enhancing mycobacterial survival in vivo. Furthermore, macrophages infected with mycobacteria become refractory to many cytokines including IFN-γ and modulation of host cell signaling responses is critical for the suppression of a generalized inflammatory response which might influence the persistence of mycobacteria within the host. In this context, Suppressor of cytokine signaling (SOCS) 3, a member of SOCS family function as negative regulators of multiple cytokine and toll like receptor induced signaling. The SOCS3 has been shown to specifically inhibit signaling by IFN-γ, IL-6 family of cytokines and can act as a negative regulator of inflammatory responses. In this regard, many species of mycobacteria including M. bovis BCG triggers the inducible expression of SOCS3. Further, it has been suggested that M. bovis BCG triggered SOCS3 and SOCS1 proteins leads to the inhibition of IFN- γ stimulated JAK/STAT signaling in macrophages. Albeit JAK/STAT signaling pathway is generally believed to be involved, STAT-independent signals are suggested to take part in the induction of SOCS proteins in many systems signifying the involvement of multiple signal pathways in regulation of SOCS expression. Further little is known about the early, receptor proximal signaling mechanisms underlying mycobacteria-mediated induction of SOCS3.
Albeit mycobacteria reside within phagolysosomes of the infected macrophages, many cell wall antigens like LAM, PIM, TDM, PE family antigens etc are released and traffic out of the mycobacterial phagosome into endocytic compartments as well as can gain access to the extra cellular environment in the form of exocytosed vesicles. In this context, PIM represent a variety of phosphatidyl-myo-inositol mannosides (PIM) 1-6 containing molecules and are integral component of the mycobacterial envelope. PIM are suggested to be the common anchor of LM and LAM as PIM, LM, and LAM originate from identical biosynthetic pathway. PIM are present in virulent M. tuberculosis H37Rv as well as in M. bovis BCG and a number of biological functions have been recently credited to PIM2. PIM2 is suggested to trigger the activation of cells via Toll like receptor (TLR)-2 and stimulation resulted in activation of NF-κB, AP-1, and mitogen-activated protein (MAP) kinases. PIM2 induces proinflammatory stimuli such as TNF-α and IL-12 in murine and human macrophages in a TLR2 dependent manner. PIM exhibited pulmonary granuloma-forming activities as well as was shown to be responsible for the recruitment of NKT cells to granulomas. Accordingly, mycobacterial envelope antigen PIM2 could initiate or affect the inflammatory responses similar to mycobacteria bacilli. In this perspective, we explored whether M. bovis BCG or novel cell surface antigens like PIM2 or Rv0978c, a PE-PGRS protein with unknown function can contribute to M. bovis BCG triggered molecular signaling events leading to SOCS3 expression in macrophages.
Our studies clearly demonstrated that M. bovis BCG can trigger SOCS3 expression in macrophages. The inception of signaling by M. bovis BCG is TLR2-MyD88 dependent, but not TLR4 dependent. The perturbation of TLR2 signaling and the downregulation of MyD88 resulted in significant decrease in SOCS3 expression implicating the role of TLR2-MyD88 axis in M. bovis BCG triggered signaling. Experiments with cycloheximide and neutralizing antibodies to IL-10 evinced that M. bovis BCG triggered SOCS3 expression is a primary response and requires direct activation of signaling cascades. In the current study, we show for the first time that infection of macrophages with M. bovis BCG activates NOTCH1 signaling events, which leads to expression of SOCS3. The perturbation of NOTCH signaling in infected macrophages either by siRNA mediated down regulation of NOTCH1 or RBP-Jk or by inhibition with pharmacological inhibitor gamma secretase-I, resulted in the marked reduction in the expression of SOCS3. Further, the enforced expression of the NOTCH1 intracellular domain (NICD) in RAW264.7 macrophages induces the expression of SOCS3, which can be further potentiated by M. bovis BCG. Furthermore, the inhibition of TLR2 signaling by a TLR2 dominant-negative construct resulted in inhibition of NOTCH1 activation. Additionally, our results demonstrates for the first time that physical association of TLR2 with both Phosphoinositide-3 Kinase (PI3K) and NOTCH1, which suggest the significant role of TLR2 triggering by of M. bovis BCG in the activation of PI3K and NOTCH1. More importantly, signaling perturbations data suggest the involvement of cross-talk among the members of PI3K and MAPK cascades with NOTCH1 signaling in SOCS3 expression. In addition, SOCS3 expression requires the NOTCH1 mediated recruitment of CSL/RBP-Jk and Nuclear Factor-B (NF-B) to the SOCS3 promoter.
A number of biological functions triggered by mycobacteria are often attributed to many of the cell wall antigens. As part of our current investigation, we explored whether two novel cell wall associated antigens namely PIM2 and a PE-PGRS antigen, Rv0978c could play as significant or crucial cell wall ingredients which imparts ability to M. bovis BCG to trigger activation of NOTCH signaling leading to SOCS3 expression. Akin to M. bovis BCG, PIM2 activates NOTCH1 signaling resulting NICD formation which leads to the expression of SOCS3 in a TLR2-MyD88 dependent manner. PIM2 mediated NOTCH1 activation, both directly influences the SOCS3 expression by serving as coactivator in RBP-Jk complex and indirectly triggers SOCS3 expression by activating PI3K-MAPK-NF-κB cascade.
One important outcome of the genome sequencing project of M. tuberculosis was the discovery of two new multigene families designated PE and PPE, named for the Pro-Glu (PE) and Pro-Pro-Glu (PPE) motifs near the N-terminus of their gene products. Many PE and PPE proteins are composed only of PE or PPE homologous domains. However, in other proteins, the PE domain is often linked to a unique domain of various lengths that is rich in alanine and glycine amino acids, termed the PGRS domain (PE-PGRS subfamily). PE family genes were suggested to play roles in the virulence of the pathogen and many members of PE family proteins are reported be localized on the surface of M. tuberculosis bacilli. Some of the PE proteins may play a role in immune evasion and antigenic variation or may be linked to virulence. Additionally, it has been suggested that the PE-PGRS subfamily of PE genes is enriched in genes with a high probability of being essential for M. tuberculosis. The uniqueness of the PE genes is further illustrated by the fact that these genes are restricted to mycobacteria. However, despite their abundance in mycobacteria, very little is known regarding the expression or the functions of PE family genes. In this context, we have chosen to study Rv0978c as a typical member of PE-PGRS family based on the following observations. Rv0978c was upregulated in TB bacilli upon infection of macrophages. Rv0978c was demonstrated to be a member of a group of genes called in vivo-expressed genomic island, which were shown to be upregulated in M. tuberculosis bacilli during infection of mice. Rv0978c was also shown to be upregulated, at least eightfold, in human brain microvascular endothelial cell-associated M. tuberculosis infection, suggesting a role for endothelial cell invasion and intracellular survival.
In the current investigation, we have demonstrated that Rv0978c is hypoxia responsive gene based on promoter analysis and upregulated in M. tuberculosis during the infection of macrophages. Further, Rv0978c is associated with cell wall and is exposed outside the surface of the bacterium suggesting the possible access to intracellular compartments of the infected macrophages. In this perspective, our results clearly demonstrate that Rv0978c triggers SOCS3 expression by activating PI3K-ERK1/2-NF-B cascade in mouse macrophages. Additionally, Rv0978c elicited humoral antibody reactivities in a panel of human sera or in cerebrospinal fluid samples obtained from different clinical categories of tuberculosis patients. DNA immunizations experiments in mice clearly suggested that Rv0978c is an immunodominant antigen demonstrating significant T cell and humoral reactivites. These observations clearly advocate that Rv0978c protein is expressed in vivo during active infection with M. tuberculosis and that the Rv0978c is immunogenic.
These results clearly describe the cross-talk of NOTCH1 signaling with signaling pathways like PI3K and MAPK pathways during infection of macrophages with M. bovis BCG eventually resulting in regulation of specific gene expressions, such as SOCS3. These observations lead to a possibility of differential effects of NOTCH1 signaling activated upon infection by an intracellular bacillus, which could be involved in modulation of macrophage functions depending on a local immunological milieu. Taken together, our findings suggest that, induction of Suppressors of Cytokine Signaling 3 molecule by M. bovis BCG or by its cell wall antigens represents a crucial immune subversion mechanism in order to suppress or attenuate host responses to cytokines to generate the conditions that favor survival of the mycobacteria.
|
3 |
Caracterização de Estafilococos Coagulase-Negativa de origem hospitalar e comunitária quanto à diversidade clonal e a determinantes de resistência antimicrobianaPinheiro, Luiza. January 2018 (has links)
Orientador: Maria de Lourdes Ribeiro de Souza da Cunha / Resumo: A alta frequência de Estafilococos Coagulase-Negativa (CoNS) na pele de indivíduos saudáveis e em doenças associadas ao sangue, associados à seleção de cepas resistentes devido a uso indiscriminado de antimicrobianos, tornou mais estreitos os limites entre o ambiente hospitalar e o comunitário quanto à distribuição de cepas. Objetivou-se, com este estudo, caracterizar isolados de CoNS de origem hospitalar e comunitária da cidade de Botucatu-SP quanto ao perfil clonal, analisar os aspectos de resistência à oxacilina pela aferição de metodologia de detecção, e investigar os determinantes de heterorresistência à vancomicina nessas cepas. As espécies estudadas incluíram S. epidermidis, S. haemolyticus, S. warneri, S. hominis, S. lugdunensis, S. capitis, S. saprophyticus, S. pasteuri, S. simulans e S. xylosus. O teste de disco-difusão (TDD) com discos de oxacilina e cefoxitina, fitas de Etest impregnadas com oxacilina e pesquisa do gene mecA por PCR em tempo real foram realizadas. A triagem em ágar com 6 e 8 µg/ml de vancomicina, microdiluição em caldo para aferição da Concentração Inibirtória Mínima (MIC), microscopia eletrônica de transmissão para verificar espessamento da parede celular e alterações fenotípicas por testes bioquímicos foram realizadas. O perfil clonal foi determinado por PFGE (Pulsed-Field Gel Eletrophoresis) e para clones de S. epidermidis, o MLST (Multilocus Sequence Typing). S. epidermidis apresentou alta diversidade clonal, mas presença de clusters no ambien... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The high frequency of Coagulase-Negative Staphylococci (CoNS) on the skin of healthy individuals and in bloodstream infections, together with the selection of resistant strains, has narrowed the boundaries between the hospital and the community environment for the distribution of strains. This study aimed to characterize CoNS isolated from clinical and colonization specimens of patients and individuals from Botucatu-SP, to compare their clonal profile, to analyze the determination of oxacillin resistance by the evaluation of the methodology of detection, and to investigate the determinants of reduced susceptibility to vancomycin in those strains. CoNS species included S. epidermidis, S. haemolyticus, S. warneri, S. hominis, S. lugdunensis, S. capitis, S. saprophyticus, S. pasteuri, S. simulans and S. xylosus. The disc diffusion test (DDT) using oxacillin and cefoxitin discs was employed, Etest strips impregnated with oxacillin and mecA gene detection by real-time PCR were used. An agar screening with 6 and 8 µg/ml of vancomycin, the broth microdiluition method for the Minimal Inhibitory Concentration (MIC), the transmission eletronic microscopy for evaluation of cellwall thickening and phenotypic modifications by biochemical tests were performed. Clonal profile was determined by PFGE (Pulsed-Field Gel Eletrophoresis) and, for S. epidermidis clones, MLST (Multilocus Sequence Typing). S. epidermidis presented high clonal diversity, despite some clusters circulating within hospi... (Complete abstract click electronic access below) / Doutor
|
4 |
Modulação da degradação enzimática de galactomanano por sua própria estrutura fina / Modulation of enzymatic degradation of galactomannan by its fine structureThalita Beatriz Carrara da Encarnação 26 November 2012 (has links)
Sementes de Sesbania virgata (Cav.) Pers. acumulam suas reservas de carbono no endosperma na forma de um polissacarídeo de parede celular, o galactomanano. Os galactomananos são polissacarídeos constituídos de uma cadeia principal de resíduos de D-manose ligadas β-1,4, ramificada por resíduos de D-galactose α-1,6 ligados. A mobilização deste ocorre após a germinação e envolve três enzimas hidrolíticas (α-galactosidase, endo-β-mananase e exo-β-manosidase). A α-galactosidase é a primeira enzima atuar sobre o galactomanano hidrolisando as ligações α-1,6 das galactoses ramificadas a cadeia principal de manano (ligados β-1,4), permitindo a ação da endo-β-mananase, que hidrolisará o polissacarídeo a oligossacarídeos, onde a β-manosidase atuará (ligações β-1,4), transformando oligossacarídeos a monossacarídeos a serem utilizados no desenvolvimento do embrião. Buscando a compreensão das características da α-galactosidase e modo de ação sobre o galactomanano, procedeu-se com a purificação, em três etapas,e caracterização bioquímica (pH ótimo, temperatura ótima e aspectos cinéticos) da α-galactosidase de sementes de Sesbania virgata (Cav.) Pers. Além disso, visando evidenciar a modulação da enzima endo-β-mananase pela distribuição de ramificações de galactose no galactomanano (estrutura fina do galactomanano), procedeu-se com hidrólises enzimáticas do galactomanano de Sesbania virgata (Cav.) Pers. utilizando a enzima endo-β-mananase de Aspergillus niger (Megazyme®) somente ou em conjunto com a α-galactosidase semipurificada de Sesbania virgata (Cav.) Pers. (Capítulo 1) ou com a α-galactosidase comercial de Cyamopsis tetragonoloba (Megazyme®), seguido de análise dos oligossacarídeos por HPAEC-PAD (High Performance Anion Exchange Chromatography with Pulsed Amperometric Detection). Também procedeu-se com hidrólises enzimáticas de galactomananos de 6 espécies com razão manose:galactose variando de 1:1 a 150:1 com endo-β-mananase de Aspergillus niger (Megazyme®) e análise dos oligossacarídeos produzidos por HPAEC-PAD. A α-galactosidase semipurificada possui, aproximadamente, 42 kDa de peso molecular em condições desnaturantes e, aproximadamente 72 kDa de peso molecular na forma nativa, sugerindo que a enzima assuma estrutura quartenária. A temperatura ótima apresentada se encontra na faixa de 50°C a 55°C, pH ótimo na faixa de 4,4 a 5,4, Km= 1,8276 mM e a velocidade máxima de 0,5024 μmolGal.min-1.mgprot-1. A espectrometria de massas gerou os fragmentos: ALADYV-HSK-RMPGSLGHEE-QDAK-TT-GDIEDNWNSM-TSIADS NDKW-ASYAGPGGWN-DPDMLEVGNG-GMTTEEYR-AP-LLVGCDIR-VAVIL-WNR, estando a proteína referente a esta sequência relacionada à mobilização de reserva. Durante a purificação e sequenciamento interno da α-galactosidase e demais proteínas foram detectadas isoformas da α-galactosidase de pesos moleculares variados (42 kDa a 20 kDa). Sugere-se que estas isoformas encontradas inicialmente na purificação estejam relacionadas com outras funções da α-galactosidase, enquanto as isoformas encontradas após todas as etapas de purificação e identificação por espectrometria de massas estejam relacionadas com ativação e adaptação da α-galactosidase durante todo o processo de mobilização de reservas. Os dados gerados das comparações dos oligossacarídeos produzidos em cada hidrólise sugerem que as ramificações do galactomanano podem modular o reconhecimento de sítios de clivagem pela endo-β-mananase: (1) existe a produção de oligossacarídeos limites de digestão F1, F2 e F3 após hidrólise do galactomanano com endo-β-mananase, como demonstrado para xiloglucanos; (2) os oligossacarídeos F1 possuem proporções distintas quando da hidrólise do galactomanano com endo-β-mananase em diferentes concentrações (ExP I e EXP IV), evidenciando preferência por sítios com menor grau de galactosilação; (3) a presença da α-galactosidase diminui a produção dos oligossacarídeos F2 e F3, mostrando que estes não possuem resistência intrínseca a hidrólise e que a reação atinge o equilíbrio mesmo quando ainda existem sítios de clivagem ainda disponíveis (EXP III); (4) polissacarídeos com estruturas diferentes, razão manose:galactose variando entre 150:1 a 1:1, são digeridos em diferentes taxas de hidrólise pela mesma enzima, evidenciando que a ramificação com galactose dificulta a ação da endo-β-mananase. Dessa forma, sugere-se que a estrutura do polissacarídeo galactomanano também contenha, pelo menos, parte da informação requerida para seu próprio metabolismo, código para a sua degradação, estando esta informação contida na distribuição das ramificações com resíduos de D-galactose. Sendo assim, sugere-se que as diferentes isoformas da α-galactosidase relacionadas à degradação da reserva de galactomanano de sementes de Sesbania virgata (Cav.) Pers. seriam produto da ação proteolítica da própria enzima a fim de melhorar a afinidade da α-galactosidase ao substrato durante o processo de mobilização de reserva. O aumento da afinidade da α-galactosidase ao substrato durante todo o processo de mobilização garantiria a liberação das ramificações com galactose de forma contínua, permitindo e aumentando a eficiência da ação da enzima endo-β-mananase aos sítios de clivagem, garantindo a degradação do polissacarídeo a oligossacarídeos de forma regulada, passível de bloqueio, pelo acúmulo de oligossacarídeos e galactose livre que inibem a ação das enzimas endo-β-mananase e α-galactosidase, respectivamente, e dificultando a ação de microorganismos, propiciando ao embrião a maior quantidade de açúcares para o seu desenvolvimento, aumentando as chances de sucesso no estabelecimento da plântula / The seeds of Sesbania virgata (Cav.) Pers. have an endosperm which accumulates galactomannan as a storage polysaccharide in the cell walls. Galactomannans are composed of a linear backbone of β-(1,4)-linked D-mannose residues with D-galactose α-(1,6)-linkages substitutions. The galactomannans are hydrolysed after protrusion of the radicle. This process is perfomed by three enzymes (α-galactosidase, endo-β-mannanase and exo-β-manosidase). The α-galactosidase is the first enzyme to cleave the polysaccharides, removing the D-galactose residues, allowing the performance of the endo-β-mannanase, which hydrolyses the mannan backbone to mannan oligosaccharides. The last part of the process includes exo-β-manoside, that cleaves the mannan oligosaccharides to mannose residues, which could be used by the embryo during growth. Aiming at understanding the function of ?-galactosidase in the process of galatomanannan degradation, we studied its mode of action on mannans and galactomannans. The α-galactosidase of Sesbania virgata (Cav.) Pers. was purified and characterized (pH and temperature optimum and the enzyme kinetics). We found that the semipurified α-galactosidase molecular weight was 42kDa at denaturating conditions, but in native conditions was 72kDa, suggesting that the enzyme has a quaternary structure. The enzyme optimum pH was between 4,4-5,4, optimum temperature between 50°C-55°C, Km= 1,8276 mM and Vmáx= 0,5024 μmolGal.min-1.mgprot-1. Mass spectrometry measures resulted the following fragments: ALADYV-HSK-RMPGSLGHEE-QDAK-TT-GDIEDNWNSMTSIADS-NDKW-ASYAGPGGWN-DPDMLEVGNG-GMTTEEYR-AP-LLVGCDIR-VAVIL-WNR, being the protein from this sequence related with storage mobilization. Possible α-galactosidase isoforms were detected during the purification, suggesting other functions for the enzyme. The α-galactosidase isoforms detected after all purification steps and with measured mass spectrometry (from 42kDa to 20kDa) should be related to the storage mobilization. We suggest that the α-galactosidase isoforms in Sesbania virgata (Cav.) Pers. seeds represents products of the enzyme self-digestion, this process being correlated with the enzyme/polysaccharide affinity and at last, correlated to the galactomannan mobilization. An extract semipurified from Sesbania virgata (Cav.) Pers. and enriched with α-galactosidase activity, was used along with endo-β-mannanase from Aspergillus niger (Megazyme®) or both endo-β-mannanase and α-galactosidase (semipurified from Sesbania virgata seeds - Chapter 1- or commercial enzyme from Cyamopsis tetragonoloba - Megazyme®) were used to study the fine structure of galactomannans. Hydrolysis of galactomannans from six species with different mannose:galactose (1:1 to 150:1) ratio were performed with endo-β-mananase from Aspergillus niger. The oligosaccharides from all hydrolysis were analyzed by HPAEC-PAD (High Performance Anion Exchange Chromatography with Pulsed Amperometric Detection). The hydrolysis fragments data (HPAEC-PAD) suggest that the side-chains of the polysaccharides can modulate the hydrolytic sites recognition on the galactomannan by the endo-β-mannanase. This conclusion is supported by: (1) the presence of limited digest oligosaccharides F1 and dimmers (F2) and trimers (F3) of the F1 oligosaccharides; (2) the presence of different F1 oligosaccharides proportions after hydrolysis with endo-β-mannanase at different concentrations, showing preference on less-branched hydrolytic sites; (3) the α-galactosidase digestion avoided the accumulation of oligosaccharides F2 and F3, showing that these oligosaccharides do not present intrinsic resistance to hydrolysis and that the reaction reaches an equilibrium even when sites of hydrolysis are still available; (4) polymers with different fine structure (ratio mannose:galactose 1:1 to 150:1) were hydrolysed at different rates by the endo-β-mannanase, showing that galactose branching interferes on the enzyme action. Considering that, the branching pattern of the polysaccharide seems to have direct influence on the interaction of the enzyme with substrate; we suggest that the structure of the galactomannan holds part of information required for its own degradation. The higher enzyme x substrate affinity, ensure the galactose branches digestion, improving the endo-β-mannanase action, ensuring the degradation of the polysaccharides to oligosaccharides. This highly regulated degradation process prevents microorganisms predation and increases the plantlet establishement
|
5 |
Permeability improvement of Norway spruce wood with the white rot fungus Physisporinus vitreus / Verbesserung der Permeabilität von Fichtenholz mit dem Weißfäulepilz Physisporinus vitreusLehringer, Christian 28 January 2011 (has links)
No description available.
|
Page generated in 0.0445 seconds