• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Possibilidades de uso de polissacarideos de plantas extraidos de diferentes fontes, uma perspectiva de sustentabilidade / A sustainable perspective for biotechnological applications of plant polysaccharides

Lisboa, Cesar Gustavo Serafim 12 August 2018 (has links)
Orientador: Marcos Silveira Buckeridge / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-12T18:38:24Z (GMT). No. of bitstreams: 1 Lisboa_CesarGustavoSerafim_D.pdf: 1945488 bytes, checksum: 831197d663c65044a02bdfd7ba13598f (MD5) Previous issue date: 2008 / Resumo: Aplicações biotecnológicas de polissacarídeos de plantas: uma estratégia sustentável para a produção em demanda. Atualmente, a busca por novas fontes de materiais pode levar ao depósito de patentes. Isto é importante para que novos produtos, que apresentem características inovadoras, potencial de redução de custos, rotas de produção ambientalmente corretas, partição de benefícios e, finalmente, possibilitem a exploração de novos mercados de maneira sustentável. Nesse contexto, o presente trabalho teve como objetivo avaliar o potencial de uso de polissacarídeos de plantas de diferentes fontes nos setores de alimentos, farmacosméticos e papel. Os resultados são apresentados na forma de um artigo e 4 patentes. Os xiloglucanos de sementes de espécies nativas de plantas (Hymenaea courbaril) e de plântulas de eucalipto foram aplicados no processo de confecção do papel, demonstrando que suas propriedades mecânicas podem ser melhoradas. Resultados similares foram obtidos com galactomananos de sementes de Sesbania virgata e Dimorphandra mollis. O xiloglucano de H. courbaril foi estudado mais profundamente e demonstrou-se que pode ser também aplicado em cosméticos, pois não é citotóxico, é capaz de espessar formulações e interfere na produção de colágeno pela pele. As propriedades reológicas do galactomanano de D. mollis foram estudadas em comparação a outros galactomananos já utilizados na indústria. Demonstrou-se que ele é apropriado para várias aplicações em alimentos. Como um todo, nossos resultados indicam que tanto os polissacarídeos de sementes de espécies nativas como o de eucalipto podem ser utilizados em várias aplicações de tal forma que possam fazer parte de programas de uso sustentável da biodiversidade, levando a benefícios tecnológicos e também sociais. / Abstract: Biotechnological applications of plant polysaccharides: a sutainable strategy for production and demand. Nowdays, the search for new sources of materials can lead to new patent deposits. This is important because new products that display innovative features, cost reduction potential, environmentally clean production routes, partition of benefits and finally, may turn possible to explore differential market shares. These may be excellent socio-environmental and market shares for biotechnology companies. In this context, the present work aimed at evaluating the potential of use of plant polysaccharides from different sources in the food, farmacosmetic and paper industrial sectors. In the present work, we present studies that focus on the use of seed polysaccharides on applications on paper, cosmetics and food industries. The results are presented in the form of one article and 4 patents. The xyloglucan from seeds of native tropical tree species (Hymenaea courbaril - jatobá, Copaifera langsdorffii - copaiba) and from seedlings of Eucalyptus grandis (eucalypt) were applied to paper making and we demonstrated that several properties of paper can be improved by using these xyloglucans during preparation. Similar results were obtained with galactomann ans from Sesbania virgata and Dimorphandra mollis, two fast-growing legume trees. The polymers increased paper resistance to mechanical stress so that they can be applied for applications where more resistant papers (such as rapping paper) are used. The xyloglucan from H. courbaril was studied more deeply, demonstrating that it can be applied in cosmetics as it is not cytotoxic and can be used to improve skin biochemistry such as collagen production. Galactomannan from D. mollis was studied from the rheological point of view and its properties were compared with other commercially used galactomannans. Our results showed that D. mollis galactomannan is appropriate to several applications in food industries. As a whole, our results indicate that both, native seeds and seeds of eucalyptus, might be used in several industrial applications so that these might be used as part of programs of sustainable use of biodiversity, leading to social and technological benefits to society. / Doutorado / Biologia Celular / Doutor em Biologia Celular e Estrutural
2

Conexão entre os processos de degradação das resservas de proteinas e carboidratos e o edfeito dos hormonios e açucares em sementes de Sesbania virgata (Cav.) Pers. / Connection between storage proteins and carbohydrates degradation and the effects of hormones and sugars in seeds of Sesbania virgata (Cav.) Pers.

Tonini, Patricia Pinho 12 August 2018 (has links)
Orientador: Marcos Silveira Buckeridge / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-12T17:19:07Z (GMT). No. of bitstreams: 1 Tonini_PatriciaPinho_D.pdf: 2946398 bytes, checksum: 0c45bddc87c835268cd2cfd05f89d364 (MD5) Previous issue date: 2008 / Resumo: Sementes de Sesbania virgata (Cav.) Pers. acumulam suas reservas de carbono no endosperma na forma de um polissacarídeo de parede celular, o galactomanano. A mobilização deste ocorre após a germinação e envolve três enzimas hidrolíticas, dentre elas a a-galactosidase. Além da reserva de carbono, há uma grande quantidade de corpos protéicos, no citoplasma das células endospérmicas, que constituem a principal reserva de nitrogênio nestas sementes. Para que ocorra a correta distribuição dos produtos de degradação das reservas deve haver sincronização entre os processos de degradação das reservas de carbono e nitrogênio, porém para compreender tais mecanismos, é necessário estudar aspectos do controle da produção e ação das enzimas responsáveis pela hidrólise das reservas. Buscando determinar em que ponto do metabolismo a semente de S. virgata se encontra em relação à produção destas enzimas hidrolíticas, durante e após a germinação, e supostamente os tecidos envolvidos nesta produção, sementes desta espécie foram embebidas em actinomicina-D (inibidor de transcrição) e cicloheximida (inibidor de tradução) e os efeitos destes inibidores verificados através da atividade e detecção da a-galactosidase no tegumento e endosperma destas sementes. Além disso, buscando verificar e relacionar o efeito do ácido abscísico, do etileno e dos açúcares na degradação das reservas após a germinação de S. virgata, sementes desta espécie foram embebidas em ABA, etileno, glucose e sacarose, e os efeitos destes foram verificados através dos teores protéicos, da atividade da a-galactosidase e da produção endógena de ABA e etileno nestas sementes. Como a presença de actinomicina-D e cicloheximida não inibiram a produção e a atividade da a-galactosidase no endosperma durante e após a germinação, sugere-se que a produção desta enzima ocorra principalmente durante a maturação da semente. Aparentemente, a partir do período pós-germinativo, a enzima pré-formada seria processada e ativada, para conseqüente degradação dos galactomananos, através de um processo proteolítico. Em contrapartida, como a presença deactinomicina-D e cicloheximida inibiram a degradação das proteínas de reserva no tegumento e endosperma e, inclusive, induziram a atividade da a-galactosidase nestes tecidos no final do processo de degradação dos galactomananos, sugerese a síntese de novo de proteases durante e após a germinação e a relação íntima destas enzimas com a degradação das proteínas de reserva e da a-galactosidase no final do processo de degradação dos galactomananos. Quanto aos hormônios, a presença de ABA exógeno retardou o início da degradação das proteínas de reserva no endosperma, assim como diminuiu a atividade da a-galactosidase no mesmo tecido no final do processo de degradação do galactomanano, sugerindo um efeito modulador deste hormônio durante a degradação das reservas, reprimindo a ação das enzimas hidrolíticas. A presença de etileno exógeno, entretanto, aumentou a atividade da a-galactosidase no endosperma e, inclusive, no tegumento no final do processo de degradação do galactomanano, sugerindo um efeito indutor deste hormônio na ativação e ação das enzimas hidrolíticas. De fato, analisando a produção endógena de ABA e etileno, observou-se um aumento brusco dos hormônios no período de mobilização das reservas, que pode estar relacionado à influência destes hormônios na atividade das enzimas hidrolíticas em sementes de S. virgata. Ainda, como ocorreram mudanças na produção de ABA e etileno endógeno na presença de glucose e sacarose, sugere-se uma relação íntima entre a via de sinalização destes hormônios e a dos açúcares, a fim de controlar o processo de degradação das reservas. Desta forma, estas evidências sugerem que o ABA e o etileno controlariam antagonicamente a mobilização de reservas em sementes de S. virgata, juntamente com os açúcares, através da ativação e ação das enzimas hidrolíticas, a fim de controlar o processo de degradação das proteínas e dos galactomananos, evitando a produção dos açúcares redutores e de sacarose em excesso durante o período pós-germinativo e garantindo o afluxo eficiente de carbono e nitrogênio para o desenvolvimento da plântula. / Abstract: Seeds of Sesbania virgata (Cav.) Pers. have an endosperm which accumulates galactomannan as a storage polysaccharide in the cell walls that is hydrolysed after germination by three enzymes (a-galactosidase, endo-ß-mannanase and exo-ß-mannosidase). Besides the storage of carbon, there is a great amount of protein bodies in the cytoplasm of endospermic cells, which play the major role as a nitrogen reserve in this seed. It is likely that a synchronization between the process of galactomannan and protein degradation occurs for a more efficient distribution and use of the storage degradation products. However, to understand these mechanisms, it is necessary to study aspects of the production and action control of the hydrolytic enzymes responsible for the mobilisation of these reserves. Aiming to determine in which point of the metabolism the seed of S. virgata is in relation to the production of the hydrolytic enzymes, during and after germination, and the supposed tissues involved in this production, seeds of this specie were imbibed in actinomycin-D (transcription inhibitor) and cycloheximide (translation inhibitor), and the effects of these inhibitors verified thought the a-galactosidase activity and detection in the testa and endosperm of these seeds. Besides of this, for to verify and relate the effects of abscisic acid, ethylene and sugars on the reserves degradation after germination of the S. virgata, seeds of this specie were imbibed in ABA, ethylene, glucose and sucrose, and the effects of these were verified through the protein content, a-galactosidase activity and endogenous production of ABA and ethylene in this seeds. In the presence of actinomycin-D and cycloheximide, the production and activity of the a- galactosidase were not inhibited during and after germination, suggesting that the production of this enzyme occurs principally during the maturation of the seed. Apparently, after the germination, this enzyme is processed by proteolysis, so that it becomes activated to perform galactomannan degradation. On the other hand, the presence of actinomycin-D and cycloheximide inhibited the protein degradation in the testa and endosperm and at the same time induced the a-galactosidaseactivity in the same tissues at the final steps of the galactomannan degradation process. This suggests the existence of synthesis de novo of the proteases during and after germination and a possible relationship between the storage protein and galactomannan mobilisation. Regarding the hormones, the presence of exogenous ABA retarded the beginning of the storage protein degradation in the endosperm and also decreased a-galactosidase activity in the same tissue at the end of galactomannan degradation. This suggests that there is a regulator effect of this hormone during the storage degradation, repressing the enzymes action. In the presence of exogenous ethylene an increase in the a-galactosidase activity in the endosperm and in the testa were observed at the end of galactomannan degradation, suggesting an inducing effect of this hormone on the hydrolytic enzymes. The finding of endogenous ABA and ethylene production, observed during the period of the storage mobilisation, give support to the above raised hypothesis that the two hormones participate in the control of the hydrolytic enzyme activities in seeds of S. virgata. Furthermore, the changes observed in the endogenous ABA and ethylene production in the presence of glucose and sucrose, suggested a relation between the signaling pathway of these hormones and the sugars signaling, controlling the process of storage degradation. Thus, our results add evidence to suggest that ABA and ethylene antagonistically control the storage mobilisation in seeds of S. virgata, together with the sugars, through the hydrolytic enzymes activation, controlling the process of storage protein and galactomannan degradation, in other to avoiding the excess production of reductor sugars and sucrose during the post-germinative period and assuring the efficient afflux of the carbon and nitrogen to the seedling development. / Doutorado / Biologia Celular / Doutor em Biologia Celular e Estrutural
3

Formação e deposição da parede celular em sementes de cafe durante o desenvolvimento da semente / Cell wall formation and deposition in coffee seeds development

Silva, Clovis Oliveira 31 August 2006 (has links)
Orientador: Marcos Silveira Buckeridge / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-07T20:11:03Z (GMT). No. of bitstreams: 1 Silva_ClovisOliveira_D.pdf: 20554186 bytes, checksum: aa882a38d30a8d939c085c5dfd50f5db (MD5) Previous issue date: 2006 / Resumo: No presente trabalho são efetuadas comparações entre a composição dos polissacarídeos de parede celular de grãos verdes de café colhidos de variedades diferentes de Coffea arabica e C. canephoraem que os frutos foram colhidosem umestágio específico de maturação (somente frutos avermelhados) com grãos verdes de cafés denominados conilon e arábica que são diretamente utilizados como matéria prima para a produção de café solúvel. Observou-se que no caso dos grãos colhidos em um estágio específico, as diferenças entre os conteúdos de pectinas e hemicelulosessão mínimas, enquanto para os grãos utilizados na indústria há maior rendimento de polissacarídeos (hemiceluloses) como um todo e há também uma diferença entre conilon e arábica. Umavez que se sabe que esta composição varia ao longo do processo de desenvolvimento do fruto, especula-se que o modo de colheita, que para no café colhido no campo inclui certa parcela de grãos verdes juntamente com frutos maduros, possa influenciar na composição final dos polissacarídeos nas sementes de café / Abstract: In the present work, comparisons. among the composition of cell wall polysaccharides of green coffee seeds were made with material collected from varieties of Coffea arabica and Coffea canephora in which fruits were harvested at the same developmental stage (red fruits) with green coffee beans from two varieties (arabica and conilon) used as raw material for production of soluble coffee. We observed that for seeds collected from red fruits, the differences found between pectins and hemicelluloses were minimal, whereas for the seeds used as raw material for industry conilon and arabica differed. As it is knownthat cell wall composition varies in the seeds during fruit development, it is speculated hat the harvesting mode, which in the field includes green beans along with the red mature fruits, might influence the final composition of the polysaccharides in coffee seeds / Doutorado / Biologia Celular / Doutor em Biologia Celular e Estrutural
4

Modulação da degradação enzimática de galactomanano por sua própria estrutura fina / Modulation of enzymatic degradation of galactomannan by its fine structure

Encarnação, Thalita Beatriz Carrara da 26 November 2012 (has links)
Sementes de Sesbania virgata (Cav.) Pers. acumulam suas reservas de carbono no endosperma na forma de um polissacarídeo de parede celular, o galactomanano. Os galactomananos são polissacarídeos constituídos de uma cadeia principal de resíduos de D-manose ligadas β-1,4, ramificada por resíduos de D-galactose α-1,6 ligados. A mobilização deste ocorre após a germinação e envolve três enzimas hidrolíticas (α-galactosidase, endo-β-mananase e exo-β-manosidase). A α-galactosidase é a primeira enzima atuar sobre o galactomanano hidrolisando as ligações α-1,6 das galactoses ramificadas a cadeia principal de manano (ligados β-1,4), permitindo a ação da endo-β-mananase, que hidrolisará o polissacarídeo a oligossacarídeos, onde a β-manosidase atuará (ligações β-1,4), transformando oligossacarídeos a monossacarídeos a serem utilizados no desenvolvimento do embrião. Buscando a compreensão das características da α-galactosidase e modo de ação sobre o galactomanano, procedeu-se com a purificação, em três etapas,e caracterização bioquímica (pH ótimo, temperatura ótima e aspectos cinéticos) da α-galactosidase de sementes de Sesbania virgata (Cav.) Pers. Além disso, visando evidenciar a modulação da enzima endo-β-mananase pela distribuição de ramificações de galactose no galactomanano (estrutura fina do galactomanano), procedeu-se com hidrólises enzimáticas do galactomanano de Sesbania virgata (Cav.) Pers. utilizando a enzima endo-β-mananase de Aspergillus niger (Megazyme®) somente ou em conjunto com a α-galactosidase semipurificada de Sesbania virgata (Cav.) Pers. (Capítulo 1) ou com a α-galactosidase comercial de Cyamopsis tetragonoloba (Megazyme®), seguido de análise dos oligossacarídeos por HPAEC-PAD (High Performance Anion Exchange Chromatography with Pulsed Amperometric Detection). Também procedeu-se com hidrólises enzimáticas de galactomananos de 6 espécies com razão manose:galactose variando de 1:1 a 150:1 com endo-β-mananase de Aspergillus niger (Megazyme®) e análise dos oligossacarídeos produzidos por HPAEC-PAD. A α-galactosidase semipurificada possui, aproximadamente, 42 kDa de peso molecular em condições desnaturantes e, aproximadamente 72 kDa de peso molecular na forma nativa, sugerindo que a enzima assuma estrutura quartenária. A temperatura ótima apresentada se encontra na faixa de 50°C a 55°C, pH ótimo na faixa de 4,4 a 5,4, Km= 1,8276 mM e a velocidade máxima de 0,5024 μmolGal.min-1.mgprot-1. A espectrometria de massas gerou os fragmentos: ALADYV-HSK-RMPGSLGHEE-QDAK-TT-GDIEDNWNSM-TSIADS NDKW-ASYAGPGGWN-DPDMLEVGNG-GMTTEEYR-AP-LLVGCDIR-VAVIL-WNR, estando a proteína referente a esta sequência relacionada à mobilização de reserva. Durante a purificação e sequenciamento interno da α-galactosidase e demais proteínas foram detectadas isoformas da α-galactosidase de pesos moleculares variados (42 kDa a 20 kDa). Sugere-se que estas isoformas encontradas inicialmente na purificação estejam relacionadas com outras funções da α-galactosidase, enquanto as isoformas encontradas após todas as etapas de purificação e identificação por espectrometria de massas estejam relacionadas com ativação e adaptação da α-galactosidase durante todo o processo de mobilização de reservas. Os dados gerados das comparações dos oligossacarídeos produzidos em cada hidrólise sugerem que as ramificações do galactomanano podem modular o reconhecimento de sítios de clivagem pela endo-β-mananase: (1) existe a produção de oligossacarídeos limites de digestão F1, F2 e F3 após hidrólise do galactomanano com endo-β-mananase, como demonstrado para xiloglucanos; (2) os oligossacarídeos F1 possuem proporções distintas quando da hidrólise do galactomanano com endo-β-mananase em diferentes concentrações (ExP I e EXP IV), evidenciando preferência por sítios com menor grau de galactosilação; (3) a presença da α-galactosidase diminui a produção dos oligossacarídeos F2 e F3, mostrando que estes não possuem resistência intrínseca a hidrólise e que a reação atinge o equilíbrio mesmo quando ainda existem sítios de clivagem ainda disponíveis (EXP III); (4) polissacarídeos com estruturas diferentes, razão manose:galactose variando entre 150:1 a 1:1, são digeridos em diferentes taxas de hidrólise pela mesma enzima, evidenciando que a ramificação com galactose dificulta a ação da endo-β-mananase. Dessa forma, sugere-se que a estrutura do polissacarídeo galactomanano também contenha, pelo menos, parte da informação requerida para seu próprio metabolismo, código para a sua degradação, estando esta informação contida na distribuição das ramificações com resíduos de D-galactose. Sendo assim, sugere-se que as diferentes isoformas da α-galactosidase relacionadas à degradação da reserva de galactomanano de sementes de Sesbania virgata (Cav.) Pers. seriam produto da ação proteolítica da própria enzima a fim de melhorar a afinidade da α-galactosidase ao substrato durante o processo de mobilização de reserva. O aumento da afinidade da α-galactosidase ao substrato durante todo o processo de mobilização garantiria a liberação das ramificações com galactose de forma contínua, permitindo e aumentando a eficiência da ação da enzima endo-β-mananase aos sítios de clivagem, garantindo a degradação do polissacarídeo a oligossacarídeos de forma regulada, passível de bloqueio, pelo acúmulo de oligossacarídeos e galactose livre que inibem a ação das enzimas endo-β-mananase e α-galactosidase, respectivamente, e dificultando a ação de microorganismos, propiciando ao embrião a maior quantidade de açúcares para o seu desenvolvimento, aumentando as chances de sucesso no estabelecimento da plântula / The seeds of Sesbania virgata (Cav.) Pers. have an endosperm which accumulates galactomannan as a storage polysaccharide in the cell walls. Galactomannans are composed of a linear backbone of β-(1,4)-linked D-mannose residues with D-galactose α-(1,6)-linkages substitutions. The galactomannans are hydrolysed after protrusion of the radicle. This process is perfomed by three enzymes (α-galactosidase, endo-β-mannanase and exo-β-manosidase). The α-galactosidase is the first enzyme to cleave the polysaccharides, removing the D-galactose residues, allowing the performance of the endo-β-mannanase, which hydrolyses the mannan backbone to mannan oligosaccharides. The last part of the process includes exo-β-manoside, that cleaves the mannan oligosaccharides to mannose residues, which could be used by the embryo during growth. Aiming at understanding the function of ?-galactosidase in the process of galatomanannan degradation, we studied its mode of action on mannans and galactomannans. The α-galactosidase of Sesbania virgata (Cav.) Pers. was purified and characterized (pH and temperature optimum and the enzyme kinetics). We found that the semipurified α-galactosidase molecular weight was 42kDa at denaturating conditions, but in native conditions was 72kDa, suggesting that the enzyme has a quaternary structure. The enzyme optimum pH was between 4,4-5,4, optimum temperature between 50°C-55°C, Km= 1,8276 mM and Vmáx= 0,5024 μmolGal.min-1.mgprot-1. Mass spectrometry measures resulted the following fragments: ALADYV-HSK-RMPGSLGHEE-QDAK-TT-GDIEDNWNSMTSIADS-NDKW-ASYAGPGGWN-DPDMLEVGNG-GMTTEEYR-AP-LLVGCDIR-VAVIL-WNR, being the protein from this sequence related with storage mobilization. Possible α-galactosidase isoforms were detected during the purification, suggesting other functions for the enzyme. The α-galactosidase isoforms detected after all purification steps and with measured mass spectrometry (from 42kDa to 20kDa) should be related to the storage mobilization. We suggest that the α-galactosidase isoforms in Sesbania virgata (Cav.) Pers. seeds represents products of the enzyme self-digestion, this process being correlated with the enzyme/polysaccharide affinity and at last, correlated to the galactomannan mobilization. An extract semipurified from Sesbania virgata (Cav.) Pers. and enriched with α-galactosidase activity, was used along with endo-β-mannanase from Aspergillus niger (Megazyme®) or both endo-β-mannanase and α-galactosidase (semipurified from Sesbania virgata seeds - Chapter 1- or commercial enzyme from Cyamopsis tetragonoloba - Megazyme®) were used to study the fine structure of galactomannans. Hydrolysis of galactomannans from six species with different mannose:galactose (1:1 to 150:1) ratio were performed with endo-β-mananase from Aspergillus niger. The oligosaccharides from all hydrolysis were analyzed by HPAEC-PAD (High Performance Anion Exchange Chromatography with Pulsed Amperometric Detection). The hydrolysis fragments data (HPAEC-PAD) suggest that the side-chains of the polysaccharides can modulate the hydrolytic sites recognition on the galactomannan by the endo-β-mannanase. This conclusion is supported by: (1) the presence of limited digest oligosaccharides F1 and dimmers (F2) and trimers (F3) of the F1 oligosaccharides; (2) the presence of different F1 oligosaccharides proportions after hydrolysis with endo-β-mannanase at different concentrations, showing preference on less-branched hydrolytic sites; (3) the α-galactosidase digestion avoided the accumulation of oligosaccharides F2 and F3, showing that these oligosaccharides do not present intrinsic resistance to hydrolysis and that the reaction reaches an equilibrium even when sites of hydrolysis are still available; (4) polymers with different fine structure (ratio mannose:galactose 1:1 to 150:1) were hydrolysed at different rates by the endo-β-mannanase, showing that galactose branching interferes on the enzyme action. Considering that, the branching pattern of the polysaccharide seems to have direct influence on the interaction of the enzyme with substrate; we suggest that the structure of the galactomannan holds part of information required for its own degradation. The higher enzyme x substrate affinity, ensure the galactose branches digestion, improving the endo-β-mannanase action, ensuring the degradation of the polysaccharides to oligosaccharides. This highly regulated degradation process prevents microorganisms predation and increases the plantlet establishement
5

Modulação da degradação enzimática de galactomanano por sua própria estrutura fina / Modulation of enzymatic degradation of galactomannan by its fine structure

Thalita Beatriz Carrara da Encarnação 26 November 2012 (has links)
Sementes de Sesbania virgata (Cav.) Pers. acumulam suas reservas de carbono no endosperma na forma de um polissacarídeo de parede celular, o galactomanano. Os galactomananos são polissacarídeos constituídos de uma cadeia principal de resíduos de D-manose ligadas β-1,4, ramificada por resíduos de D-galactose α-1,6 ligados. A mobilização deste ocorre após a germinação e envolve três enzimas hidrolíticas (α-galactosidase, endo-β-mananase e exo-β-manosidase). A α-galactosidase é a primeira enzima atuar sobre o galactomanano hidrolisando as ligações α-1,6 das galactoses ramificadas a cadeia principal de manano (ligados β-1,4), permitindo a ação da endo-β-mananase, que hidrolisará o polissacarídeo a oligossacarídeos, onde a β-manosidase atuará (ligações β-1,4), transformando oligossacarídeos a monossacarídeos a serem utilizados no desenvolvimento do embrião. Buscando a compreensão das características da α-galactosidase e modo de ação sobre o galactomanano, procedeu-se com a purificação, em três etapas,e caracterização bioquímica (pH ótimo, temperatura ótima e aspectos cinéticos) da α-galactosidase de sementes de Sesbania virgata (Cav.) Pers. Além disso, visando evidenciar a modulação da enzima endo-β-mananase pela distribuição de ramificações de galactose no galactomanano (estrutura fina do galactomanano), procedeu-se com hidrólises enzimáticas do galactomanano de Sesbania virgata (Cav.) Pers. utilizando a enzima endo-β-mananase de Aspergillus niger (Megazyme®) somente ou em conjunto com a α-galactosidase semipurificada de Sesbania virgata (Cav.) Pers. (Capítulo 1) ou com a α-galactosidase comercial de Cyamopsis tetragonoloba (Megazyme®), seguido de análise dos oligossacarídeos por HPAEC-PAD (High Performance Anion Exchange Chromatography with Pulsed Amperometric Detection). Também procedeu-se com hidrólises enzimáticas de galactomananos de 6 espécies com razão manose:galactose variando de 1:1 a 150:1 com endo-β-mananase de Aspergillus niger (Megazyme®) e análise dos oligossacarídeos produzidos por HPAEC-PAD. A α-galactosidase semipurificada possui, aproximadamente, 42 kDa de peso molecular em condições desnaturantes e, aproximadamente 72 kDa de peso molecular na forma nativa, sugerindo que a enzima assuma estrutura quartenária. A temperatura ótima apresentada se encontra na faixa de 50°C a 55°C, pH ótimo na faixa de 4,4 a 5,4, Km= 1,8276 mM e a velocidade máxima de 0,5024 μmolGal.min-1.mgprot-1. A espectrometria de massas gerou os fragmentos: ALADYV-HSK-RMPGSLGHEE-QDAK-TT-GDIEDNWNSM-TSIADS NDKW-ASYAGPGGWN-DPDMLEVGNG-GMTTEEYR-AP-LLVGCDIR-VAVIL-WNR, estando a proteína referente a esta sequência relacionada à mobilização de reserva. Durante a purificação e sequenciamento interno da α-galactosidase e demais proteínas foram detectadas isoformas da α-galactosidase de pesos moleculares variados (42 kDa a 20 kDa). Sugere-se que estas isoformas encontradas inicialmente na purificação estejam relacionadas com outras funções da α-galactosidase, enquanto as isoformas encontradas após todas as etapas de purificação e identificação por espectrometria de massas estejam relacionadas com ativação e adaptação da α-galactosidase durante todo o processo de mobilização de reservas. Os dados gerados das comparações dos oligossacarídeos produzidos em cada hidrólise sugerem que as ramificações do galactomanano podem modular o reconhecimento de sítios de clivagem pela endo-β-mananase: (1) existe a produção de oligossacarídeos limites de digestão F1, F2 e F3 após hidrólise do galactomanano com endo-β-mananase, como demonstrado para xiloglucanos; (2) os oligossacarídeos F1 possuem proporções distintas quando da hidrólise do galactomanano com endo-β-mananase em diferentes concentrações (ExP I e EXP IV), evidenciando preferência por sítios com menor grau de galactosilação; (3) a presença da α-galactosidase diminui a produção dos oligossacarídeos F2 e F3, mostrando que estes não possuem resistência intrínseca a hidrólise e que a reação atinge o equilíbrio mesmo quando ainda existem sítios de clivagem ainda disponíveis (EXP III); (4) polissacarídeos com estruturas diferentes, razão manose:galactose variando entre 150:1 a 1:1, são digeridos em diferentes taxas de hidrólise pela mesma enzima, evidenciando que a ramificação com galactose dificulta a ação da endo-β-mananase. Dessa forma, sugere-se que a estrutura do polissacarídeo galactomanano também contenha, pelo menos, parte da informação requerida para seu próprio metabolismo, código para a sua degradação, estando esta informação contida na distribuição das ramificações com resíduos de D-galactose. Sendo assim, sugere-se que as diferentes isoformas da α-galactosidase relacionadas à degradação da reserva de galactomanano de sementes de Sesbania virgata (Cav.) Pers. seriam produto da ação proteolítica da própria enzima a fim de melhorar a afinidade da α-galactosidase ao substrato durante o processo de mobilização de reserva. O aumento da afinidade da α-galactosidase ao substrato durante todo o processo de mobilização garantiria a liberação das ramificações com galactose de forma contínua, permitindo e aumentando a eficiência da ação da enzima endo-β-mananase aos sítios de clivagem, garantindo a degradação do polissacarídeo a oligossacarídeos de forma regulada, passível de bloqueio, pelo acúmulo de oligossacarídeos e galactose livre que inibem a ação das enzimas endo-β-mananase e α-galactosidase, respectivamente, e dificultando a ação de microorganismos, propiciando ao embrião a maior quantidade de açúcares para o seu desenvolvimento, aumentando as chances de sucesso no estabelecimento da plântula / The seeds of Sesbania virgata (Cav.) Pers. have an endosperm which accumulates galactomannan as a storage polysaccharide in the cell walls. Galactomannans are composed of a linear backbone of β-(1,4)-linked D-mannose residues with D-galactose α-(1,6)-linkages substitutions. The galactomannans are hydrolysed after protrusion of the radicle. This process is perfomed by three enzymes (α-galactosidase, endo-β-mannanase and exo-β-manosidase). The α-galactosidase is the first enzyme to cleave the polysaccharides, removing the D-galactose residues, allowing the performance of the endo-β-mannanase, which hydrolyses the mannan backbone to mannan oligosaccharides. The last part of the process includes exo-β-manoside, that cleaves the mannan oligosaccharides to mannose residues, which could be used by the embryo during growth. Aiming at understanding the function of ?-galactosidase in the process of galatomanannan degradation, we studied its mode of action on mannans and galactomannans. The α-galactosidase of Sesbania virgata (Cav.) Pers. was purified and characterized (pH and temperature optimum and the enzyme kinetics). We found that the semipurified α-galactosidase molecular weight was 42kDa at denaturating conditions, but in native conditions was 72kDa, suggesting that the enzyme has a quaternary structure. The enzyme optimum pH was between 4,4-5,4, optimum temperature between 50°C-55°C, Km= 1,8276 mM and Vmáx= 0,5024 μmolGal.min-1.mgprot-1. Mass spectrometry measures resulted the following fragments: ALADYV-HSK-RMPGSLGHEE-QDAK-TT-GDIEDNWNSMTSIADS-NDKW-ASYAGPGGWN-DPDMLEVGNG-GMTTEEYR-AP-LLVGCDIR-VAVIL-WNR, being the protein from this sequence related with storage mobilization. Possible α-galactosidase isoforms were detected during the purification, suggesting other functions for the enzyme. The α-galactosidase isoforms detected after all purification steps and with measured mass spectrometry (from 42kDa to 20kDa) should be related to the storage mobilization. We suggest that the α-galactosidase isoforms in Sesbania virgata (Cav.) Pers. seeds represents products of the enzyme self-digestion, this process being correlated with the enzyme/polysaccharide affinity and at last, correlated to the galactomannan mobilization. An extract semipurified from Sesbania virgata (Cav.) Pers. and enriched with α-galactosidase activity, was used along with endo-β-mannanase from Aspergillus niger (Megazyme®) or both endo-β-mannanase and α-galactosidase (semipurified from Sesbania virgata seeds - Chapter 1- or commercial enzyme from Cyamopsis tetragonoloba - Megazyme®) were used to study the fine structure of galactomannans. Hydrolysis of galactomannans from six species with different mannose:galactose (1:1 to 150:1) ratio were performed with endo-β-mananase from Aspergillus niger. The oligosaccharides from all hydrolysis were analyzed by HPAEC-PAD (High Performance Anion Exchange Chromatography with Pulsed Amperometric Detection). The hydrolysis fragments data (HPAEC-PAD) suggest that the side-chains of the polysaccharides can modulate the hydrolytic sites recognition on the galactomannan by the endo-β-mannanase. This conclusion is supported by: (1) the presence of limited digest oligosaccharides F1 and dimmers (F2) and trimers (F3) of the F1 oligosaccharides; (2) the presence of different F1 oligosaccharides proportions after hydrolysis with endo-β-mannanase at different concentrations, showing preference on less-branched hydrolytic sites; (3) the α-galactosidase digestion avoided the accumulation of oligosaccharides F2 and F3, showing that these oligosaccharides do not present intrinsic resistance to hydrolysis and that the reaction reaches an equilibrium even when sites of hydrolysis are still available; (4) polymers with different fine structure (ratio mannose:galactose 1:1 to 150:1) were hydrolysed at different rates by the endo-β-mannanase, showing that galactose branching interferes on the enzyme action. Considering that, the branching pattern of the polysaccharide seems to have direct influence on the interaction of the enzyme with substrate; we suggest that the structure of the galactomannan holds part of information required for its own degradation. The higher enzyme x substrate affinity, ensure the galactose branches digestion, improving the endo-β-mannanase action, ensuring the degradation of the polysaccharides to oligosaccharides. This highly regulated degradation process prevents microorganisms predation and increases the plantlet establishement

Page generated in 0.0526 seconds