Spelling suggestions: "subject:"intenter manifold"" "subject:"contenter manifold""
11 |
The Origin of Wave Blocking for a Bistable Reaction-Diffusion Equation : A General ApproachRoy, Christian January 2012 (has links)
Mathematical models displaying travelling waves appear in a variety of domains. These waves are often faced with different kinds of perturbations. In some cases, these perturbations result in propagation failure, also known as wave-blocking. Wave-blocking has been studied in the case of several specific models, often with the help of numerical tools. In this thesis, we will display a technique that uses symmetry and a center manifold reduction to find a criterion which defines regions in parameter space where a wave will be blocked. We focus on waves with low velocity and small symmetry-breaking perturbations, which is where the blocking initiates; the organising center. The range of the tools used makes the technique easily generalizable to higher dimensions. In order to demonstrate this technique, we apply it to the bistable equation. This allows us to do calculations explicitly. As a result, we show that wave-blocking occurs inside a wedge originating from the organising center and derive an expression for this wedge to leading order. We verify our results with some numerical simulations.
|
12 |
Kink-like solutions for the FPUT lattice and the mKdV as a modulation equationNorton, Trevor 24 July 2024 (has links)
The Fermi-Pasta-Ulam-Tsingou (FPUT) lattice became of great mathematical interest when it was observed that it exhibited a near-recurrence of its initial condition, despite it being a nonlinear system. This behavior was explained by showing that the Korteweg-de Vries (KdV) equation serves as a continuum limit for the FPUT and has soliton solutions. Much work has been done into analyzing the solitary wave solutions of the FPUT and the relationship between the lattice and its continuum limit. For certain potentials the modified KdV (mKdV) instead serves as the continuum limit for the FPUT. However, there has been little research done to examine how the defocusing mKdV can be used a modulation equation for the FPUT or how the kink solutions of the mKdV relate to solutions of the FPUT. This thesis first addresses the existence of kink-like solutions of the FPUT and shows that their profiles can be approximated by the profiles of the kink solutions of the mKdV. Next, it is shown that the defocusing mKdV can be used more widely as a modulation equation for small-amplitude, long-wavelength solutions of the FPUT lattice. Finally, the issue of stability of the kink-like solutions is discussed, and some results toward linear stability are given. Read more
|
13 |
Nonlinear analysis methods in neural field models / Méthodes d'analyse non linéaires appliquées aux modèles des champs neuronauxVeltz, Romain 16 December 2011 (has links)
Cette thèse traite de modèles mésoscopiques de cortex appelés champs neuronaux. Les équations des champs neuronaux décrivent l'activité corticale de populations de neurones, ayant des propriétés anatomiques/fonctionnelles communes. Elles ont été introduites dans les années 1950 et portent le nom d'équations de Wilson et Cowan. Mathématiquement, elles consistent en des équations intégro-différentielles avec retards, les retards modélisant les délais de propagation des signaux ainsi que le passage des signaux à travers les synapses et l'arbre dendritique. Dans la première partie, nous rappelons la biologie nécessaire à la compréhension de cette thèse et dérivons les équations principales. Puis, nous étudions ces équations du point de vue des systèmes dynamiques en caractérisant leurs points d'équilibres et la dynamique dans la seconde partie. Dans la troisième partie, nous étudions de façon générale ces équations à retards en donnant des formules pour les diagrammes de bifurcation, en prouvant un théorème de la variété centrale et en calculant les principales formes normales. Nous appliquons tout d'abord ces résultats à des champs neuronaux simples mono-dimensionnels qui permettent une étude détaillée de la dynamique. Enfin, dans la dernière partie, nous appliquons ces différents résultats à trois modèles de cortex visuel. Les deux premiers modèles sont issus de la littérature et décrivent respectivement une hypercolonne, /i.e./ l'élément de base de la première aire visuelle (V1) et un réseau de telles hypercolonnes. Le dernier modèle est un nouveau modèle de V1 qui généralise les deux modèles précédents tout en permettant une étude poussée des effets spécifiques des retards / This thesis deals with mesoscopic models of cortex called neural fields. The neural field equations describe the activity of neuronal populations, with common anatomical / functional properties. They were introduced in the 1950s and are called the equations of Wilson and Cowan. Mathematically, they consist of integro-differential equations with delays, the delays modeling the signal propagation and the passage of signals across synapses and the dendritic tree. In the first part, we recall the biology necessary to understand this thesis and derive the main equations. Then, we study these equations with the theory of dynamical systems by characterizing their equilibrium points and dynamics in the second part. In the third part, we study these delayed equations in general by giving formulas for the bifurcation diagrams, by proving a center manifold theorem, and by calculating the principal normal forms. We apply these results to one-dimensional neural fields which allows a detailed study of the dynamics. Finally, in the last part, we study three models of visual cortex. The first two models are from the literature and describe respectively a hypercolumn, i.e. the basic element of the first visual area (V1) and a network of such hypercolumns. The latest model is a new model of V1 which generalizes the two previous models while allowing a detailed study of specific effects of delays Read more
|
14 |
Differential Equations With Discontinuities And Population DynamicsArugaslan Cincin, Duygu 01 June 2009 (has links) (PDF)
In this thesis, both theoretical and application oriented results are obtained for differential equations with discontinuities of different types: impulsive differential equations, differential equations with piecewise constant argument of generalized type and differential equations with discontinuous right-hand sides. Several qualitative problems such as stability, Hopf bifurcation, center manifold reduction, permanence and
persistence are addressed for these equations and also for Lotka-Volterra predator-prey models with variable time of impulses, ratio-dependent predator-prey systems and logistic equation with piecewise constant argument of generalized type.
For the first time, by means of Lyapunov functions coupled with the Razumikhin method, sufficient conditions are established for stability of the trivial solution of differential
equations with piecewise constant argument of generalized type. Appropriate examples are worked out to illustrate the applicability of the method. Moreover, stability analysis is performed for the logistic equation, which is one of the most
widely used population dynamics models.
The behaviour of solutions for a 2-dimensional system of differential equations with discontinuous right-hand side, also called a Filippov system, is studied. Discontinuity sets intersect at a vertex, and are of the quasilinear nature. Through the B& / #8722 / equivalence of that system to an impulsive differential equation, Hopf bifurcation is investigated.
Finally, the obtained results are extended to a 3-dimensional discontinuous system of Filippov type. After the existence of a center manifold is proved for the 3-dimensional system, a theorem on the bifurcation of periodic solutions is provided in the critical case. Illustrative examples and numerical simulations are presented to verify the theoretical results. Read more
|
15 |
Nonlinear analysis methods in neural field modelsVeltz, Romain, Veltz, Romain 16 December 2011 (has links) (PDF)
This thesis deals with mesoscopic models of cortex called neural fields. The neural field equations describe the activity of neuronal populations, with common anatomical / functional properties. They were introduced in the 1950s and are called the equations of Wilson and Cowan. Mathematically, they consist of integro-differential equations with delays, the delays modeling the signal propagation and the passage of signals across synapses and the dendritic tree. In the first part, we recall the biology necessary to understand this thesis and derive the main equations. Then, we study these equations with the theory of dynamical systems by characterizing their equilibrium points and dynamics in the second part. In the third part, we study these delayed equations in general by giving formulas for the bifurcation diagrams, by proving a center manifold theorem, and by calculating the principal normal forms. We apply these results to one-dimensional neural fields which allows a detailed study of the dynamics. Finally, in the last part, we study three models of visual cortex. The first two models are from the literature and describe respectively a hypercolumn, i.e. the basic element of the first visual area (V1) and a network of such hypercolumns. The latest model is a new model of V1 which generalizes the two previous models while allowing a detailed study of specific effects of delays Read more
|
16 |
Analysis and Control of Space Systems Dynamics via Floquet Theory, Normal Forms and Center Manifold ReductionJanuary 2019 (has links)
abstract: It remains unquestionable that space-based technology is an indispensable component of modern daily lives. Success or failure of space missions is largely contingent upon the complex system analysis and design methodologies exerted in converting the initial idea
into an elaborate functioning enterprise. It is for this reason that this dissertation seeks to contribute towards the search for simpler, efficacious and more reliable methodologies and tools that accurately model and analyze space systems dynamics. Inopportunely, despite the inimical physical hazards, space systems must endure a perturbing dynamical environment that persistently disorients spacecraft attitude, dislodges spacecraft from their designated orbital locations and compels spacecraft to follow undesired orbital trajectories. The ensuing dynamics’ analytical models are complexly structured, consisting of parametrically excited nonlinear systems with external periodic excitations–whose analysis and control is not a trivial task. Therefore, this dissertation’s objective is to overcome the limitations of traditional approaches (averaging and perturbation, linearization) commonly used to analyze and control such dynamics; and, further obtain more accurate closed-form analytical solutions in a lucid and broadly applicable manner. This dissertation hence implements a multi-faceted methodology that relies on Floquet theory, invariant center manifold reduction and normal forms simplification. At the heart of this approach is an intuitive system state augmentation technique that transforms non-autonomous nonlinear systems into autonomous ones. Two fitting representative types of space systems dynamics are investigated; i) attitude motion of a gravity gradient stabilized spacecraft in an eccentric orbit, ii) spacecraft motion in the vicinity of irregularly shaped small bodies. This investigation demonstrates how to analyze the motion stability, chaos, periodicity and resonance. Further, versal deformation of the normal forms scrutinizes the bifurcation behavior of the gravity gradient stabilized attitude motion. Control laws developed on transformed, more tractable analytical models show that; unlike linear control laws, nonlinear control strategies such as sliding mode control and bifurcation control stabilize the intricate, unwieldy astrodynamics. The pitch attitude dynamics are stabilized; and, a regular periodic orbit realized in the vicinity of small irregularly shaped bodies. Importantly, the outcomes obtained are unconventionally realized as closed-form analytical solutions obtained via the comprehensive approach introduced by this dissertation. / Dissertation/Thesis / Doctoral Dissertation Systems Engineering 2019 Read more
|
17 |
Bifurcações em PLLs de terceira ordem em redes OWMS. / Bifurcations on 3rd order PLLs in OWMS networks.Marmo, Carlos Nehemy 23 October 2008 (has links)
Este trabalho apresenta um estudo qualitativo das equações diferenciais nãolineares que descrevem o sincronismo de fase nos PLLs de 3ª ordem que compõem redes OWMS de topologia mista, Estrela Simples e Cadeia Simples. O objetivo é determinar, através da Teoria de Bifurcações, os valores ou relações entre os parâmetros constitutivos da rede que permitam a existência e a estabilidade do estado síncrono, quando são aplicadas, no oscilador mestre, duas funções de excitação muito comuns na prática: o degrau e a rampa de fase. Na determinação da estabilidade dos pontos de equilíbrio, sob o ponto de vista de Lyapunov, a existência de pontos de equilíbrio não-hiperbólicos não permite uma aproximação linear e, nesses casos, é aplicado o Teorema da Variedade Central. Essa técnica de simplificação de sistemas dinâmicos permite fazer uma aproximação homeomórfica em torno desses pontos, preservando a orientação no espaço de fases e possibilitando determinar localmente suas estabilidades. / This work presents a qualitative study of the non-linear differential equations that describe the synchronous state in 3rd order PLLs that compose One-way masterslave time distribution networks with Single Star and Single Chain topologies. Using bifurcation theory, the dynamical behavior of third-order phase-locked loops employed to extract the syncronous state in each node is analyzed depending on constitutive node parameters when two usual inputs, the step and the ramp phase pertubations, are supposed to appear in the master node. When parameter combinations result in non hyperbolic synchronous states, from Lyapunov point of view, the linear approximation does not provide any information about the local behavior of the system. In this case, the center manifold theorem permits the construction of an equivalent vector field representing the asymptotic behavior of the original system in the neighborhood of these points. Thus, the local stability can be determined. Read more
|
18 |
Sincronismo em redes mestre-escravo de via-única: estrela simples, cadeia simples e mista. / One-way master-slave synchronization networks: single star, single chain and mixed.Marmo, Carlos Nehemy 31 July 2003 (has links)
Neste trabalho, são estudados os problemas de sincronismo de fase nas redes mestre-escravo de via única (OWMS), nas topologias Estrela Simples, Cadeia Simples e mista, através da Teoria Qualitativa de Equações Diferenciais, com ênfase no Teorema da Variedade Central. Através da Teoria das Bifurcações, analisa-se o comportamento dinâmico das malhas de sincronismo de fase (PLL) de segunda ordem que compõem cada rede, frente às variações nos seus parâmetros constitutivos. São utilizadas duas funções de excitação muito comuns na prática: o degrau e a rampa de fase, aplicadas pelo nó mestre. Em cada caso, discute-se a existência e a estabilidade do estado síncrono. A existência de pontos de equilíbrio não-hiperbólicos, não permite uma aproximação linear, e nesses casos é aplicado o Teorema da Variedade Central. Através dessa rigorosa técnica de simplificação de sistemas dinâmicos é possível fazer uma aproximação homeomórfica em torno desses pontos, preservando a orientação no espaço de fases. Desse modo, é possível determinar, localmente, suas estabilidades. / This work presents stability analysis of the syncronous state for three types of one-way master-slave time distribution network topologies: single star, single chain and both of them, mixed. Using bifurcation theory, the dynamical behavior of second-order phase-locked loops employed to extract the syncronous state in each node is analyzed in function of the constitutive parameters. Two usual inputs, the step and the ramp phase pertubations, are supposed to appear in the master node and, in each case, the existence and stability of the syncronous state are studied. For parameter combinations resulting in non hyperbolic synchronous states, the linear approximation does not provide any information, even about the local behaviour of the system. In this case, the center manifold theorem permits the construction of an equivalent vector field representing the asymptotic behaviour of the original system in the neighborhood of these points. Thus, the local stability can be determined. Read more
|
19 |
Sincronismo em redes mestre-escravo de via-única: estrela simples, cadeia simples e mista. / One-way master-slave synchronization networks: single star, single chain and mixed.Carlos Nehemy Marmo 31 July 2003 (has links)
Neste trabalho, são estudados os problemas de sincronismo de fase nas redes mestre-escravo de via única (OWMS), nas topologias Estrela Simples, Cadeia Simples e mista, através da Teoria Qualitativa de Equações Diferenciais, com ênfase no Teorema da Variedade Central. Através da Teoria das Bifurcações, analisa-se o comportamento dinâmico das malhas de sincronismo de fase (PLL) de segunda ordem que compõem cada rede, frente às variações nos seus parâmetros constitutivos. São utilizadas duas funções de excitação muito comuns na prática: o degrau e a rampa de fase, aplicadas pelo nó mestre. Em cada caso, discute-se a existência e a estabilidade do estado síncrono. A existência de pontos de equilíbrio não-hiperbólicos, não permite uma aproximação linear, e nesses casos é aplicado o Teorema da Variedade Central. Através dessa rigorosa técnica de simplificação de sistemas dinâmicos é possível fazer uma aproximação homeomórfica em torno desses pontos, preservando a orientação no espaço de fases. Desse modo, é possível determinar, localmente, suas estabilidades. / This work presents stability analysis of the syncronous state for three types of one-way master-slave time distribution network topologies: single star, single chain and both of them, mixed. Using bifurcation theory, the dynamical behavior of second-order phase-locked loops employed to extract the syncronous state in each node is analyzed in function of the constitutive parameters. Two usual inputs, the step and the ramp phase pertubations, are supposed to appear in the master node and, in each case, the existence and stability of the syncronous state are studied. For parameter combinations resulting in non hyperbolic synchronous states, the linear approximation does not provide any information, even about the local behaviour of the system. In this case, the center manifold theorem permits the construction of an equivalent vector field representing the asymptotic behaviour of the original system in the neighborhood of these points. Thus, the local stability can be determined. Read more
|
20 |
Bifurcações em PLLs de terceira ordem em redes OWMS. / Bifurcations on 3rd order PLLs in OWMS networks.Carlos Nehemy Marmo 23 October 2008 (has links)
Este trabalho apresenta um estudo qualitativo das equações diferenciais nãolineares que descrevem o sincronismo de fase nos PLLs de 3ª ordem que compõem redes OWMS de topologia mista, Estrela Simples e Cadeia Simples. O objetivo é determinar, através da Teoria de Bifurcações, os valores ou relações entre os parâmetros constitutivos da rede que permitam a existência e a estabilidade do estado síncrono, quando são aplicadas, no oscilador mestre, duas funções de excitação muito comuns na prática: o degrau e a rampa de fase. Na determinação da estabilidade dos pontos de equilíbrio, sob o ponto de vista de Lyapunov, a existência de pontos de equilíbrio não-hiperbólicos não permite uma aproximação linear e, nesses casos, é aplicado o Teorema da Variedade Central. Essa técnica de simplificação de sistemas dinâmicos permite fazer uma aproximação homeomórfica em torno desses pontos, preservando a orientação no espaço de fases e possibilitando determinar localmente suas estabilidades. / This work presents a qualitative study of the non-linear differential equations that describe the synchronous state in 3rd order PLLs that compose One-way masterslave time distribution networks with Single Star and Single Chain topologies. Using bifurcation theory, the dynamical behavior of third-order phase-locked loops employed to extract the syncronous state in each node is analyzed depending on constitutive node parameters when two usual inputs, the step and the ramp phase pertubations, are supposed to appear in the master node. When parameter combinations result in non hyperbolic synchronous states, from Lyapunov point of view, the linear approximation does not provide any information about the local behavior of the system. In this case, the center manifold theorem permits the construction of an equivalent vector field representing the asymptotic behavior of the original system in the neighborhood of these points. Thus, the local stability can be determined. Read more
|
Page generated in 0.0598 seconds