• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 58
  • 20
  • 14
  • 5
  • 5
  • 5
  • 3
  • 2
  • 1
  • Tagged with
  • 132
  • 132
  • 132
  • 34
  • 27
  • 25
  • 18
  • 18
  • 17
  • 16
  • 16
  • 16
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Die Bedeutung des zerebralen Perfusionsdruckes in der Behandlung des schweren Schädel-Hirn-Traumes / eine tierexperimentelle Studie

Kroppenstedt, Stefan Nikolaus 25 November 2003 (has links)
Die Höhe des optimalen zerebralen Perfusionsdruckes nach schwerem Schädel-Hirn-Trauma wird kontrovers diskutiert. Während im sogenannten Lund-Konzept ein niedriger Perfusionsdruck angestrebt und die Gabe von Katecholaminen aufgrund potentieller zerebraler vasokonstringierender und weiterer Nebeneffekte vermieden wird, befürwortet das CPP-Konzept nach Rosner eine Anhebung des zerebralen Perfusionsdruckes, wenn notwendig unter intravenöser Gabe von Katecholaminen. Vor diesem Hintergrund galt es, in einem experimentellen Schädel-Hirn-Trauma- Modell der Ratte (Controlled Cortical Impact Injury) den Bereich des optimalen zerebralen Perfusionsdruckes nach traumatischer Hirnkontusion zu ermitteln und den Effekt von Katecholaminen auf den posttraumatischen zerebralen Blutfluss und die Entwicklung des sekundären Hirnschadens zu untersuchen. Die wesentlichen Ergebnisse dieser Arbeit lassen sich wie folgt zusammenfassen: In der Akutphase nach Hirnkontusion liegt der Bereich des zerebralen Perfusionsdruckes, welcher die Entwicklung des Kontusionsvolumens nicht beeinflusst, zwischen 70 und 105 mm Hg. Eine Senkung des Perfusionsdruckes unterhalb bzw. Anhebung oberhalb dieser Schwellenwerte vergrößert das Kontusionsvolumen. Die Anhebung des Blutdruckes mittels intravenöser Infusion von Dopamin oder Noradrenalin führt sowohl in der Frühphase als auch in der Spätphase nach Trauma (4 Stunden bzw. 24 Stunden nach kortikaler Kontusion) zu einem signifikanten Anstieg im kortikalen perikontusionellen Blutfluss und in der Hirngewebe-Oxygenierung. Die durch Anhebung des zerebralen Perfusionsdruckes auf über 70 mm Hg induzierte Verbesserung des posttraumatischen zerebralen Blutflusses bewirkte jedoch keine Reduzierung der Hirnschwellung. Für eine Katecholamin-induzierte zerebrale Vasokonstriktion nach kortikaler Kontusion gibt es keinen Anhalt. Um die Entwicklung des sekundären Hirnschadens nach kortikaler Kontusion zu minimieren, sollte der zerebrale Perfusionsdruck nach traumatischem Hirnschaden nicht unterhalb 70 mm Hg liegen. Eine Anhebung des Perfusionsdruckes auf über 70 mm Hg erscheint nicht notwendig oder vorteilhaft zu sein. Wenn notwendig, kann sowohl in der Früh- als auch Spätphase nach Trauma der zerebrale Perfusionsdruck mittels intravenöser Gabe von Katecholaminen angehoben werden. / The optimum cerebral perfusion pressure after severe traumatic brain injury remains to be controversial. In the Lund concept a relatively low cerebral perfusion pressure is preferred, and administration of catecholamines is avoided due to potential catecholamine-mediated cerebral vasoconstriction and other side effects. In contrast, the CPP concept of Rosner recommends elevation of cerebral perfusion pressure, if needed by intravenous administration of catecholamines. Based on this, in an experimental model of traumatic brain injury of the rat (Controlled Cortical Impact Injury) the optimum range of cerebral perfusion pressure after traumatic brain contusion and the effects of catecholamines on posttraumatic cerebral perfusion and development of secondary brain injury were investigated. The most significant results can be summarized as follows: In the acute phase after brain contusion the range of cerebral perfusion pressure that does not affect the development of posttraumatic contusion volume was found to be between 70 and 105 mm Hg. Reduction of the cerebral perfusion pressure below or elevation above these thresholds increases contusion volume. Elevation of blood pressure by intravenous infusion of dopamine or norepinephrine during the early (4 hours) as well as late (24 hours) phase after trauma results in a significant increase in pericontusional blood flow and brain tissue oxygenation. The increase in cerebral blood flow by elevating cerebral perfusion pressure above 70 mm Hg did not decrease cerebral edema formation. There was no evidence of a catecholamine-induced cerebral vasoconstriction after cortical contusion. In order to minimize secondary brain injury after cortical contusion, cerebral perfusion pressure should not fall bellow 70 mm Hg. However, a further active elevation of cerebral perfusion pressure does not appear necessary or beneficial. If needed cerebral perfusion pressure can be elevated by administration of catecholamines in the early as well late phase after trauma.
132

Inhibiting Axon Degeneration in a Mouse Model of Acute Brain Injury Through Deletion of Sarm1

Henninger, Nils 24 May 2017 (has links)
Traumatic brain injury (TBI) is a leading cause of disability worldwide. Annually, 150 to 200/1,000,000 people become disabled as a result of brain trauma. Axonal degeneration is a critical, early event following TBI of all severities but whether axon degeneration is a driver of TBI remains unclear. Molecular pathways underlying the pathology of TBI have not been defined and there is no efficacious treatment for TBI. Despite this significant societal impact, surprisingly little is known about the molecular mechanisms that actively drive axon degeneration in any context and particularly following TBI. Although severe brain injury may cause immediate disruption of axons (primary axotomy), it is now recognized that the most frequent form of traumatic axonal injury (TAI) is mediated by a cascade of events that ultimately result in secondary axonal disconnection (secondary axotomy) within hours to days. Proposed mechanisms include immediate post-traumatic cytoskeletal destabilization as a direct result of mechanical breakage of microtubules, as well as catastrophic local calcium dysregulation resulting in microtubule depolymerization, impaired axonal transport, unmitigated accumulation of cargoes, local axonal swelling, and finally disconnection. The portion of the axon that is distal to the axotomy site remains initially morphologically intact. However, it undergoes sudden rapid fragmentation along its full distal length ~72 h after the original axotomy, a process termed Wallerian degeneration. Remarkably, mice mutant for the Wallerian degeneration slow (Wlds) protein exhibit ~tenfold (for 2–3 weeks) suppressed Wallerian degeneration. Yet, pharmacological replication of the Wlds mechanism has proven difficult. Further, no one has studied whether Wlds protects from TAI. Lastly, owing to Wlds presumed gain-of-function and its absence in wild-type animals, direct evidence in support of a putative endogenous axon death signaling pathway is lacking, which is critical to identify original treatment targets and the development of viable therapeutic approaches. Novel insight into the pathophysiology of Wallerian degeneration was gained by the discovery that mutant Drosophila flies lacking dSarm (sterile a/Armadillo/Toll-Interleukin receptor homology domain protein) cell-autonomously recapitulated the Wlds phenotype. The pro-degenerative function of the dSarm gene (and its mouse homolog Sarm1) is widespread in mammals as shown by in vitro protection of superior cervical ganglion, dorsal root ganglion, and cortical neuron axons, as well as remarkable in-vivo long-term survival (>2 weeks) of transected sciatic mouse Sarm1 null axons. Although the molecular mechanism of function remains to be clarified, its discovery provides direct evidence that Sarm1 is the first endogenous gene required for Wallerian degeneration, driving a highly conserved genetic axon death program. The central goals of this thesis were to determine (1) whether post-traumatic axonal integrity is preserved in mice lacking Sarm1, and (2) whether loss of Sarm1 is associated with improved functional outcome after TBI. I show that mice lacking the mouse Toll receptor adaptor Sarm1 gene demonstrate multiple improved TBI-associated phenotypes after injury in a closed-head mild TBI model. Sarm1-/- mice developed fewer beta amyloid precursor protein (βAPP) aggregates in axons of the corpus callosum after TBI as compared to Sarm1+/+ mice. Furthermore, mice lacking Sarm1 had reduced plasma concentrations of the phosphorylated axonal neurofilament subunit H, indicating that axonal integrity is maintained after TBI. Strikingly, whereas wild type mice exhibited a number of behavioral deficits after TBI, I observed a strong, early preservation of neurological function in Sarm1-/- animals. Finally, using in vivo proton magnetic resonance spectroscopy, I found tissue signatures consistent with substantially preserved neuronal energy metabolism in Sarm1-/- mice compared to controls immediately following TBI. My results indicate that the Sarm1-mediated prodegenerative pathway promotes pathogenesis in TBI and suggest that anti-Sarm1 therapeutics are a viable approach for preserving neurological function after TBI.

Page generated in 0.0733 seconds