• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

CFD-DEM modelling of two-phase pneumatic conveying with experimental validation

Ebrahimi, Mohammadreza January 2014 (has links)
A wide range of industrial processes involve multiphase granular flows. These include catalytic reactions in fluidized beds, the pneumatic conveying of raw materials and gas-particle separators. Due to the complex nature of multiphase flows and the lack of fundamental understanding of the phenomena in a multiphase system, appropriate design and optimized operation of such systems has remained a challenging field of research. Design of these processes is hampered by difficulties in upscaling pilot scale results, the difficulties involved in experimental measurements and in finding reliable numerical modelling methods. Significant work has been carried out on numerical modelling of multiphase systems but challenges remain, notably computational time, appropriate definition of boundary conditions, relative significance of effects such as lift and turbulence and the availability of reliable model validation. The work presented in this thesis encompasses experimental and numerical investigations of horizontal pneumatic conveying. In the experimental work, carefully controlled experiments were carried out in a 6.5 m long, 0.075 m diameter horizontal conveying line with the aid of the laser Doppler anemometry (LDA). Initially, LDA measurements were performed to measure the gas velocity in clear flow. Good agreement was observed between the theory and experimental measurements. For two-phase experiments, spherical and non-spherical particles with different sizes and densities were used to study the effect of particle size and solid loading ratio on the mean axial particle velocity. Three different sizes of spherical glass beads, ranging from 0.9 mm to 2 mm and cylindrical shaped particle of size 1x1.5 mm were employed. It was found that by increasing the particle size and solid loading ratios, the mean axial particle velocity decreased. Turbulence modulation of the carrier phase due to the presence of spherical particles was also investigated by measuring fluctuating gas velocity for clear gas flow and particle laden flow with different particle sizes and solid loading ratios. Results suggested that for the size ranges of particles tested, the level of gas turbulence intensity increased significantly by adding particles, and the higher the solid loading ratio, the higher the turbulence intensity. With the rapid advancement of computer resources and hardware, it is now possible to perform simulations for multiphase flows. For a fundamental understanding of the underlying phenomena in pneumatic conveying, the coupled Reynolds averaged Navier-Stokes and discrete element method (RANS-DEM) was selected. The aim of the modelling section of this study was to evaluate the abilities of coupled RANSDEM to predict the phenomena occurring in a research-sized pneumatic conveying line. Simulations for both one-way and two-way RANS-DEM coupling were performed using the commercial coupled software FLUENT-EDEM in an Eulerian- Lagrangian framework, where the gas is simulated as a continuum medium, while solid phase is treated as a discrete phase. In one-way coupling simulations, a considerable discrepancy in mean axial particle velocity was observed compared to the experimental results, meaning two-way coupling was required. It was further found that the inclusion of Magnus lift force due to particle rotation was essential to reproduce the general behaviour observed in the experiments. Turbulence modulation also was investigated numerically. Experimental and simulation results of gas and particle velocities were compared showing that the RANS-DEM method is a promising method to simulate pneumatic conveying. However, some discrepancy between simulation and experimental results was observed. Most studies in two-phase flow fields have focused on spherical particles. However the majority of particles encountered in industry involve non-spherical granules which show considerably different transportation behaviour compared with spherical particles. Further modelling of cylindrical particles was conducted using a multisphere model to represent cylindrical particles in the DEM code. Drag and lift forces and torque equations were modified in the code to take the effect of particle orientation into account. The framework developed was evaluated for two test cases, indicating a good agreement with the analytical and experimental results. The transportation of isometric (low-aspect-ratio) non-spherical particles in pneumatic conveying was also modelled. The simulation results of mean axial particle velocity agreed well with the experimental measurements with the LDA technique.
2

Etude du colmatage des systèmes carburant de turboréacteurs par des suspensions denses de particules de glace / Clogging of jet-engine fuel systems by dense suspensions of ice particles

Marechal, Ewen 28 January 2016 (has links)
Dans certaines conditions de température et de débit, l’eau naturellement présente dans le kérosène va givrer l’intérieur des conduites du système carburant avion. Ces dépôts peuvent libérer des particules de glace qui sont entrainées par l’écoulement, et provoquent le colmatage des équipements hydrauliques situés en aval. Ce phénomène fut mis en évidence suite à l’accident d’un Boeing 777 en 2008, aussi sa compréhension est un enjeu important pour les acteurs de l’industrie aéronautique. Un dispositif a été spécialement conçu pour reproduire cette menace de façon quantifiée. De l’eau est atomisée dans un écoulement à basse température, puis cristallise pour former une suspension qui vient colmater différentes cibles perforées. Les températures, débits et pertes de charge sont mesurées, et le phénomène est filmé par une caméra haute fréquence. Un modèle a été réalisé à partir de cesobservations, complétées par des données issues de la littérature et de retoursd’expérience. Pour la phase fluide, les équations de Navier-Stokes incompressibles sont résolues par une approche volumes finis. Le couplage pression-vitesse est obtenu par l’algorithme SIMPLE et l’ordre élevé au moyen de la méthode MLS. La phase solide est simulée par éléments discrets. L’interaction fluide-particules repose sur une approche de type milieu poreux. Un code CFD-DEM parallèle a été développé, et les premières simulations d’écoulement en milieu granulaire sont en bon agrément avec des résultats expérimentaux. / Water, which exists naturally in jet-engine fuel, may freeze within theaircraft fuel pipes under certain temperatures and flow rates. The ice particles released by these deposits are entrained by the flow, and clog the hydraulics downstream. The understanding of this phenomenon, highlighted by the crash of a Boeing 777 in 2008, is an important issue for the aviation industry. Therefore a device has been designed to reproduce this threat in a controlled and quantified way. Water is atomized in low temperature jet-engine fuel and the droplets crystallize. The resulting slurry clogs different kinds of perforated targets. Temperatures, flow rates and pressure drops are monitored, and the phenomenon is filmed by a high frequency camera. A model was constructed based on these observations and data from literature and feedbacks. For the fluid phase, the incompressible Navier-Stokes equations are solved within a finite volume framework. The pressure-velocity coupling is achieved using the SIMPLE algorithm and high order of accuracy thanks to the MLS method. The solid phase is simulated using discrete elements. The fluid-particle interaction is based on a porous medium approach. A CFD-DEM parallel code has been developed to run the model. The first simulations of flow through granular media are in good agreement with experimental results.
3

Anwendung der gekoppelten CFD-DEM-Methode zur Simulation des Entmischungsvorganges von Korn und Nichtkornbestandteilen in der Reinigungsanlage des Mähdreschers

Korn, Christian 24 May 2023 (has links)
Zur Funktionsentwicklung und Prozessoptimierung im Bereich Getreideerntetechnik werden verstärkt numerische Berechnungsverfahren wie CFD und DEM eingesetzt. Die Kopplung beider Verfahren im Allgemeinen, sowie die Simulation des Entmischungsprozesses von Korn und Nichtkornbestandteilen in der Reinigungsanlage des Mähdreschers im Speziellen, setzen hohes Prozessverständnis als auch eine strategische Vorgehensweise bei der Prozessabstraktion, der Modellierung der Partikel und der Partikelinteraktion als auch der Wechselwirkung zwischen Partikel und strömender Luft voraus. Im Vortrag wird zunächst die Notwendigkeit und der Nutzen der Simulation im Bereich Erntetechnik diskutiert. Danach erfolgt die Beschreibung der Abstraktion des Entmischungsprozesses von Korn und Nichtkornbestandteilen. Es werden numerische als auch experimentelle Untersuchungen zur Modellierung und Parametrierung der stark nicht-sphärischen biogenen Partikel beschrieben. Besonderes Augenmerk liegt auf der speziellen Untersuchung der Wechselwirkungen und Abhängigkeiten von Partikeleigenschaften. Anschließend werden die Ergebnisse numerischer und experimenteller Untersuchungen des Entmischungsprozesses diskutiert: In einem ersten Schritt erfolgt die Entmischung in einem kleinen, vertikal schwingenden, luftdurchströmten Behälter. Hier werden umfangreiche Parameterstudien und Sensitivitätsanalysen durchgeführt. In einem zweiten Schritt wird die Entmischung in einem in der Breite reduzierten Segment einer Mähdrescherreinigungsanlage durchgeführt. Stets erfolgt der kritische Vergleich zwischen Simulation und Experiment anhand prozessspezifischer Kenngrößen wie Kornverlust, Abscheideeffizienz, Transportgeschwindigkeit u.a. / Numerical simulation methods such as CFD and DEM are increasingly being used for function development and process optimization in the field of grain harvesting technology. The coupling of both methods in general, as well as the simulation of the separation process of grain and non-grain components in the cleaning device of a combine harvester in particular, requires a high level of process understanding as well as a strategic approach to process abstraction, modeling of the particles and particle interaction as well as the interaction between particles and moving air. The speech first discusses the necessity and benefit of simulation in the field of harvesting technology. This is followed by the description of the abstraction of the separation process of grain and non-grain components. Numerical and experimental studies on modeling and parameterization of the strongly non-spherical biogenic particles are described. Particular attention is paid to the special investigation of the interactions and dependencies of particle properties. The results of numerical and experimental investigations of the separation process are then discussed: In a first step, the separation takes place in a small, vertically oscillating, air-flooded box. Extensive parameter studies and sensitivity analyzes are carried out here. In a second step, the separation is carried out in a segment of a combine cleaning device that is reduced in width compared to real width. The critical comparison between simulation and experiment is always carried out using process-specific parameters such as grain loss, separation efficiency, transport speed, etc.
4

Modélisation d’un système de pyrogazéification de la biomasse / Modeling of an original process of thermochemical conversion of biomasses

Maione, Riccardo 15 June 2017 (has links)
Ce travail s’inscrit dans le projet LORVER, soutenu par la Région Grand Est et le FEDER. Il est destiné à créer une filière de production de biomasse végétale non alimentaire par valorisation de sites dégradés et de sous-produits industriels, en Lorraine. Un des procédés de valorisation de la biomasse produite est un procédé thermochimique de pyro-gazéification qui générerait de la chaleur et de l’électricité. Ce procédé, développé par SEA Marconi, se compose de trois réacteurs différents : un tambour tournant, pour la pyrolyse de particules de bois, la chaleur étant amenée par des billes d’acier chauffées ; un réacteur à vis sans fin pour l’oxydation du char qui permet de réchauffer les billes d’acier ; un réacteur de craquage des goudrons. L’objectif de cette thèse est de réaliser des modèles qui puissent permettre d’avoir une prédiction adaptée du comportement du système. Des modèles 3D du type DEM et CFD-DEM ont été conçus pour la modélisation des phénomènes qui interviennent dans le système. Les paramètres du modèle DEM ont été calibrés dans un tambour tournant de laboratoire. Pour le réacteur de pyrolyse, la simulation DEM a permis de prédire de façon satisfaisante la ségrégation pour des mélanges de billes d’acier et de particules non sphériques de bois, et de concevoir un modèle thermique et chimique 1D, sur lequel une étude de sensibilité a été effectuée. Un modèle CFD-DEM a été codé et validé sur un rhéomètre granulaire, permettant la simulation du réacteur d’oxydation partielle du char, qui n’a pas pu être réalisé dans le cadre de cette thèse / This work is part of the LORVER project, funded by Grand Est Région and FEDER. It aims to create a non-food biomass production chain by using and upgrading brownfields and industrial by-products in Lorraine. One possible valorization process of the produced biomass is a thermochemical pyro-gasification process that would generate heat and electricity. This process, developed by SEA Marconi, involves three different reactors: a rotating drum, for the pyrolysis of wood particles, the heat required being brought by hot steel balls; an Auger for partial oxidation of the char that allows heating the steel balls; a reactor for tar cracking. The aim of this thesis is to develop models that can predict the behavior of the system. 3D models based on DEM or CFD - DEM were designed for the modeling of phenomena involved in the system. The DEM model parameters were first calibrated in a rotating drum. The DEM simulation was able to predict in a satisfactory manner segregation between steel balls and non-spherical wood particles; it also helped to design a 1D thermal and chemical model, on which a sensitivity study has been done. A CFD - DEM model has been coded and validated on a granular rheometer allowing the simulation of the char oxidation reactor, even if this simulation was not possible during the PhD
5

Quantification and Assessment of Numerical Error in Coupled Computational Fluid Dynamics - Discrete Element Method Simulations of Gas Flow through Granular Solids

Volk, Annette January 2018 (has links)
No description available.
6

Toward Better Understandings of Unconventional Reservoirs - Rock Mechanical Properties and Hydraulic Fracture Perspectives

Gong, Yiwen January 2020 (has links)
No description available.
7

Particle-Resolving Simulations of Dune Migration: Novel Algorithms and Physical Insights

Sun, Rui 26 June 2017 (has links)
Sediment transport is ubiquitous in aquatic environments, and the study of sediment transport is important for both engineering and environmental reasons. However, the understanding and prediction of sediment transport are hindered by its complex dynamics and regimes. In this dissertation, the open-source solver SediFoam is developed for high-fidelity particle-resolving simulations of various sediment transport problems based on open-source solvers OpenFOAM and LAMMPS. OpenFOAM is a CFD toolbox that can perform three-dimensional flow simulations on unstructured mesh; LAMMPS is a massively parallel DEM solver for molecular dynamics. To enable the particle-resolving simulation of sediment transport on an arbitrary mesh, a diffusion-based algorithm is used in SediFoam to obtain the averaged Eulerian fields from discrete particle data. The parallel interface is also implemented for the communication of the two open-source solvers. Extensive numerical simulations are performed to validate the capability of SediFoam in the modeling of sediment transport problems. The predictions of various sediment transport regimes, including `flat bed in motion', `small dune' and `vortex dune', are in good agreement of with the experimental results and those obtained by using interface resolved simulations. The capability of the solver in the simulation of sediment transport in the oscillatory boundary layer is also demonstrated. Moreover, this well-validated high-fidelity simulation tool has been used to probe the physics of particle dynamics in self-generated bedforms in various hydraulic conditions. The results obtained by using SediFoam not only bridge the gaps in the experimental results but also help improve the engineering practice in the understanding of sediment transport. By using the particle-resolving simulation results and the insights generated therein, the closure terms in the two-fluid models or hydro-morphodynamic models can be improved, which can contribute to the numerical modeling of sediment transport in engineering scales. / Ph. D.
8

Quantification of Numerical and Modeling Errors in Simulation of Fluid Flow through a Fixed Particle Bed

Volk, Annette January 2015 (has links)
No description available.
9

Multi-scale Modeling of Droplet’s Drying and Transport of Insoluble Solids, with Spray-drying Applications

Siavash Zamani (13140789) 22 July 2022 (has links)
<p>Understanding the drying of droplets is of interest for processes such as spray drying, where particulate materials are produced by evaporating moisture. Even though spray-drying is a widely used method, there are still challenges, such as undesired agglomeration or controlling the morphology and size of the final dried product. This dissertation develops a physics based model that is used to examine the droplet dynamics and drying kinetics at large and small scales.  In addition, the model simulates the internal motion of insoluble particles and  is used to better understand particle formation during spray drying type processes.</p> <p><br></p> <p>The first part of this work examines the effect of droplet-droplet collisions on evaporation and the size distribution at a large scale. Droplet collision dynamics are implemented into an Eulerian-Lagrangian framework, where droplets are tracked in the Lagrangian frame, and the background gas is modeled as a continuum. The modeling framework includes fully coupled interphase heat and momentum transfer between the droplet and gas phases. Binary collision of droplets could result in coalescence, reduction in surface area, or separation of droplets, resulting in the generation of satellite droplets and an increase in total surface area. By capturing the change in size distribution due to the collision of particles, our results show a linear relationship between the Weber number and the evaporation rate at low droplet number densities. Further, it is shown that droplet number density is a critical factor influencing the evaporation rate. At high droplet number densities, the relationship between the evaporation rate and the Weber number becomes non-linear, and at extremely high droplet number densities, the evaporation rate decreases even at high Weber numbers.</p> <p><br></p> <p>In the next part of this dissertation, the drying of a single droplet containing insoluble solid particles is investigated. Using a volume-of-fluid framework coupled with the Lagrangian phase, we study the particle transport within a droplet, and how it is affected by airflow, phase properties (e.g., viscosity and density of each phase), surface tension, and evaporation. Unlike the traditional one-dimensional modeling approach, our multi-dimensional model can capture the generation of internal flow patterns due to shear flow and the accumulation of solid particles on the surface of the drying droplet. Our results show that the surface tension effect is more pronounced at larger droplet diameters and low airflow velocities. Our approach also provides a quantitative method for modeling crust growth and formation. </p> <p>Our results show that increasing solids mass fraction, and decreasing particle diameter, slow down the internal transport of solid particles, leading to a more quick accumulation near the surface of the droplet. Further, despite the droplet undergoing a constant-rate drying stage, the accumulation of solids near the surface is non-linear. In addition, the inclusion of solids within the droplet drastically reshapes the formation of internal vortices compared to the uncoupled case, which determines solids distribution.</p>
10

Methods Development and Validation for Large Scale Simulations of Dense Particulate Flow systems in CFD-DEM Framework

Elghannay, Husam A. 05 April 2018 (has links)
Computational Fluid Dynamics Coupled to Discrete Element Method (CFD-DEM) is widely used in simulating a large variety of particulate flow system. This Eulerian-Lagrangian technique tracks all the particles included in the system by the application of point mass models in their equation of motion. CFD-DEM is a more accurate (and more expensive) technique compared to an Eulerian-Eulerian representation. Compared to Particle Resolved Simulations (PRS), CFD-DEM is less expensive since it does not require resolving the flow around each particles and thus can be applied to larger scale systems. Nevertheless, simulating industrial and natural scale systems is a challenge for this numerical technique. This is because the cost of CFD-DEM is proportional to the number of particles in the system under consideration. Thus, massively parallel codes are used to tackle these problems with the help of supercomputers. In this thesis, the CFD-DEM capability in the in-house code Generalized Incompressible Direct and Large Eddy Simulation of Turbulence (GenIDLEST) is used to investigate large scale dense particulate flow systems. Central to the contributions made by this work are developments to reduce the computational cost of CFD-DEM. This includes the development and validation of reduced order history force model for use in large scale systems and validation of the representative particle model, which lumps multiple particles into one, thus reducing the number of particles that need to be tracked in the system. Numerical difficulties in the form of long integration times and instabilities encountered in fully coupling the fluid and particle phases in highly energetic systems are alleviated by proposing a partial coupling scheme which maintains the accuracy of full-coupling to a large extent but at a reduced computational cost. The proposed partial-coupling is found to have a better convergence behavior compared to the full coupling in large systems and can be used in cases where full coupling is not feasible or impractical to use. Alternative modeling approaches for the tangential treatment of the soft-sphere impact model to avoid storing individual impact deformation are proposed and tested. A time advancement technique is developed and proposed for use in dense particulate systems with a hard-sphere impact model. The new advancement technique allows for the use of larger time steps which can speed-up the time to solution by as much as an order of magnitude. / PHD

Page generated in 0.0448 seconds