Spelling suggestions: "subject:"change analysis"" "subject:"dhange analysis""
1 |
Návrh a nasazení informačního systému pro správu hardware / Design and Deployment of Information System for Management of HardwareEliáš, Filip January 2013 (has links)
This diploma thesis is focused at design and deployment of information system for management of hardware in Czech branch office of Red Hat. Design is based on analysis of current state, in which were revealed all flaws of current information system. Upon design of the information system, particular emphasis was placed on compliance of all requirements that should be met by information system. Part of the thesis is selection of appropriate method and process for deployment of information system.
|
2 |
Vyhodnocení a návrh na zlepšení marketingové strategie hotelu Joseph 1699 v Třebíči po roce provozu / Evaluation and Improvement Proposal of the Marketing Strategy of the Hotel Joseph 1699 in Trebic After One Year of OperationPošvař, Josef January 2012 (has links)
The subject of my thesis is to evaluate proposal to improve the marketing strategy of the hotel Joseph 1699 in Trebic after a year of the operation. It is important for the hotel Joseph 1699, to develop a proposal, how to improve the quality of marketing strategy to be competitive and viable on the market in Trebic and surroundings. In the theoretical section are explained the economic matters, which were used in the practical part. The practical part is focused on processing of marketing analyzes, and proposal how to change and improve marketing strategies. With these proposed changes would have the hotel Joseph 1699 to improve and strengthen its position in the market in Třebíč.
|
3 |
Mining Software Repositories to Support Software EvolutionKagdi, Huzefa H. 15 July 2008 (has links)
No description available.
|
4 |
Identifiering av igenvuxna sjöar och vattendrag med hjälp av fjärranalys : En vegetationsförändringsanalys utifrån optiskt satellitdata över sjön Sottern, i Sverige. / Identification of overgrown lakes and watercourses using remote sensing : A vegetation change analysis based on optical remote sensing over lake Sottern, in Sweden.Jonsson, Henrik January 2024 (has links)
Runtom i Sverige och Europa skapar igenvuxna sjöar och vattendrag allt fler problem, vilket bland annat beror på klimatförändringar och mänsklig påverkan. En av de främsta anledningarna till igenväxning av sjöar och vattendrag är övergödning. Studiens syfte är att utvärdera om det är möjligt att på ett automatiskt sätt identifiera utbredning av vattenvegetation i sjöar och vattendrag med hjälp av fjärranalys och GIS. En analys av vegetationsförändringar i sjön Sottern i Uppland genomförs, där utbredd igenväxning skapar problem och där röjningsmaskiner används för att hantera vegetationen, som främst består av bladvass, näckrosor och annan flytande vatten-vegetation. Genom tillämpning av olika klassificeringsalgoritmer, bandkombinationer och vegetationsindex undersöks förändringar i sjöns tillstånd genom att klassa Sottern i två huvudklasser, vatten och vattenvegetation. Studien baseras på fjärranalysdata från den optiska satellitkonstellationen Sentinel-2 och en högupplöst referensbild från Google Earth Pro. Data samlades in under växtsäsongen, maj till oktober, för åren 2021 och 2022 för att analysera om och hur vattenvegetationen förändras över tid. Resultaten visar att Maximum Likelihood Classification (MLC) framträder som den mest effektiva algoritmen för att studera vegetationsförändringar, särskilt om den appliceras på en "False color" bandkombination bestående av banden 8 (NIR), 4 (rött) och 3 (grönt). MLC visar högre (94%) noggrannhet jämfört med Random Trees (RT) och Support Vector Machine (SVM). Genom att tillämpa vegetationsindexet NDVI (Normalized Difference Vegetation Index) ger studien en fördjupad förståelse för hur vegetationen förändras över tid. Genom att kombinera resultaten från dessa metoder går det att dra slutsatser om hur vattenvegetationen breder ut sig över tid i sjön Sottern, där en tydlig ökning av vattenvegetation sker mellan mitten av maj till mitten av juni, medan minskningen av vattenvegetationen inte är lika konsekvent. / In Europe, overgrown lakes and watercourses are creating increasing problems, which are partly due to climate change and human impact. One of the main reasons for the overgrowth of lakes and watercourses is eutrophication. The aim of the study is to evaluate the possibility of automatically identifying overgrown lakes and watercourses using remote sensing and GIS. An analysis of vegetation changes in Lake Sottern in Uppland county, Sweden is conducted, where overgrowth creates problems and where clearing machines are used to manage the vegetation, primarily consisting of reeds, water lilies, and other aquatic vegetation. By applying various classification algorithms, band combinations and vegetation indices, changes in the lake's condition are investigated by classifying Sottern into two main classes: water and aquatic vegetation. The study is based on remote sensing data from the optical satellite constellation Sentinel-2 and a high-resolution reference image from Google Earth Pro. Data were collected during the growing season, from May to October, for the years 2021 and 2022 to analyze if and how aquatic vegetation changes over time. The results show that Maximum Likelihood Classification (MLC) emerges as the most effective algorithm for identifying aquatic vegetation, especially when combined with a "False color" band combination consisting of bands 8 (NIR), 4 (red), and 3 (green). MLC shows higher accuracy compared to Random Trees (RT) and Support Vector Machine (SVM). By applying the Normalized Difference Vegetation Index (NDVI), the study provides a deeper understanding of how vegetation changes over time. By combining the results from these methods, it is possible to draw conclusions about how aquatic vegetation changes over time in lakes like Sottern, where a clear increase in aquatic vegetation occurs between May and June, while the decrease in aquatic vegetation is not as consistent.
|
5 |
Investigating Time Series Shoreline Changes By Integration Of Remote Sensing And Geographical Information SystemsFulat, Alper Ihsan 01 December 2005 (has links) (PDF)
Spatial analyses of shoreline recession and accretion, and future shoreline position predictions in coastal countries have considerable importance due to engineering, planning, management and environmental concerns. In spite of this importance, there are only a few studies in Turkey.
The aim of this thesis are to determine the shoreline rate-of-change of Bü / yü / k Menderes Delta, by geographical information systems for the last fifty-year period, in order to approximate future shoreline position of Bü / yü / k Menderes Delta shoreline, and to evaluate appropriate models while predicting the future shoreline position.
To achieve the purpose of the study time series shoreline position data is extracted from three sets of topographic maps belonging to 1954-1957, 1977-1978 and 1993 aerial photographs and two sets of high resolution satellite imageries (January 2002 Ikonos, August 2004 QuickBird). Then Coastal script of TNTMips, which uses some statistical shoreline analyses methods, that are End Point Rate (EPR), Average of Rates (AOR), Linear Regression (LR) and Jackknifing (JK) is edited so that it can locate the future shoreline positions on the map. Suitable baselines are created and appropriate transect intervals are decided to analyze the shoreline. Finally, some additional analyses that are Backward Analysis and Oscillation Analysis are done to obtain most suitable future shoreline position with rate-of-changes. The results showed that, shorelines having different geomorphologic characteristics needed to be analyzed separately and the linear methods to model the future shoreline position differ from one geomorphologic region to another.
|
6 |
Assessing processes of long-term land cover change and modelling their effects on tropical forest biodiversity patterns – a remote sensing and GIS-based approach for three landscapes in East AfricaLung, Tobias 24 November 2010 (has links) (PDF)
The work describes the processing and analysis of remote sensing time series data for a comparative assessment of changes in different tropical rainforest areas in East Africa. In order to assess the effects of the derived changes in land cover and forest fragmentation, the study made use of spatially explicit modelling approaches within a geographical information system (GIS) to extrapolate sets of biological field findings in space and time. The analysis and modelling results were visualised aiming to consider the requirements of three different user groups.
In order to evaluate measures of forest conservation and to derive recommendations for an effective forest management, quantitative landscape-scale assessments of land cover changes and their influence on forest biodiversity patterns are needed. However, few remote sensing studies have accounted for all of the following aspects at the same time: (i) a dense temporal sequence of land cover change/forest fragmentation information, (ii) the coverage of several decades, (iii) the distinction between multiple forest formations and (iv) direct comparisons of different case studies. In regards to linkages of remote sensing with biological field data, no attempts are known that use time series data for quantitative statements of long-term landscape-scale biodiversity changes.
The work studies three officially protected forest areas in Eastern Africa: the Kakamega-Nandi forests in western Kenya (focus area) and Mabira Forest in south-eastern Uganda as well as Budongo Forest in western Uganda (for comparison purposes). Landsat imagery of in total eight or seven dates in regular intervals from 1972/73 to 2003 was used. Making use of supervised multispectral image classification procedures, in total, 12 land cover classes (six forest formations) were distinguished for the Kakamega-Nandi forests and for Budongo Forest while for Mabira Forest ten classes could be realised. An accuracy assessment via error matrices revealed overall classification accuracies between 81% and 85%. The Kakamega-Nandi forests show a continuous decrease between 1972/73 and 2001 of 31%, Mabira Forest experienced an abrupt loss of 24% in the late 1970s/early 1980s, while Budongo Forest shows a relatively stable forest cover extent. An assessment of the spatial patterns of forest losses revealed congruence with areas of high population density while a spatially explicit forest fragmentation index indicates a strong correlation of forest fragmentation with forest management regime and forest accessibility by roads.
For the Kenyan focus area, three sets of biological field abundance data on keystone species/groups were used for a quantitative assessment of the influence of long-term changes in tropical forests on landscape-scale biodiversity patterns. For this purpose, the time series was extended with another three land cover data sets derived from aerial photography (1965/67, 1948/(52)) and old topographic maps (1912/13). To predict the spatio-temporal distribution of the army ant Dorylus wilverthi and of ant-following birds, GIS operators (i.e. focal and local functions) and statistical tests (i.e. OLS or SAR regression models) were combined into a spatial modelling procedure. Abundance data on three guilds of birds differing in forest dependency were directly extrapolated to five forest cover classes as distinguished in the time series. The results predict declines in species abundances of 56% for D. wilverthi, of 58% for ant-following birds and an overall loss of 47% for the bird habitat guilds, which in all three cases greatly exceed the rate of forest loss (31%). Additional extrapolations on scenarios of deforestation and reforestation confirmed the negative ecological consequences of splitting-up contiguous forest areas but also showed the potential of mixed indigenous forest plantings.
The visualisation of the analysis and modelling results produced a mixture of different outcomes. Map series and a matrix of maps both showing species distributions aim to address scientists and decision makers. The results of the land cover change analysis were synthesised in a map of land cover development types for each study area, respectively. These maps are designed mainly for scientists. Additional maps of change, limited to a single class of forest cover and to three dates were generated to ensure an easy-to-grasp communication of the major forest changes to decision makers. Additionally, an easy-to-handle visualisation tool to be used by scientists, decision makers and local people was developed. For the future, an extension of this study towards a more complete assessment including more species/groups and also ecosystem functions and services would be desirable. Combining a framework for land cover simulation with a framework for running empirical extrapolation models in an automated manner could ideally result in a GIS-based, integrated forest ecosystem assessment tool to be used as regional spatial decision support system. / Die Arbeit beschreibt die Prozessierung und Analyse von Fernerkundungs-Zeitreihendaten für eine vergleichende Abschätzung von Veränderungen verschiedener tropischer Waldökosysteme Ostafrikas. Um Effekte der Veränderungen bzgl. Landbedeckung und Waldfragmentierung auf Biodiversitätsmuster abzuschätzen, wurden verschiedene räumlich explizite Modellierungssätze innerhalb eines geographischen Informationssystems (GIS) zur räumlichen und zeitlichen Extrapolation biologischer Felderhebungsdaten benutzt. Die Visualisierung der Analyse- und Modellierungsergebnisse erfolgte unter Berücksichtigung der Bedürfnisse von drei verschiedenen Nutzergruppen.
Um Waldschutzmaßnahmen zu evaluieren und Empfehlungen für ein effektives Waldmanagement abzuleiten, sind quantitative Abschätzungen von Landbedeckungsveränderungen sowie von deren Einfluss auf tropische Waldbiodiversitätsmuster nötig. Wenige fernerkundungsbasierte Studien haben jedoch bislang alle der folgenden Faktoren berücksichtigt: (i) Informationen zu Veränderungen von Landbedeckung und Waldfragmentierung in dichter zeitlicher Sequenz, (ii) die Abdeckung mehrerer Jahrzehnte, (iii) die Unterscheidung zwischen mehreren Waldformationen, und (iv) direkte Vergleiche von unterschiedlichen Fallstudien. Hinsichtlich Verknüpfungen von Fernerkundung mit biologischen Felddaten sind bisher keine Studien bekannt, die Zeitreihendaten für quantitative Aussagen zu Langzeitveränderungen von Biodiversität auf Landschaftsebene verwenden.
Die Arbeit untersucht drei offiziell geschützte Gebiete: die Kakamega-Nandi forests in Westkenia (Hauptuntersuchungsgebiet) sowie Mabira Forest in Südost-Uganda und Budongo Forest in West-Uganda (zu Vergleichszwecken). Es wurden Landsat-Daten für insgesamt acht bzw. sieben Zeitpunkte zwischen 1972/73 und 2003 in ungefähr gleichen Abständen erworben. Mit Hilfe von überwachten, multispektralen Klassifizierungsverfahren wurden für die Kakamega-Nandi forests und Budongo Forest jeweils 12 Landbedeckungsklassen (sechs Waldformationen) und für Mabira Forest zehn Klassen unterschieden. Eine Genauigkeitsprüfung mit Hilfe von Fehlermatrizen ergab Gesamtklassifizierungsgenauigkeiten zwischen 81% und 85%. Die Kakamega-Nandi forests sind durch eine kontinuierliche Waldabnahme von 31% zwischen 1972/73 und 2001 gekennzeichnet, Mabira Forest zeigt einen abrupten Waldverlust von 24% in den späten 1970ern/frühen 1980ern, während die Ergebnisse für Budongo Forest eine relativ stabile Waldbedeckung ausweisen. Während eine Abschätzung der räumlichen Muster von Waldverlusten eine hohe Deckungsgleichheit mit Gebieten hoher Bevölkerungsdichte ergab, deutet die Anwendung eines räumlich expliziten Waldfragmentierungsindexes auf eine starke Korrelation von Waldfragmentierung mit der Art von Waldmanagement sowie mit der Erreichbarkeit von Wald über Straßen hin.
Um den Einfluss von Langzeit-Landbedeckungsveränderungen auf Biodiversitätsmuster auf Landschaftsebene für das kenianische Hauptuntersuchungsgebiet quantitativ abzuschätzen wurden drei Datensätze mit biologischen Felderhebungen zur Abundanz von Schlüsselarten/-gruppen verwendet. Zu diesem Zweck wurde die Zeitreihe zunächst um drei weitere Landbedeckungs-Datensätze ergänzt, die aus Luftbildern (1965/67, 1948/(52)) bzw. alten topographischen Karten (1912/13) gewonnen wurden. Zur Vorhersage der raum-zeitlichen Verteilung der Treiberameise Dorylus wilverthi wurden GIS-Operatoren und statistische Tests (OLS bzw. SAR Regressionsmodelle) in einem räumlichen Modellierungsablauf kombiniert. Abundanzdaten von drei sich hinsichtlich ihrer Abhängigkeit von Wald unterscheidenden Vogelgilden wurden direkt auf fünf Waldbedeckungsklassen hochgerechnet, die in der Zeitreihe unterschieden werden konnten. Die Ergebnisse prognostizieren Abundanzabnahmen von 56% für D. wilverthi, von 58% für Ameisen-folgende Vögel und einen Gesamtverlust von 47% für die Vogelgilden, was in allen drei Fällen eine deutliche Überschreitung der Waldverlustrate von 31% darstellt. Zusätzliche Extrapolationen basierend auf Szenarien bestätigten die negativen ökologischen Konsequenzen der Zerteilung zusammenhängender Waldflächen bzw. zeigten andererseits das Potential von Aufforstungen mit einheimischen Arten auf.
Die Visualisierung der Analyse- bzw. Modellierungsergebnisse führte zu unterschiedlichen Darstellungen: mit einer Reihe von nebeneinander positionierten Einzelkarten sowie einer Matrix von Einzelkarten, die jeweils Artenverteilungen zeigen, sollen Wissenschaftler und Entscheidungsträger angesprochen werden. Aus den Ergebnissen der Landbedeckungsanalyse für die drei Untersuchungsgebiete wurden Landbedeckungsveränderungstypen generiert und jeweils in einer synthetischen Karte dargestellt, die hauptsächlich für Wissenschaftler gedacht sind. Um die wesentlichen Waldveränderungen auch auf einfache Weise zu den Entscheidungsträgern zu kommunizieren, wurden zusätzliche Karten erstellt, die nur eine aggregierte Klasse „Waldbedeckung“ zeigen und jeweils auf drei Zeitschritte der Zeitreihen begrenzt sind. Zusätzlich wurde ein leicht zu bedienendes Visualisierungstool entwickelt, das für Wissenschaftler, Entscheidungsträger und die lokale Bevölkerung gedacht ist. Für die Zukunft wäre eine umfassendere Abschätzung unter Berücksichtigung zusätzlicher Arten/-gruppen sowie auch Ökosystemfunktionen und –dienstleistungen wünschenswert. Die Verknüpfung einer Applikation zur Landbedeckungsmodellierung mit einer Applikation zur Ausführung von empirischen Extrapolationsmodellen (in stärkerem Maße automatisiert als in dieser Arbeit) könnte im Idealfall in ein GIS-basiertes Tool zur integrativen Bewertung von Waldökosystemen münden, das dann als räumliches Entscheidungsunterstützungssystem verwendet werden könnte.
|
7 |
Contribution à l'ingénierie du changement dans les projets de développement de produits : modèle de référence et simulation par système multi-agentsZhang, Xin 19 November 2013 (has links) (PDF)
L'objectif de cette thèse est de fournir des modèles de référence, les méthodes de soutien et des outils qui simulent les change propagations dans un projet de développement de produit (PD) pour aider les prises de décision. Nous établissons d'abord un cadre d'analyse des changes de modéliser le contexte du change apparition et la propagation en prenant en compte les multiples domaines du projet PD simultané- ment. Dans le cadre, nous proposons les modèles conceptuels de change apparition et la propagation qui fournissent une méthode pour identifier les change et propagation et impliquent certaines caractéristiques du change propagations. S'appuyant sur cela, nous vous proposons les procédures de mise en place des réseaux de propagation. Au sein du réseau, nous proposons la méthodologie de simulation de l'évolution propaga- tions, puis de présenter le processus de mise en uvre des méthodologies et des modèles comme un prototype en utilisant la technologie à base multi-agents.
|
8 |
Extraction d'informations de changement à partir des séries temporelles d'images radar à synthèse d'ouverture / Change information extraction from Synthetic Aperture Radar Image Time SeriesLê, Thu Trang 15 October 2015 (has links)
La réussite du lancement d'un grand nombre des satellites Radar à Synthèse d'Ouverture (RSO - SAR) de nouvelle génération a fourni régulièrement des images SAR et SAR polarimétrique (PolSAR) multitemporelles à haute et très haute résolution spatiale sur de larges régions de la surface de la Terre. Le système SAR est approprié pour des tâches de surveillance continue ou il offre l'avantage d'être indépendant de l'éclairement solaire et de la couverture nuageuse. Avec des données multitemporelles, l'information spatiale et temporelle peut être exploitée simultanément pour rendre plus concise, l'extraction d'information à partir des données. La détection de changement de structures spécifiques dans un certain intervalle de temps nécessite un traitement complexe des données SAR et la présence du chatoiement (speckle) qui affecte la rétrodiffusion comme un bruit multiplicatif. Le but de cette thèse est de fournir une méthodologie pour simplifier l'analyse des données multitemporelles SAR. Cette méthodologie doit bénéficier des avantages d'acquisitions SAR répétitives et être capable de traiter différents types de données SAR (images SAR mono-, multi- composantes, etc.) pour diverses applications. Au cours de cette thèse, nous proposons tout d'abord une méthode générale basée sur une matrice d'information spatio-temporelle appelée Matrice de détection de changement (CDM). Cette matrice contient des informations de changements obtenus à partir de tests croisés de similarité sur des voisinages adaptatifs. La méthode proposée est ensuite exploitée pour réaliser trois tâches différentes: 1) la détection de changement multitemporel avec différents types de changements, ce qui permet la combinaison des cartes de changement entre des paires d'images pour améliorer la performance de résultat de détection de changement; 2) l'analyse de la dynamicité de changement de la zone observée, ce qui permet l'étude de l'évolution temporelle des objets d'intérêt; 3) le filtrage nonlocal temporel des séries temporelles d'images SAR/PolSAR, ce qui permet d'éviter le lissage des informations de changement dans des séries pendant le processus de filtrage.Afin d'illustrer la pertinence de la méthode proposée, la partie expérimentale de la thèse est effectuée sur deux sites d'étude: Chamonix Mont-Blanc, France et le volcan Merapi, Indonésie, avec différents types de changements (i.e. évolution saisonnière, glaciers, éruption volcanique, etc.). Les observations de ces sites d'étude sont acquises sur quatre séries temporelles d'images SAR monocomposantes et multicomposantes de moyenne à haute et très haute résolution: des séries temporelles d'images Sentinel-1, ALOS-PALSAR, RADARSAT-2 et TerraSAR-X. / A large number of successfully launched and operated Synthetic Aperture Radar (SAR) satellites has regularly provided multitemporal SAR and polarimetric SAR (PolSAR) images with high and very high spatial resolution over immense areas of the Earth surface. SAR system is appropriate for monitoring tasks thanks to the advantage of operating in all-time and all-weather conditions. With multitemporal data, both spatial and temporal information can simultaneously be exploited to improve the results of researche works. Change detection of specific features within a certain time interval has to deal with a complex processing of SAR data and the so-called speckle which affects the backscattered signal as multiplicative noise.The aim of this thesis is to provide a methodology for simplifying the analysis of multitemporal SAR data. Such methodology can benefit from the advantages of repetitive SAR acquisitions and be able to process different kinds of SAR data (i.e. single, multipolarization SAR, etc.) for various applications. In this thesis, we first propose a general framework based on a spatio-temporal information matrix called emph{Change Detection Matrix} (CDM). This matrix contains temporal neighborhoods which are adaptive to changed and unchanged areas thanks to similarity cross tests. Then, the proposed method is used to perform three different tasks:1) multitemporal change detection with different kinds of changes, which allows the combination of multitemporal pair-wise change maps to improve the performance of change detection result;2) analysis of change dynamics in the observed area, which allows the investigation of temporal evolution of objects of interest;3) nonlocal temporal mean filtering of SAR/PolSAR image time series, which allows us to avoid smoothing change information in the time series during the filtering process.In order to illustrate the relevancy of the proposed method, the experimental works of the thesis is performed on four datasets over two test-sites: Chamonix Mont-Blanc, France and Merapi volcano, Indonesia, with different types of changes (i.e., seasonal evolution, glaciers, volcanic eruption, etc.). Observations of these test-sites are performed on four SAR images time series from single polarization to full polarization, from medium to high, very high spatial resolution: Sentinel-1, ALOS-PALSAR, RADARSAT-2 and TerraSAR-X time series.
|
9 |
Contribution à l’ingénierie du changement dans les projets de développement de produits : modèle de référence et simulation par système multi-agents / Contribution to engineering change management in product development projects : reference models and multi-agent-based simulationZhang, Xin 19 November 2013 (has links)
L’objectif de cette thèse est de fournir des modèles de référence, les méthodes de soutien et des outils qui simulent les change propagations dans un projet de développement de produit (PD) pour aider les prises de décision. Nous établissons d’abord un cadre d’analyse des changes de modéliser le contexte du change apparition et la propagation en prenant en compte les multiples domaines du projet PD simultané- ment. Dans le cadre, nous proposons les modèles conceptuels de change apparition et la propagation qui fournissent une méthode pour identifier les change et propagation et impliquent certaines caractéristiques du change propagations. S’appuyant sur cela, nous vous proposons les procédures de mise en place des réseaux de propagation. Au sein du réseau, nous proposons la méthodologie de simulation de l’évolution propaga- tions, puis de présenter le processus de mise en uvre des méthodologies et des modèles comme un prototype en utilisant la technologie à base multi-agents. / The overall goal of this Ph.D. research is to provide reference models, support me- thods and tools that simulate change propagations in a Product Development (PD) project to assist decision-makings. We firstly establish a change analysis framework of modeling the context of change occurrence and propagation by taking into account the multiple knowledge areas of PD project simultaneously. Under the framework, we propose the conceptual models of change occurrence and change propagation that pro- vide a qualitative method to identify change and change propagation and imply some characteristics of change propagations. Relying on that, we suggest the procedures of building up the change propagation networks. Within the network, we propose the methodology of simulating change propagations and then present the process of im- plementing the methodologies and the models as a software prototype by using multi- agent based technology.
|
10 |
Assessing processes of long-term land cover change and modelling their effects on tropical forest biodiversity patterns – a remote sensing and GIS-based approach for three landscapes in East Africa: Assessing processes of long-term land cover change and modelling their effects on tropical forest biodiversity patterns – a remote sensing and GIS-based approach for three landscapes in East AfricaLung, Tobias 15 July 2010 (has links)
The work describes the processing and analysis of remote sensing time series data for a comparative assessment of changes in different tropical rainforest areas in East Africa. In order to assess the effects of the derived changes in land cover and forest fragmentation, the study made use of spatially explicit modelling approaches within a geographical information system (GIS) to extrapolate sets of biological field findings in space and time. The analysis and modelling results were visualised aiming to consider the requirements of three different user groups.
In order to evaluate measures of forest conservation and to derive recommendations for an effective forest management, quantitative landscape-scale assessments of land cover changes and their influence on forest biodiversity patterns are needed. However, few remote sensing studies have accounted for all of the following aspects at the same time: (i) a dense temporal sequence of land cover change/forest fragmentation information, (ii) the coverage of several decades, (iii) the distinction between multiple forest formations and (iv) direct comparisons of different case studies. In regards to linkages of remote sensing with biological field data, no attempts are known that use time series data for quantitative statements of long-term landscape-scale biodiversity changes.
The work studies three officially protected forest areas in Eastern Africa: the Kakamega-Nandi forests in western Kenya (focus area) and Mabira Forest in south-eastern Uganda as well as Budongo Forest in western Uganda (for comparison purposes). Landsat imagery of in total eight or seven dates in regular intervals from 1972/73 to 2003 was used. Making use of supervised multispectral image classification procedures, in total, 12 land cover classes (six forest formations) were distinguished for the Kakamega-Nandi forests and for Budongo Forest while for Mabira Forest ten classes could be realised. An accuracy assessment via error matrices revealed overall classification accuracies between 81% and 85%. The Kakamega-Nandi forests show a continuous decrease between 1972/73 and 2001 of 31%, Mabira Forest experienced an abrupt loss of 24% in the late 1970s/early 1980s, while Budongo Forest shows a relatively stable forest cover extent. An assessment of the spatial patterns of forest losses revealed congruence with areas of high population density while a spatially explicit forest fragmentation index indicates a strong correlation of forest fragmentation with forest management regime and forest accessibility by roads.
For the Kenyan focus area, three sets of biological field abundance data on keystone species/groups were used for a quantitative assessment of the influence of long-term changes in tropical forests on landscape-scale biodiversity patterns. For this purpose, the time series was extended with another three land cover data sets derived from aerial photography (1965/67, 1948/(52)) and old topographic maps (1912/13). To predict the spatio-temporal distribution of the army ant Dorylus wilverthi and of ant-following birds, GIS operators (i.e. focal and local functions) and statistical tests (i.e. OLS or SAR regression models) were combined into a spatial modelling procedure. Abundance data on three guilds of birds differing in forest dependency were directly extrapolated to five forest cover classes as distinguished in the time series. The results predict declines in species abundances of 56% for D. wilverthi, of 58% for ant-following birds and an overall loss of 47% for the bird habitat guilds, which in all three cases greatly exceed the rate of forest loss (31%). Additional extrapolations on scenarios of deforestation and reforestation confirmed the negative ecological consequences of splitting-up contiguous forest areas but also showed the potential of mixed indigenous forest plantings.
The visualisation of the analysis and modelling results produced a mixture of different outcomes. Map series and a matrix of maps both showing species distributions aim to address scientists and decision makers. The results of the land cover change analysis were synthesised in a map of land cover development types for each study area, respectively. These maps are designed mainly for scientists. Additional maps of change, limited to a single class of forest cover and to three dates were generated to ensure an easy-to-grasp communication of the major forest changes to decision makers. Additionally, an easy-to-handle visualisation tool to be used by scientists, decision makers and local people was developed. For the future, an extension of this study towards a more complete assessment including more species/groups and also ecosystem functions and services would be desirable. Combining a framework for land cover simulation with a framework for running empirical extrapolation models in an automated manner could ideally result in a GIS-based, integrated forest ecosystem assessment tool to be used as regional spatial decision support system. / Die Arbeit beschreibt die Prozessierung und Analyse von Fernerkundungs-Zeitreihendaten für eine vergleichende Abschätzung von Veränderungen verschiedener tropischer Waldökosysteme Ostafrikas. Um Effekte der Veränderungen bzgl. Landbedeckung und Waldfragmentierung auf Biodiversitätsmuster abzuschätzen, wurden verschiedene räumlich explizite Modellierungssätze innerhalb eines geographischen Informationssystems (GIS) zur räumlichen und zeitlichen Extrapolation biologischer Felderhebungsdaten benutzt. Die Visualisierung der Analyse- und Modellierungsergebnisse erfolgte unter Berücksichtigung der Bedürfnisse von drei verschiedenen Nutzergruppen.
Um Waldschutzmaßnahmen zu evaluieren und Empfehlungen für ein effektives Waldmanagement abzuleiten, sind quantitative Abschätzungen von Landbedeckungsveränderungen sowie von deren Einfluss auf tropische Waldbiodiversitätsmuster nötig. Wenige fernerkundungsbasierte Studien haben jedoch bislang alle der folgenden Faktoren berücksichtigt: (i) Informationen zu Veränderungen von Landbedeckung und Waldfragmentierung in dichter zeitlicher Sequenz, (ii) die Abdeckung mehrerer Jahrzehnte, (iii) die Unterscheidung zwischen mehreren Waldformationen, und (iv) direkte Vergleiche von unterschiedlichen Fallstudien. Hinsichtlich Verknüpfungen von Fernerkundung mit biologischen Felddaten sind bisher keine Studien bekannt, die Zeitreihendaten für quantitative Aussagen zu Langzeitveränderungen von Biodiversität auf Landschaftsebene verwenden.
Die Arbeit untersucht drei offiziell geschützte Gebiete: die Kakamega-Nandi forests in Westkenia (Hauptuntersuchungsgebiet) sowie Mabira Forest in Südost-Uganda und Budongo Forest in West-Uganda (zu Vergleichszwecken). Es wurden Landsat-Daten für insgesamt acht bzw. sieben Zeitpunkte zwischen 1972/73 und 2003 in ungefähr gleichen Abständen erworben. Mit Hilfe von überwachten, multispektralen Klassifizierungsverfahren wurden für die Kakamega-Nandi forests und Budongo Forest jeweils 12 Landbedeckungsklassen (sechs Waldformationen) und für Mabira Forest zehn Klassen unterschieden. Eine Genauigkeitsprüfung mit Hilfe von Fehlermatrizen ergab Gesamtklassifizierungsgenauigkeiten zwischen 81% und 85%. Die Kakamega-Nandi forests sind durch eine kontinuierliche Waldabnahme von 31% zwischen 1972/73 und 2001 gekennzeichnet, Mabira Forest zeigt einen abrupten Waldverlust von 24% in den späten 1970ern/frühen 1980ern, während die Ergebnisse für Budongo Forest eine relativ stabile Waldbedeckung ausweisen. Während eine Abschätzung der räumlichen Muster von Waldverlusten eine hohe Deckungsgleichheit mit Gebieten hoher Bevölkerungsdichte ergab, deutet die Anwendung eines räumlich expliziten Waldfragmentierungsindexes auf eine starke Korrelation von Waldfragmentierung mit der Art von Waldmanagement sowie mit der Erreichbarkeit von Wald über Straßen hin.
Um den Einfluss von Langzeit-Landbedeckungsveränderungen auf Biodiversitätsmuster auf Landschaftsebene für das kenianische Hauptuntersuchungsgebiet quantitativ abzuschätzen wurden drei Datensätze mit biologischen Felderhebungen zur Abundanz von Schlüsselarten/-gruppen verwendet. Zu diesem Zweck wurde die Zeitreihe zunächst um drei weitere Landbedeckungs-Datensätze ergänzt, die aus Luftbildern (1965/67, 1948/(52)) bzw. alten topographischen Karten (1912/13) gewonnen wurden. Zur Vorhersage der raum-zeitlichen Verteilung der Treiberameise Dorylus wilverthi wurden GIS-Operatoren und statistische Tests (OLS bzw. SAR Regressionsmodelle) in einem räumlichen Modellierungsablauf kombiniert. Abundanzdaten von drei sich hinsichtlich ihrer Abhängigkeit von Wald unterscheidenden Vogelgilden wurden direkt auf fünf Waldbedeckungsklassen hochgerechnet, die in der Zeitreihe unterschieden werden konnten. Die Ergebnisse prognostizieren Abundanzabnahmen von 56% für D. wilverthi, von 58% für Ameisen-folgende Vögel und einen Gesamtverlust von 47% für die Vogelgilden, was in allen drei Fällen eine deutliche Überschreitung der Waldverlustrate von 31% darstellt. Zusätzliche Extrapolationen basierend auf Szenarien bestätigten die negativen ökologischen Konsequenzen der Zerteilung zusammenhängender Waldflächen bzw. zeigten andererseits das Potential von Aufforstungen mit einheimischen Arten auf.
Die Visualisierung der Analyse- bzw. Modellierungsergebnisse führte zu unterschiedlichen Darstellungen: mit einer Reihe von nebeneinander positionierten Einzelkarten sowie einer Matrix von Einzelkarten, die jeweils Artenverteilungen zeigen, sollen Wissenschaftler und Entscheidungsträger angesprochen werden. Aus den Ergebnissen der Landbedeckungsanalyse für die drei Untersuchungsgebiete wurden Landbedeckungsveränderungstypen generiert und jeweils in einer synthetischen Karte dargestellt, die hauptsächlich für Wissenschaftler gedacht sind. Um die wesentlichen Waldveränderungen auch auf einfache Weise zu den Entscheidungsträgern zu kommunizieren, wurden zusätzliche Karten erstellt, die nur eine aggregierte Klasse „Waldbedeckung“ zeigen und jeweils auf drei Zeitschritte der Zeitreihen begrenzt sind. Zusätzlich wurde ein leicht zu bedienendes Visualisierungstool entwickelt, das für Wissenschaftler, Entscheidungsträger und die lokale Bevölkerung gedacht ist. Für die Zukunft wäre eine umfassendere Abschätzung unter Berücksichtigung zusätzlicher Arten/-gruppen sowie auch Ökosystemfunktionen und –dienstleistungen wünschenswert. Die Verknüpfung einer Applikation zur Landbedeckungsmodellierung mit einer Applikation zur Ausführung von empirischen Extrapolationsmodellen (in stärkerem Maße automatisiert als in dieser Arbeit) könnte im Idealfall in ein GIS-basiertes Tool zur integrativen Bewertung von Waldökosystemen münden, das dann als räumliches Entscheidungsunterstützungssystem verwendet werden könnte.
|
Page generated in 0.0538 seconds