• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 212
  • 28
  • 28
  • 21
  • 17
  • 6
  • 5
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 381
  • 381
  • 73
  • 70
  • 68
  • 50
  • 47
  • 46
  • 42
  • 40
  • 37
  • 36
  • 33
  • 31
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Fragment-based Excitonic Coupled-Cluster Theory for Large Chemical Systems

Liu, Yuhong 01 January 2017 (has links)
Accurate energetic modeling of large molecular systems is always desired by chemists. For example, ligand-protein binding simulations and enzymatic catalysis studies all involve with a small energy difference. The energetic accuracy depends largely on a proper handling of electronic correlations. Molecular mechanics (MM) methods deliver a parameterized Newtonian treatment to these problems. They show great capability in handling large calculations but give only qualitatively good results. Quantum mechanics (QM) methods solve Schrödinger equations and exhibit much better energy accuracy, though the computational cost can be prohibitive if directly applied to very large systems. Fragment-based methods have been developed to decompose large QM calculations into fragment calculations. However, most current schemes use a self- consistent field (SCF) method on fragments, in which no electronic correlation is accounted for. The super-system energy is computed as a sum of fragment energies plus two-body corrections and, possibly, three-body corrections (a "body" is a fragment). Higher order corrections can be added. Nevertheless, many problems require the treatment of high order electronic correlations. The coupled-cluster (CC) theory is the state-of-the-art QM method for handling electronic correlations. The CC wavefunction contains correlated excitations up to a given truncated level and coincidental excitations for all possible electronic excitations. It is a brilliant way of including more electronic correlations while maintaining a low-order scaling. In the proposed excitonic coupled-cluster (X-CC) theory, substantial modifications have been made to allow CC algorithms to act on the collective coordinates of fragment fluctuations to obtain super-system energy. The X-CC theory is designed to achieve accurate energetic modeling results for large chemical systems with much improved affordability and systematic improvability. The test system used in this work is a chain of beryllium atoms. A 30-fragment X-CCSD(2) calculation delivered matching accuracy with traditional CCSD method. An X-CCSD(2) calculation on a chain of 100 bonded fragments finished in 7 hours on a single 2.2 GHz CPU core. The X-CC scheme also demonstrates the ability in handling charge transfer problems. Due to the use of fluctuation basis in the test cases, the excitonic algorithms can be easily generalized to inhomogeneous systems. This will be investigated in future work.
232

Design of the electronics and optics needed to support charge-coupled devices : a project report ...

Zee, Kah Yep 01 January 1989 (has links) (PDF)
Over the last five years, charge-coupled devices (CCD) have been improved dramatically in terms of sensitivity, manufacturability and particularly, cost. This has enabled them to be used economically in many more industrial and commercial electronic imaging processes. They are found in products ranging from video cameras to satellite-based camera systems. This has sparked my interests in these devices, and with a great deal of encouragement from Dr. Turpin, I decided to base my Master's thesis/project on a CCD. The project was mainly based on the design of the electronics and optics needed to support a CCD. The particular circuit design which I used other designs which are available. Many of the designs are microprocessor- based, which tends to limit the speed of operation of the imaging process. Other circuits employ specially coded memory chips to implement the required logic processes, but again, the speed of operation is limited by the access times of the memory chips. The circuit employed in the project uses only logic gates and flip flops, and is probably one of the fastest circuits available for the capture of single-frame images.
233

Charge Transfer in Organic Semiconductor Systems Probed by Photoemission Spectroscopy

Kuhrt, Robert 11 October 2022 (has links)
In the present work, charge transfer in organic semiconductors is investigated by means of photoemission spectroscopy. Organic charge transfer systems consist of electron donors and acceptors and in some cases exhibit new electronic properties that are not observed in the individual constituents. Examples are metallic conductivity and changed optical or transport gaps. The main focus were interfaces between donor and acceptor molecules that were prepared as thin films by thermal evaporation in ultra-high vacuum. In particular, the strong electron acceptor F6TCNNQ was combined with several scientifically relevant donors, with the aim of achieving a large charge transfer. As reference systems, potassium doped F6TCNNQ and the interface between F6TCNNQ and gold were studied. In both systems, a large electron transfer to F6TCNNQ with similar spectroscopic signatures was observed. The investigated organic interfaces all showed charge transfer that manifested itself in form of changes in the core levels of F6TCNNQ that were similar for each system. Also, new occupied states in the former gaps of the molecules were found. For every investigated interface the Fermi energy was pinned above the respective highest occupied molecular orbitals which entails semiconducting behaviour and no metal-like delocalised charge carriers. For the combination of F6TCNNQ and dibenzopentacene, a blended film was prepared by co-deposition and compared with the corresponding interface. It was found that the electronic properties of the blend are initially determined by electrostatic interactions, whereas annealing leads to a large charge transfer due to a temperature induced change of molecular orientation. Moreover, the acceptors F2TCNQ and F16CoPc were used in order to compare systems with the same donor and different acceptors. Differences in the degree of charge transfer and interface morphology were observed. The last part of this work addresses the electronic properties of an organic rectifier that was fabricated by collaboration partners. It is built up of an organic heterojunction of two phtalocyanines (CuPc and F16CoPc) between two gold contacts. The energy level alignment across the device and the charge transfer reactions at the different interfaces are discussed with regard to the functionality of the device.
234

Photophysical and Photosensitizing Properties of Dimetal Quadruply Bonded Paddlewheel Complexes Probed Through Ultrafast Spectroscopy

Brown-Xu, Samantha E. 10 October 2014 (has links)
No description available.
235

Nonpolar Matrices for Matrix Assisted Laser Desportion Ionization – Time of Flight – Mass Spectrometry

Robins, Chad LaJuan 13 July 2005 (has links)
No description available.
236

Spectroscopic Studies of Doping and Charge Transfer in Single Walled Carbon Nanotubes and Lead Sulfide Quantum Dots

Haugen, Neale O. January 2015 (has links)
No description available.
237

Kelvin Probe Examination of Organic/Metallic Semiconductors

Roberts, Vincent 20 June 2012 (has links)
No description available.
238

INTERFACIAL INTERACTIONS OF OLIGOANILINES WITH SOLID SURFACES

MOHTASEBI, AMIRMASOUD 11 1900 (has links)
It is known that organic monolayers on solid surfaces can enable electronic properties that are absent in the bulk of the solid materials. Often, once the organic film come into the contact with a solid surface, the established electronic interaction at their interface remains undisturbed. However, using a redox-active organic monolayer creates the possibility for modulating the extent and the direction of the interfacial charge transfer, establishing a switch at the interface. The theme of this thesis is investigation of the interfacial interaction of different redox states of a molecular switch, phenyl-capped aniline tetramer (PCAT) with iron oxide and graphite surfaces and their potential application in electronic devices. The nucleation and growth of submonolayer films of different oxidation states of PCAT on iron oxide surface was studied. Using atomic force microscopy and scaling island size distribution method the surface diffusion parameters of these islands were evaluated. Using X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy the changes in these organic monolayers before and after interaction with iron oxide were demonstrated. However, these techniques were unable to provide similar data from the solid surface side of the interface. Instead, we were able to demonstrate the changes in the iron oxide film as a result of interfacial charge transfer using electrical conductivity measurement techniques. Based on this information a microfluidic chemical sensor based on the interface of pencil film and PCAT for quantification of free chlorine in drinking water was constructed. Using XPS and UV-vis spectroscopy it was shown that the interaction the organic monolayer with sodium hypochlorite solution leads to the development of positive charges on the backbone of PCAT. This electrostatic charge can affect the charge transport in the pencil film causing the modulation of electrical conductivity of the film. The presented work demonstrates alternative pathways for the design of novel hybrid electronic devices based on thin molecular film and solid surfaces. / Thesis / Doctor of Philosophy (PhD)
239

Ultrafast Charge Transfer in Donor-Acceptor Push-Pull Constructs

Jang, Young Woo 08 1900 (has links)
Ultrafast charge and electron transfer, primary events in artificial photosynthesis, are key in solar energy harvesting. This dissertation provides insight into photo-induced charge and electron transfer in the donor and acceptor constructs built using a range of donor and acceptor entities, including transition metal dichalcogenides (TMDs, molybdenum disulfide (MoS2), and tungsten disulfide (WS2)), N-doped graphene, diketopyrrolopyrrol (DPP), boron-dipyrromethene (BODIPY), benzothiadiazole (BTD), free base and metal porphyrins, zinc phthalocyanine (ZnPc), phenothiazine (PTZ), triphenylamine (TPA), ferrocene (Fc), fullerene (C60), tetracyanobutadiene (TCBD), and dicyanoquinodimethane (DCNQ). The carefully built geometries and configurations of the donor and (D), acceptor (A), with a spacer in these constructs promote intramolecular charge transfer, and intervalence charge transfer to enhance charge and electron transfer efficiencies. Steady-state UV-visible absorption spectroscopy, fluorescence and phosphorescence spectroscopies, electrochemistry (cyclic voltammetry (CV) and differential pulse voltammetry (DPV)), spectroelectrochemistry (absorption spectroscopy under controlled potential electrolysis), transient absorption spectroscopy, and quantum mechanical calculations (density functional theory, DFT) are used to probe ground and the excited state events as well as excited state charge separation resulting in cation and anion species. The current findings are useful for the increased reliance on renewable energy resources, especially solar energy.
240

Theoretical description of charge-transport and charge-generation parameters in single-component and bimolecular charge-transfer organic semiconductors

Fonari, Alexandr 07 January 2016 (has links)
In this dissertation, we employ a number of computational methods, including Ab Initio, Density Functional Theory, and Molecular Dynamics simulations to investigate key microscopic parameters that govern charge-transport and charge-generation in single-component and bimolecular charge-transfer organic semiconductors. First, electronic (transfer integrals, bandwidths, effective masses) and electron-phonon couplings of single-component organic semiconductors are discussed. In particular, we evaluate microscopic charge-transport parameters in a series of nonlinear acenes with extended pi-conjugated cores. Our studies suggest that high charge-carrier mobilities are expected in these materials, since large electronic couplings are obtained and the formation of self-localized polarons due to local and nonlocal electron-phonon couplings is unlikely. Next, we evaluate charge detrapping due to interaction with intra-molecular crystal vibrations in order to explain changes in experimentally measured electric conductivity generated by pulse excitations in the IR region of a photoresistor based on pentacene/C60 thin film. Here, we directly relate the nonlocal electron-phonon coupling constants with variations in photoconductivity. In terms of charge-generation from an excited manifold, we evaluate the modulation of the state couplings between singlet and triplet excited states due to crystal vibrations, in order to understand the effect of lattice vibrations on singlet fission in tetracene crystal. We find that the state coupling between localized singlet and correlated triplet states is much more strongly affected by the dynamical disorder due to lattice vibrations than the coupling between the charge-transfer singlet and triplet states. Next, the impact of Hartree-Fock exchange in the description of transport properties in crystalline organic semiconductors is discussed. Depending on the nature of the electronic coupling, transfer integrals and bandwidths can show a significant increase as a function of the amount of the Hartree-Fock exchange included in the functional. Similar trend is observed for lattice relaxation energy. It is also shown that the ratio between electronic coupling and lattice relaxation energy is practically independent of the amount of the Hartree-Fock exchange, making this quantity a good candidate for incorporation into tight-binding transport models. We also demonstrate that it is possible to find an amount of the Hartree-Fock exchange that recovers (quasi-particle) band structure obtained from a highly accurate G0W0 approach. Finally, a microscopic understanding of a phase transition in charge-carrier mobility from temperature independent to thermally activated in stilbene-tetrafluoro-tetracyanoquinodimethane crystal is provided.

Page generated in 0.0628 seconds