• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 212
  • 28
  • 28
  • 21
  • 17
  • 6
  • 5
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 381
  • 381
  • 73
  • 70
  • 68
  • 50
  • 47
  • 46
  • 42
  • 40
  • 37
  • 36
  • 33
  • 31
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Improved organic materials and electronic properties of organic solar cells

Kraner, Stefan 24 November 2015 (has links)
Organic photovoltaic (OPV) is a promising technology for renewable energy at low cost. Over the last five years, the power conversion efficiency (PCE) has doubled to 12%, which still is clearly lower than commercially available inorganic solar cells with a PCE around 20%. One approach to improve the PCE is to complement the conversion of light into electrical energy with the infrared (IR) part of the solar spectrum. However, the fundamental difference between organic and inorganic semiconductors is the exciton binding energy. Compared to inorganic semiconductors, in organic materials the exciton binding energy is more than 20 times higher, leading to strongly bound electron hole pairs, which are primarily generated upon photo-excitation. To dissociate these charges, in OPV, a donor-acceptor system is used. However, the energetics of this donor-acceptor system lowers the obtained open circuit voltage, representing one major loss of OPV as compared to inorganic solar cells. In the first part of this work, three benzannulated 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (aza-BODIPY) infrared absorbing donor dyes with methyl, methoxy, or without side-group attached are investigated. The solar cells with the highest PCE, i.e. the devices using the donor molecule without a side-group, exhibit a difference between the optical and the effective gap of 0.17 eV. It reflects the "driving force" for the electron to transfer from the donor to the acceptor, and is lowest for the best performing device, indicating that in the devices used efficient charge dissociation does not require large electron transfer energy loss. A - for OPV - relatively high open circuit voltage of 0.81 V is measured and when compared to the optical gap of the donor, a voltage loss of 0.74 V is obtained, reflecting the high voltage losses in OPV. In inorganic devices these voltage loss is around 0.4 V. One approach to lower this difference in the voltage loss is to lower the exciton binding energy of neat organic materials, leading to a larger exciton size. A saturation of the exciton size at about 1.2 nm is calculated by time dependent density functional method (TD-DFT) for one dimensional conjugated organic molecules with a size larger than 4nm. For the largest size of the exciton, provided by the poly(benzimidazobenzophenanthroline) (BBL), a Coulomb interaction of 0.4 eV between the electron and hole wave function is calculated, leading to an estimated exciton binding energy of about 0.2 eV, serving as a lower limit for the organic molecules investigated. The exciton binding energy can further be lowered by increasing the dielectric constant or by introducing a charge transfer (CT) state between two adjacent molecules. It is shown for the ladder polymer BBL that the dielectric function, including ionic and electronic contributions, can be calculated by a new method within the DFT and TD-DFT framework. In agreement with ellipsometry measurements, a highly anisotropic dielectric constant is obtained, which is 8.3 along the backbone of the polymer and around 3 perpendicular to the polymer. The high dielectric constant along the backbone originates from the strong delocalization of the electrons along the π-system. The ionic contribution increases the mean value of the dielectric constant from 3.6 to 4.2. In order to further increase the dielectric constant, different polar side-chains are attached to the ladder polymer BBL and their dielectric constant is calculated. A strong increase of the dielectric constant to about 17 is obtained by attaching a zwitterionic side-chain to the BBL monomer. In order to lower the exciton binding energy by a CT state, a charge transfer from a donor to an acceptor molecule must be introduced. The Coulomb binding energy of intermolecular CT states are calculated. It is shown that an intermolecular CT state of two π-stacked BBL oligomers does not exhibit a lower Coulomb binding energy as compared to the intramolecular binding energy. However, by a spatial separation of the donor and the acceptor molecule, in-line of the polymer backbone, the Coulomb binding energy is reduced from 0.40 eV to 0.24 eV. Combining such CT states with the high dielectric constant obtained by zwitterionic side-chains would lead to an exciton binding energy close to the thermal energy, resulting in spontaneous free carrier generation on neat materials. This could potentially reduce the voltage losses and increase the PCE in OPV devices significantly. / Die organische Photovoltaik stellt eine kostengünstige, erneuerbare und daher zukunftsgerichtete Energieversorgung dar. Die Umwandlungseffizienz organischer Solarzellen von Sonnenenergie in elektrische Energie konnte über die letzten fünf Jahre auf 12% verdoppelt werden. Kommerziell erhältliche anorganische Solarzellen weisen im Vergleich dazu eine Effizienz von ca. 20% auf. Eine Möglichkeit, die Effizienz organischer Solarzellen zu erhöhen, ist die Umwandlung von Licht in Elektrizität nicht nur im sichtbaren Bereich, sondern zusätzlich auch im infraroten Bereich des Sonnenspektrums. Der größte Unterschied zwischen den organischen und anorganischen Solarzellen liegt allerdings in der Exzitonbindungsenergie, welche in organischen Materialien ca. 20 Mal größer ist. Um das Exziton in freie Ladungsträger zu trennen, wird in organischen Solarzellen deshalb ein Donator-Akzeptor-Übergang benutzt, welcher unter anderem auch für den Spannungs- und damit für den Effizienzverlust von organischen Solarzellen verantwortlich ist. Im ersten Teil der Dissertation werden verschiedene funktionalisierte Donator-Moleküle, die infrarotes Licht absorbieren, untersucht. Die Donator-Moleküle ohne zusätzliche Funktionalisierungsgruppe weisen dabei die höchste Umwandlungseffizienz auf. In den besten Zellen kann ein Unterschied zwischen der optischen und effektiven \"Bandlücke\" von 0,17 eV gemessen werden. Dieser Unterschied stellt die treibende Kraft für den Übergang des Elektrons vom Donator zum Akzeptor dar. Da jedoch dieser Unterschied in der besten Solarzelle am geringsten ist, scheint die Dissoziation der Ladungsträger in den untersuchten Donator-Akzeptor-Systemem nicht vom ihm abzuhängen. Die gemessene relative hohe Leerlaufspannung von 0,81 V ist 0,74 V kleiner als die effektive Bandlücke und zeigt die hohen Spannungsverluste organischer Solarzellen. Die Spannungsverluste anorganischer Solarzellen liegen im Bereich von 0,4 V. Ein Ansatz, um die Spannungsverluste zu verkleinern, liegt in der Reduzierung der Exzitonbindungsenergie, woraus ein größeres Exziton erfolgt. Mit der zeitabhängigen Dichtefunktionaltheorie wird an einer Reihe organischer Moleküle gezeigt, dass die Exzitongröße bei einer Moleküllänge (oder Konjugationslänge) größer als 4nm bei 1,2nm sättigt. Für das größte Exziton, welches im Leiterpolymer Poly(benzimidazobenzophenanthroline) (BBL) vorhanden ist, wird eine Coulomb-Bindungsenergie von 0,4 eV berechnet und eine Exzitonbindungsenergie von 0,2 eV abgeschätzt. Die Exzitonbindungsenergie kann entweder durch Erhöhung der Dielektrizitätskonstante oder durch Erzeugung eines Ladungstransfer-Zustandes weiter verringert werden. Es wird gezeigt, dass mit einer neu entwickelten Methode auf Basis der Dichtefunktionaltheorie die ionischen und elektronischen Beiträge zur dielektrischen Funktion von BBL berechnet werden können. Die berechneten anisotropen Werte stimmen gut mit Werten aus Ellipsometriemessungen überein. Entlang der Polymerkette erhalten wir eine hohe Dielektrizitätskonstante von 8,3 und senkrecht dazu von ca. 3. Die hohe Dielektrizitätskonstante entlang der Polymerkette kann auf die starke Delokalisation der π-Elektronen zurückgeführt werden. Der Mittelwert der Dielektrizitätskonstante wird durch die ionischen Beiträge von 3,6 auf 4,2 erhöht. Um die Dielektrizitätskonstante weiter zu erhöhen, werden verschiedene polare Seitenketten am BBL-Polymer angebracht und die Dielektrizitätskonstante berechnet. Es wird gezeigt, dass die Anbringung einer zwitterionischen Seitenkette am BBL-Monomer die Dielektrizitätskonstante auf 17 erhöht. Um die Exzitonbindungsenergie durch einen Ladungstransfer-Zustand zu verringern, werden ein Donator- und ein Akzeptor-Molekül benötigt. Die Coulomb-Bindungsenergien der intermolekularen Ladungstransfer-Zustände werden berechnet. Es wird gezeigt, dass intermolekulare Ladungstransfer-Zustände zwischen zwei π-gestapelten BBL-Oligomeren keine Verringerung der Coulomb-Bindungsenergie bewirken. Bei einer räumlichen Trennung des Donator- und Akzeptor-Moleküls entlang der Polymerkette kann die Coulomb-Bindungsenergie von 0,40 eV auf 0,24 eV gesenkt werden. Eine Kombination aus diesem Ladungstransfer und der Erhöhung der Dielektirizitätskonstante durch zwitterionische Seitenketten kann zu einer niedrigen Exzitonbindungsenergie, nahe der thermischen Energie, und damit zu freien Ladungsträgern führen. Der damit verringerte Spannungsverlust kann die Umwandlungseffizienz organischer Solarzellen signifikant erhöhen.
292

Synthese und Charakterisierung neuartiger Donor-Akzeptor substituierter Oligosilane

Beyer, Christian 16 December 2002 (has links)
Von generellem Interesse für potentielle Anwendungsmöglichkeiten sind Materialien mit speziellen elektrischen bzw. nichtlinearen optischen Eigenschaften. Im Rahmen dieser Arbeit wurden neue dipolare Verbindungen synthetisiert und charakterisiert, welche eine zentrale Organosilanspacereinheit (-SiMex-,-(SiMe2)6-), ein terminales Metallkomplexfragment (potentieller Donor, FcN-) sowie eine terminale organische Akzeptoreinheit (-PhF, -PhBr, -PhCHO) enthalten und gleichzeitig eine große Variationsbreite gewünschter Eigenschaften aufweisen. Aus Photo-EMK-Messungen, UV/VIS-, NMR-Spektroskopie, Mößbauer- und cyclovoltammetrischen Untersuchungen kann auf eine im Festkörper auftretende temperaturabhängig variierende intermolekulare Kopplung zwischen dem Donor und dem organischen Akzeptor geschlossen werden. Photo-EMK- und Einkristallröntgenstrukturanalysen der Salze (Hydrochloride, Pikrate) offenbaren starke intermolekulare Wechselwirkungen (C-H···π, D-C-H···A) mit entscheidendem Einfluß auf Festkörpereigenschaften (supramolekulare MO's).
293

An Initial Exploration of Transition Metal Nitroprussides as Electrode Materials for Sodium-ion Batteries

Enblom, Veronica January 2022 (has links)
Na-ion batteries (NIBs) are expected to revolutionise the battery sector by promising an affordable technology while capitalising on sustainable development. To compete with Li-ion batteries, however, electrode materials with higher capacities need to be developed. Transition metal nitroprussides (TM-NPs), NaxM[Fe(CN)5NO]1-y ·zH2O, is a material class derived from one of the most popular positive electrode materials for NIBs, Prussian blue analogues (PBAs), where one of the cyano ligands have been replaced by an electroactive nitrosyl (NO) ligand. Thus, in theory TM-NPs should be able to reach higher capacities than PBAs and therefore be attractive candidates for high-capacity electrodes. However, if the nitrosyl is redox active in NIBs and how the cycling behaviour may be affected by the M cation is unknown. The focus in this thesis is therefore to explore the charge-discharge behaviour of four different TM-NPs (M=Fe, Ni, Mn, and Cu) in Na-ion half-cell batteries to gain an initial understanding of their electrochemical behaviour and to set up research questions to be pursued in the future. Based on our observations and previous studies, we propose that the nitrosyl is electrochemically active in all four TM-NPs, and that it contributes with a considerable amount of capacity, although with a large voltage hysteresis. It is further concluded that all M cations apart from Ni were redox active, but to varying degrees on charging and discharging. We argue that both the redox and the voltage hysteresis is caused by anisotropic charge transfer within the materials, and that it needs to be understood before commercialisation of TM-NPs can be realised. Though there are challenges to overcome, the many interesting attributes of TM-NPs, including anionic redox, anisotropic charge transfer and structural diversity, makes them promising as a new type of cheap and sustainable electrode material for NIBs.
294

Photocatalytic nanocomposites for degradation of organic pollutants in water under visible light

Malefane, Mope Edwin 11 1900 (has links)
Heterojunctions were generated between tungsten trioxide and tetraphenyl porphyrin with reduced graphene oxide or exfoliated graphite support for mineralisation of acid blue 25 dye under visible light radiation. Moreover, degradation of pharmaceuticals was conducted using p-n heterojunctions between WO3 and Co3O4 and a direct Z-scheme heterojunction between BiOI and Co3O4 prepared using in-situ method and solvothermal self-assembly method respectively. The synthesized materials were characterised using Raman, FTIR, SEM/EDS, TEM, XRD, TGA, BET, UV-Vis and PL techniques. UV-Vis, TOC and HPLC-QTOF-MS were used to study the degradation efficiency and pathway. Scavenger trapping experiments were conducted to propose the charge transfer mechanisms. The highest degradation efficiency (99 %) was achieved for the dye and the pharmaceuticals using visible light. The mineralisation ability of the fabricated nanomaterials was pH dependent with acidic conditions favouring the removal of the dye (pH 5) while alkaline conditions favoured the mineralisation of pharmaceuticals (pH 10 – 11). / Civil and Chemical Engineering
295

Photoinduzierte Absorptionsspektroskopie an organischen, photovoltaisch aktiven Donor-Akzeptor-Heteroübergängen

Schüppel, Rico 04 February 2008 (has links)
In organischen Solarzellen resultiert die photovoltaische Aktivität aus dem das Sonnenlicht absorbierenden Donor-Akzeptor-Heteroübergang. Die Grenzfläche zwischen den beiden organischen Materialien dient der effizienten Ladungsträgertrennung. Die vorliegende Arbeit leistet einen Beitrag im Verständnis zum Wirkungsmechanismus und der zu optimierenden Parameter in diesen Solarzellen. In Bezug auf die Anpassung des Donor-Akzeptor-Heteroübergangs wird neben dem Mechanismus der Ladungsträgergeneration an der Grenzfläche die erzielbare Leerlaufspannung in den Solarzellen diskutiert. Ein wesentliches Kriterium zur Erhöhung der Leerlaufspannung ist die Anpassung der Energieniveaus am Heteroübergang. Eine effiziente Ladungsträgertrennung wird durch eine hinreichende Stufe im Ionisationspotenzial sowie in der Elektronenaffinität am Heteroübergang erreicht. Zur Maximierung der Leerlaufspannung muss diese Überschussenergie, d.h. die Energiedifferenz zwischen photogeneriertem Exziton und freiem Ladungsträgerpaar, auf das notwendige Minimum reduziert werden. Eine Reihe von Dicyanovinyl-Oligothiophenen (DCVnT, n=3-6) wurden als Donor im Heteroübergang zu Fulleren C60 verwendet. Das Ionisationspotenzial der DCVnT nimmt mit zunehmender Kettenlänge ab, während die Elektronenaffinität, die weitestgehend durch die Dicyanovinyl-Endgruppen bestimmt wird, von der Kettenlänge nahezu unabhängig ist. Mittels photoinduzierter Absorptionsspektroskopie und zeitaufgelöster Fluoreszenzmessung wurde der Energie- und Elektronentransfer zwischen DCVnT und C60 entlang der homologen Reihe der DCVnT untersucht. Eine wesentliche Feststellung ist die Korrelation zwischen Rekombination in den Triplettzustand und der Leerlaufspannung. So konnte unter anderem gezeigt werden, dass durch die Verwendung angepasster Heteroübergänge unter bestimmten energetischen Voraussetzungen die indirekte Triplettbesetzung einen bislang nicht beachteten Verlustmechanismus für organische Solarzellen darstellt. Für organische Solarzellen ist demnach ein Kompromiss zwischen möglichst hoher Leerlaufspannung und effizienter Ladungsträgerdissoziation unter Vermeidung dieser Triplettrekombination zu erzielen. Weiterhin wird ein Konzept zur Nutzung dieser indirekten Triplettrekombination diskutiert. Dieses basiert auf der Tatsache, dass die Lebensdauer der Exzitonen im Triplettzustand gegenüber denen im Singulettzustand um 3-6 Größenordnungen höher ist. Damit wird eine höhere Diffusionslänge erwartet, was in einer dickeren und damit stärker absorbierenden aktiven Schicht genutzt werden könnte.
296

Intramolecular Charge Transfer in Dimethylaminobenzonitrile and Related Aromatic Nitriles

Lee, Jae-kwang 15 December 2009 (has links)
No description available.
297

Electrochemical Studies of Reactions in Small Volumes Less Than 1 Femto Litres.

Agyekum, Isaac 07 May 2011 (has links) (PDF)
Electrochemical methods have been used to study electron transfer reactions at the interface between an aqueous phase of less than 1 femto liters in volume and a bulk organic phase. The small aqueous phase is formed at the end of a slightly recessed platinum electrode. When a negative potential is applied between the Pt electrode and the aqueous phase, Ru(NH3)63+ in the aqueous phase could be reduced to Ru(NH3)62+. Because the volume of the aqueous phase is very small, the electrochemically formed Ru(NH3)62+ could instantly reach the interface between the aqueous phase and the organic phase which contains 7,7,8,8-Teteracyanoquinodimethane (TCNQ), and be oxidized to form Ru(NH3)63+ by giving electrons to TCNQ at the interface. Our results showed a positive shift in the E1/2 comparing the reaction undertaken in the recessed cavity and the bulk solution.
298

Vacuum Compatible Solvated Thin Film Samples for XUV Spectroscopy: Studying Molecular Bistability in the Native Solvation Environment

Johnson, Samuel Dwight 28 October 2022 (has links)
No description available.
299

Charge transfer at organic heterojunctions: electronic structure and molecular assembly

Beyer, Paul 30 May 2022 (has links)
Ziel dieser Arbeit war es, den grundlegenden Mechanismus des Ladungstransfers bei molekularer Dotierung an organisch-organischen Grenzflächen besser zu verstehen. Es wurde eine Vielfalt modernster spektroskopischer Methoden eingesetzt, um die elektronische Struktur und neue dotierungsinduzierte CT-Übergänge zu ergründen. Dazu gehören UPS und XPS für Valenzsignaturen und Kernniveauzustände. Absorptionsspektroskopie im UV-vis-NIR und Röntgenbereich wurde zur Bestimmung der Übergangsenergien eingesetzt. Schwingungsspektroskopie wurde eingesetzt, um den CT-Grad in DA-Systemen für gestapelte und gemischte Heteroübergänge zu quantifizieren. Strom-Spannungs-Messungen wurden zur Bestimmung der elektrischen Leitfähigkeit und Rasterkraftmikroskopie zur Charakterisierung der Oberflächenmorphologie eingesetzt. Die in dieser Arbeit behandelten Themen sind: (1) Planare Heteroübergänge aus DIP und F6TCNNQ wurden hergestellt. Sie wurden im Hinblick auf CT-Komplexbildung, Grenzflächendotierung und Exzitonenbindungsenergien an der D|A-Grenzfläche untersucht. (2) DBTTF wurde mit TCNNQ und F6TCNNQ in Lösung und in dünnen Filmen gemischt. Daraus wurde der Zusammenhang zwischen Dotierungsmechanismen, CTC- und IPA-Bildung, mit dem Aggregatzustand hergeleitet. (3.1) Rubren-Einkristalle wurden mit Mo(tfd)3 und CoCp2 p- und n-dotiert. Nach der Dotierung verschiebt sich die Banddispersion entsprechend, wohingegen die effektive Masse der Löcher konstant bleibt. (3.2) DBTTF-Einkristalle wurden mit TCNNQ, F6TCNNQ und Mo(tfd)3 dotiert. Aus den Änderungen der elektronischen Struktur wurden der CT über die D|A-Grenzfläche sowie die Dichte der Oberflächenzustände quantifiziert. (4) Von drei DA-Systemen mit unterschiedlicher GS-Wechselwirkungsstärke, DIP:C60, DIP:PDIR-CN2 und DIP|F6TCNNQ, wurden die Grenzflächenexzitonen charakterisiert. Ein Vergleich verschiedener Modelle, die die optische CTC Absorption aus dem DA-Energieniveauoffset beschreiben und abschätzen können, rundet die Ergebnisse ab. / The aim of this thesis was to enhance the understanding of the charge transfer mechanism during molecular doping at organic-organic interfaces. A wide range of state-of-the-art spectroscopic methods was employed to unravel the electronic structure and new CT transitions resulting from doping. This includes UPS and XPS for valence signatures and core level states. Absorption spectroscopies in the UV-vis-NIR and X-ray regions were used to determine transition energies. Vibrational spectroscopy was employed to quantify the CT degree in DA systems for stacked and mixed heterojunctions. Current-voltage measurements were used for the determination of electrical conductivities and scanning force microscopy for surface morphology characterization. The topics covered in this thesis are: (1) Planar heterojunctions of DIP and F6TCNNQ were fabricated. They were studied with regard to CT complex formation, interface doping and exciton binding energies at the D|A interface. (2) DBTTF was blended with TCNNQ and F6TCNNQ in solution and in thin films. From this, the connection of the two doping mechanisms, CTC and IPA formation, to the state of matter was derived. (3.1) Rubrene single crystals were p- and n-doped with Mo(tfd)3 and CoCp2. After doping, the band dispersion shifts accordingly, while the hole effective mass stays constant. (3.2) DBTTF single crystals were doped with TCNNQ, F6TCNNQ and Mo(tfd)3. From changes in the electronic structure, the CT across the D|A interface as well as the density of surface states were quantified. (4) From three DA systems with varying GS interaction strength, DIP:C60, DIP:PDIR–CN2 and DIP|F6TCNNQ, the interfacial excitons were characterized. A comparison of different models, which describe and allow to estimate the optical absorption in CTCs from the DA energy level offset, concludes the results.
300

Spectroscopic Investigation of the Excited State Properties of Platinum(Ii) Charge Transfer Chromophores

Glik, Elena A. 25 November 2009 (has links)
No description available.

Page generated in 0.0536 seconds