• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 212
  • 28
  • 28
  • 21
  • 17
  • 6
  • 5
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 381
  • 381
  • 73
  • 70
  • 68
  • 50
  • 47
  • 46
  • 42
  • 40
  • 37
  • 36
  • 33
  • 31
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Elektrické, optické a senzorové vlastnosti organických polovodičů / Electrical, Optical and Sensoric Properties of Organic Semiconductors

Pochekailov, Sergii January 2009 (has links)
There is big interest in cheap, sensitive and selective gas sensors. In this work, substituted soluble phthalocyanines are proposed as a sensing materials for several gases. Optical, electrical and gas sensing properties of several phthalocyanines were studied and the mechanisms of their interaction with several analyte gases are described. It was found, that sulfo-substituted Pcs has good sensitivity to humidity. Sulfonamide-substituted phthalocyanines are promising for nitrogen dioxide and volatile organic compounds detection. tert-Butyl-substituted phthalocyanines are sensitive to NO2 under higher temperature and seems to be used for environmental monitoring. Commercial gas sensors for NO2, ethanol and humidity were successfully created.
342

Mechanistic Investigations of Metal-Metal Cooperativity in Dinickel Complexes and Iron/Cobalt Prussian Blue Analogues

Stevens, Hendrik 13 May 2021 (has links)
No description available.
343

Oligo(3-hexylthiophene) Wires for needs of Single-Molecule Nanoelectronics

Öktem, Gözde 09 August 2017 (has links)
A material to function as a molecular electronic device should have a strong coupling with electrodes through appropriate and well-defined anchoring groups and have to support an effective traveling of charges via a conjugated molecular backbone. Oligo(3-hexylthiophene)s are π-conjugated molecules having large applicability in several areas of organic electronics owing interesting semiconducting properties and they also hold great promises in the field of single-molecule electronics. Polymerization methods, in principle, allow construction of long conjugated systems in a single synthetic step, however, most of them lack precision. This work uses externally initiated chain-growth Kumada Catalyst - Transfer Polycondensation (KCTP) for the synthesis of semiconductive oligo(3-hexylthiophene) wires with controllable molecular weights, low polydispersities, high regioregularities as well as with well-defined starting and end groups. In such a way, the synthetic efforts were compromised to obtain relatively easy a series of very complex molecular wires with a reasonable structural precision. To modulate the electronic function of oligomer backbones, specific charge-transfer moieties (DMA-TCBD and Fc-TCBD) were inserted as side chains or end groups. In-situ termination of KCTP with ZnCl-functionalized electron rich alkynes followed by Diederich-type click reaction resulted in the synthesis of asymmetrical oligo(3-hexylthiophene)s having thiolate-functionalized starting groups and donor-functionalized end-groups with a high degree of end-group functionalizations. Side chains of double-thiolate functionalized oligo(3-hexylthiophene)s, on the other hand, were further modified with the insertion of charge-transfer groups by post-polymerization functionalization. While the facile synthesis and modification of oligo(3-hexylthiophene)s enable the control over the molecular backbone, the specific starting and end anchoring groups allow the control over the electrode oligomer interface. To assure the formation of alligator clips between oligomer backbone and Au electrode, the optimizations including proper end-group conversion into mild counterparts followed by in-situ deprotection into thiolates and the binding abilities on gold were investigated. Finally, the conductance of bis-end functionalized oligo(3-hexylthiophene)s was preliminarily studied through oligomer backbone by Mechanically Controllable Break Junctions (MCBJs) setup and through oligomer-attached DNA origami-templated gold nanowires by individual electrical contacts. The developed KCTP-based synthetic route, at the end, presents new opportunities for the facile synthesis, the ease of modification and the feasibility of asymmetrical and side chain functionalized oligo(3-hexylthiophene) wires for needs of molecular electronics.
344

Direct correlation of electrochemical behaviors with anti-thrombogenicity of semiconducting titanium oxide films

Wan, Guojiang, Lv, Bo, Jin, Guoshou, Maitz, Manfred F., Zhou, Jianzhang, Huang, Nan 11 October 2019 (has links)
Biomaterials-associated thrombosis is dependent critically upon electrochemical response of fibrinogen on material surface. The relationship between the response and anti-thrombogenicity of biomaterials is not well-established. Titanium oxide appears to have good anti-thrombogenicity and little is known about its underlying essential chemistry. We correlate their anti-thrombogenicity directly to electrochemical behaviors in fibrinogen containing buffer solution. High degree of inherent n-type doping was noted to contribute the impedance preventing charge transfer from fibrinogen into film (namely its activation) and consequently reduced degree of anti-thrombogenicity. The impedance was the result of high donor carrier density as well as negative flat band potential.
345

Reaktivität von Chlorosilanen gegenüber Aminen

Knopf, Claudia 07 May 2004 (has links)
Gegenstand dieser Arbeit war die Untersuchung verschiedener Systeme Chlorosilan / Amin bezüglich deren elektronischer Struktur, Molekülstruktur und Reaktivität. Einen Schwerpunkt bildete dabei die Untersuchung der LEWIS-BASE-katalysierten Disproportionierung unterschiedlich chlorierter Disilane mit elektronenreichen Alkenen, wie Tetrakis-(dimethylamino)-ethylen (TDAE) oder N,N,N’,N’-Tetramethyl-1,4-phenylendiamin (TPDA). Die Alkene sollten auf mögliche Elektronenübertragungsreaktionen, aber auch Chelatbildung mit den eingesetzten Disilanen bzw. intermediär gebildeten Silylenen getestet werden. Ein weiterer Schwerpunkt lag bei der Synthese und Charakterisierung neuer hetero- und homocyclischer Oligosilane. Die erhaltenen Cyclooligosilane wurden auf ihre Donorwirkung gegenüber elektronendefizienten π-Alkenen und eine damit verbundene Charge-Transfer-Komplexbildung untersucht. In die Auswertung wurden auch ab-initio-Berechnungen einbezogen, die mit den experimentellen Ergebnissen (u.a. NMR, IR, Röntgeneinkristallstrukturanalyse) vergleichend diskutiert wurden.
346

Electronic structure and transport in low dimensional systems

Liebing, Simon 27 August 2019 (has links)
The work discusses the development of molecular electronics based on the possibility of the usage of anorganic quantum dots and organic molecules as basis material. Of special interest are the properties of semiconductor quantum dots and their modification due to the coupling of quantum dots from different materials. Eventually these are proper candidates to avoid the fast recombination of excitons which is a problem in many organic photovoltaic materials, by local separation of charge carriers. Another materials class investigated are the so called charge transfer dimers. On the way to usable molecular building blocks switching and rectification behavior are important properties, therefore they were of special interest in the investigation. Especially the usage of charge transfer materials in rectification was already suggested in the 70’s, but could be realized till now only with a quiet limited success. Already around the millennium it was shown that a too strong coupling between the components leads to a resymmetrization of the I-V-characteristics. For all systems the electronic structure was investigated by means of density functional theory. Additional the charge transport in between gold leads was computed based on non equilibrium Greens functions. For the system of coupled quantum dots it is shown how the combination of several gates can be used to adjust the transport properties. This work shows that the rectification effect within weakly coupled charge transfer systems stays also small because also in this case a resymmetrization of the I-V-characteristics takes place.:1 Introduction 2 Molecular Electronics 3 Theoretical background 4 Computational details and software packages 5 Modeling 6 Results and Discussion 6.1 Quantum dots 6.2 Transport through coupled quantum dots 6.3 Charge transfer dimers 6.4 Transport through charge transfer dimers 7 Conclusion 8 Outlook Acknowledgement List of Figures List of Tables Bibliography List of own Publications / Die Arbeit befasst sich mit der Entwicklung der molekularen Elektronik und insbesondere mit der Prüfung der Verwendbarkeit von anorganischen Quantenpunkten und organischen Molekülen für diesen Bereich. Quantenpunkte aus Halbleitermaterialien besitzen eine grosse Bandbreite von Eigenschaften. Es wird untersucht, wie die Eigenschaften durch die Kopplung von Quantenpunkten unterschiedlicher Materialien modifiziert werden können. Eine Idee besteht in der lokalen Trennung von Ladungsträgern um die schnelle Rekombination von Exzitonen zu vermeiden, welche in organischen Solarzellen häufig ein Problem darstellt. Als weitere Materialklasse werden molekulare Ladungstransferdimere untersucht. Auf dem Weg zu nutzbaren Bauelementen sind das Schalt- und Gleichrichtverhalten wichtige Eigenschaften, daher sind sie von besonderem Interesse. Insbesondere die Frage des Ladungstransfers in Bezug auf das Gleichrichten wurde schon in den 1970ern vorgeschlagen, konnte aber bisher immer nur mit begrenztem Erfolg realisiert werden. Schon um die Jahrtausendwende wurde gezeigt, dass Systeme mit einer zu starken Kopplung zu einer Symmetrisierung der Strom-Spannungs-Kennlinie führen. Bei beiden Systemen wird jeweils die elektronische Struktur im Sinne der Dichtefunktionaltheorie berechnet. Zusätzlich wird jeweils der Ladungstransport zwischen Goldkontakten mittels Nichtgleichgewichts-Greenschen Funktionen berechnet. Für die Systeme gekoppelter Quantenpunkte wird gezeigt, wie die Transporteigenschaften mittels Gatespannungen eingestellt werden können. In der vorliegenden Arbeit wird gezeigt, dass es auch im Fall schwach gekoppelter Ladungstransferdimere zu weitgehend symmetrischen Strom-Spannungs-Kennlinien kommt und es auch für diese Systeme nur zu einem schwachen Gleichrichtverhalten kommt.:1 Introduction 2 Molecular Electronics 3 Theoretical background 4 Computational details and software packages 5 Modeling 6 Results and Discussion 6.1 Quantum dots 6.2 Transport through coupled quantum dots 6.3 Charge transfer dimers 6.4 Transport through charge transfer dimers 7 Conclusion 8 Outlook Acknowledgement List of Figures List of Tables Bibliography List of own Publications
347

SYNTHESIS AND CHARACTERIZATION OF NOVEL EXCITED STATE INTRAMOLECULAR PROTON TRANSFER (ESIPT) CYANINE DYES WITH NEAR INFRARED (NIR) EMISSION FOR BIOLOGICAL APPLICATIONS

Dahal, Dipendra, Dahal 06 September 2019 (has links)
No description available.
348

Electroabsorption spectroscopy of quasi-one-dimensional organic molecular crystals

Guo, Wenge 16 December 2003 (has links)
We have presented a thorough experimental investigation of electroabsorption spectroscopy on quasi-one-dimensional organic molecular crystals such as PTCDA and MePTCDI vapor deposited thin films to clarify the involvement of the charge-transfer exciton in the lowest excited state. By a self-built experimental setup, two kinds of electroabsorption measurements, called "perpendicular" and "parallel" measurements, were conducted at room temperature in ambient air. The crystalline texture of PTCDA and MePTCDI thin film samples are characterized by X-ray diffraction measurements. Current-voltage, capacitance-frequency and capacitance-voltage measurements are performed to clarify the electric field distribution inside organic layers. The results from electrical measurements show that only under certain conditions (electroabsorption measurements with proDC bias), the perpendicular and parallel electroabsorption meaurements can be directly compared. The electroabsorption spectra of MePTCDI and PTCDA thin films can be interpreted by neither pure Frenkel exciton nor pure charge-transfer exciton model. Essential features of electroabsorption spectra of MePTCDI and PTCDA thin films can be understood by the the mixture of Frenkel and charge-transfer exciton model. However, there is still a discrepancy in the directional properties of electroabsorption signals between experimental results and modle calculations. This small discrepancy suggests that a full interpretation of electroabsorption spectra of quasi-one-dimensional organic molecular crystals needs further experimental and theoretical investigations.
349

ELECTRONIC PROPERTIES OF ORGANIC SINGLE CRYSTALS AND TWO-DIMENSIONAL HYBRID MATERIALS

Sheng-Ning Hsu (14810992) 10 April 2023 (has links)
<p>Developing the next generation soft optoelectronic materials is of great importance for achieving high-performance, low-cost electronics. These novel material systems bring about new chemistry, physical phenomena, and exciting properties. Organic inorganic hybrid two-dimensional perovskites and organic stable radical molecules are two exciting material systems that bear high expectation and await extensive exploration.</p> <p>Organic inorganic hybrid two-dimensional perovskites are considered one of the solutions to the pressing instability issue of halide perovskites toward commercialization. Moreover, dimension reduction of perovskites creates new opportunities for using two-dimensional perovskites as thermoelectric applications due to the ultralow thermal conductivity. However, two-dimensional perovskite thermoelectric is still at its’ incipient stage of development, therefore a timely proof of potential is required to draw further research interests.</p> <p>In earlier part of this work, the two-dimensional perovskites featuring π-conjugated ligands are synthesized and optimized for high thermoelectric performance. With material design, device engineering, intensive measurements, and careful data analysis, we successfully showed that two-dimensional perovskites are competitive candidate for the emerging thermoelectric materials. Furthermore, temperature and carrier concentration dependencies on thermoelectric properties were also established, giving future researchers a generalized optimization strategy. </p> <p>Organic stable radical molecules are promising for organic electronics as stable radicals don’t require high conjugation for efficient solids-state charge transport. Thanks to their unique redox capability and the unpaired electrons, organic radicals have many unique electronic and magnetic properties that could be useful in spin-related applications. However, the understanding in charge transport mechanisms as well as structure-to-properties correlation remain shallow.</p> <p>In later part of this work, we achieved the highest recorded long channel electrical conductivity of non-conjugated radicals. Meanwhile, the important role of close packing between radical sites was demonstrated by slightly changing chemical design that resulted in drastic change in electrical conductivity. Finally, we concluded that the solid-state charge transport in non-conjugated species is governed by variable range hopping mechanisms. </p>
350

[en] CHARGE TRANSFER COMPLEXES WITH HIGH SURFACE AREA BASED ON TIO2 NANOPARTICLES MODIFIED WITH BIDENTATE LIGANDS: SYNTHESIS, CHARACTERIZATION AND PHOTOCATALYTIC ACTIVITY UNDER LOW-POWER VISIBLE LIGHT / [pt] COMPLEXOS DE TRANSFERÊNCIA DE CARGA COM ALTA ÁREA SUPERFICIAL BASEADOS EM TIO2 NANOMÉTRICO MODIFICADO COM LIGANTES BIDENTADOS: SÍNTESE, CARACTERIZAÇÃO E ATIVIDADE FOTOCATALÍTICA SOB LUZ VISÍVEL DE BAIXA POTÊNCIA

LUCAS ARAUJO LIMA ALMEIDA 21 November 2023 (has links)
[pt] Os nanomateriais à base de TiO2 sensíveis à luz visível estão entre as alternativas mais promissoras para aplicações fotocatalíticas, como remediação ambiental. Os complexos de transferência de carga (CTCs) entre nano-TiO2 e ligantes bidentados, uma alternativa, têm sido amplamente estudados. No entanto, a eficiência da fotodegradação e o papel das espécies oxidantes reativas (ROS) não são totalmente compreendidos. Além disso, o desenvolvimento de CTCs baseados em TiO2 modificado com ácido malônico (MoA) ainda não foi investigado, até onde é sabido. Neste estudo, CTCs de TiO2-Acetilacetona (ACAC) e TiO2-MoA com alta área superficial foram sintetizados via sol-gel. Ambos os CTCs à base de TiO2preparados foram submetidos a testes de fotodegradação de tetraciclina e clorofenolcom e sem sequestrantes de ROS sob luz visível de baixa potência (26 W). Os CTCs TiO2-MoA foram totalmente caracterizadas por análises de DRX, MS-TGA, FTIR, adsorção-dessorção de N2, DRS, PL, EPR e XPS. A síntese sol-gel e o processo de calcinação adotado produziram CTCs de anatásio fortemente ligados (ligação covalente) com acetilacetona e ácido malônico, capazes de absorver ao longo do espectro visível quando calcinados a 300 graus C (TiO2-A300) e 270 graus C (TiO2-MoA270). Ambos os CTCs calcinados apresentam um único elétron preso na vacância de oxigênio (SETOV / centro de cores F+). Os CTCs TiO2-MoA-270 apresentaram áreas superficiais (>306 m2.g-1), volumes de mesoporos (>0,339 mL.g-1) e atividadefotocatalítica extremamente elevados, degradando aproximadamente 100 por cento de TC após 6 h. Os CTCs TiO2-MoA-270 e TiO2-A300 são uma fonte eficiente de geração de radicais *O2- e ineficientes geradores de radicais OH*. Os resultados desta pesquisa podem ser aplicados à síntese, via sol-gel, de outros CTCs, como os ácidos dicarboxílicos, e explorados em estudos posteriores sobre purificação do ar e produção de hidrogênio. / [en] Visible light-sensitive TiO2-based nanomaterials are among the most promising alternatives for photocatalytic applications, such as environmental remediation. The charge transfer complexes (CTCs) between nano-TiO2 and bidentate ligands, an alternative, have been widely studied. However, the photodegradation efficiency and role of reactive oxidizing species (ROS) are not fully understood. In addition, the development of CTCs based on TiO2 modified with malonic acid (MoA) have not yet been investigated, as far as the authors know. In this study, TiO2-Acetylacetone (ACAC) and TiO2-MoA CTCs with high surface area were synthesized via sol-gel route. Both as-prepared TiO2-based CTCs were subjected to tetracycline and chlorophenol photocatalytic degradation tests with and without ROS scavengers under low-power visible light (26 W). The TiO2-MoA CTCs were fully characterized by XRPD, MS-TGA, FTIR, N2 adsorption-desorption, DRS, PL, EPR and XPS analysis. The sol-gel synthesis and the calcination process adopted produced CTCs of nano-TiO2 anatase strongly bond (covalent bond) with acetylacetone and malonic acid, capable of absorbing along the visible spectrum when calcined at 300 degrees C (TiO2-ACAC-300) and 270 degrees C (TiO2- MoA-270). Both calcined CTCs present single electron trapped in oxygen vacancy (SETOV / F +color center). The TiO2-MoA-270 CTCs showed very high surface areas (>306 m2.g-1), mesopore volumes (>0.339 mL.g-1) and the highest photocatalytic activity, degrading approximately 100 percent of the TC after 6 h. The TiO2-MoA-270 and TiO2-A300 CTCs were an efficient source of *O2- radicals and inefficient generation of OH* radicals. The findings of this research can be applied to the synthesis, via sol-gel, of other CTCs, such as dicarboxylic acids, and explored in further studies on air purification and hydrogen production.

Page generated in 0.0479 seconds