• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 10
  • 3
  • 1
  • Tagged with
  • 60
  • 60
  • 16
  • 16
  • 13
  • 12
  • 10
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Nesting Ecology and Conservation of Sea Turtles in the Saudi Arabian Red Sea

Tanabe, Lyndsey K. 11 1900 (has links)
In the Saudi Arabian Red Sea, two of the seven species of sea turtles are known to nest and forage along the coast, the hawksbill turtle (Eretmochelys imbricata) and the green turtle (Chelonia mydas). As a result of some life history characteristics, sea turtles are particularly vulnerable to anthropogenic impacts. Under Saudi Arabia’s Vision 2030 and the recent opening of its borders to recreational tourists, the country aims to develop several large-scale projects along the Red Sea coast, locally known as “giga-projects”. Thus, imminent pressures from coastal development highlight the urgency needed for multi-country cooperation in protecting sea turtles in the region. This dissertation aims to establish some baseline data and protocols for future work to meet the data needs of the relevant conservation authorities in Saudi Arabia. In particular, this thesis contributes new and important information to some of the identified knowledge gaps for the Red Sea region, including sea turtle habitat use, threat assessment (plastic and heavy metal pollution), and evaluating hatching success. I used satellite telemetry to understand foraging home ranges of hawksbill and green turtles, post-nesting migrations, and inter-nesting habitat use of green turtles. Additionally, I used photo identification to understand the abundance and behavior of turtles at a Rabigh fringing reef, in the central Red Sea. I assessed two anthropogenic contaminants as a threat to Red Sea turtles: heavy metal contamination and plastic ingestion. Heavy metal concentrations in the sand were evaluated at the largest green turtle rookery in Saudi Arabia, Ras Baridi, which is located next to a cement factory. I also assessed the concentration of heavy metals in the tissues of dead hatchlings found at Ras Baridi. Additionally, I studied plastic ingestion in ten deceased turtles found along the Saudi Arabian Red Sea. In my last data chapter, I assessed the hatching success of green turtle nests, and investigated clutch relocation as a possible method of increasing success. The final chapter summarizes the results from this research in the context of the 2004 PERSGA Marine Turtle Conservation Plan, and provides possible conservation strategy recommendations to protect Red Sea turtles
42

Ecologia e Conservação de Tartarugas Marinhas Através da Análise de Encalhes no Litoral Paraibano

Poli, Camila 28 July 2011 (has links)
Made available in DSpace on 2015-04-17T14:55:19Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 691952 bytes, checksum: aa37d23f6ffbb0e86e790fa6ad93ee28 (MD5) Previous issue date: 2011-07-28 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Five sea turtle species use the Brazilian coast for reproduction and feeding: loggerhead turtle (Caretta caretta), green turtle (Chelonia mydas), leatherback turtle (Dermochelys coriacea), olive turtle (Lepidochelys olivacea) and hawksbill turtle (Eretmochelys imbricata). These species are included in the threatened categories, as much globally, according to the Red List of Threatened Species, issued by the International Union for Conservation of Nature (IUCN), as regionally, according to the Livro Vermelho da Fauna Brasileira Ameaçada de Extinção, published by the Ministério do Meio Ambiente. Sea turtles naturally face a wide variety of stressors, both natural and anthropogenic, like diseases, predation by other animals, incidental capture in fishing artifacts, marine pollution and the hunt. Systematic data collection from stranded sea turtles can provide useful biological information, such as seasonal and spatial patterns in their occurrence, and mortality, age structure, sex ratio, diet, interannual variations associated with climatic or anthropogenic events, as well as possible mortality causes. Thus, this study aimed to examine sea turtle strandings on the coast of Paraíba State, from August 2009 to July 2010, emphasizing the observation of the occurrence of ingestion of anthropogenic debris. In this period, 124 strandings were recorded. The species observed were C. mydas (n = 106), E. imbricata (n = 15), L. olivacea (n = 2) and C. caretta (n = 1). Of the total strandings that could be measured (n = 122), only twelve individuals (9.7%) could be considered adults. In 20 individuals, synthetic anthropogenic debris were found inside the gastrointestinal tract and of these, in 13 individuals it was concluded that the death cause was the ingestion of these residues. In 43 individuals, other traces of human interactions were observed, such as injuries caused by entanglement in fishing lines or nets, collisions with vessels, direct contact with oil spills, and lesions caused by knives and harpoons. In 28.5% of the stranded turtles, the presence of external tumors was noted, suggestive of fibropapillomatosis. Moreover, in 9.7%, shark bite marks were observed. A significant difference was found in the occurrence of strandings between males and females, being that the females were more frequent. Also, a significant difference was found in the occurrence of strandings between the different seasons, being that in the spring/summer (dry season), the strandings were more frequent. The most worrying result of this study was the observation of human interactions in half of the strandings analyzed. Stranding monitoring is necessary along the whole coast of Brazil and, indeed, along those of the entire world, because it has a fundamental role in studies of the ecology, biology and conservation of these species, generating benefits for local action, directed to the major problems observed. / Cinco espécies de tartarugas marinhas utilizam a costa brasileira para reprodução e alimentação: a tartaruga cabeçuda (Caretta caretta), a tartaruga verde (Chelonia mydas), a tartaruga de couro (Dermochelys coriacea), a tartaruga oliva (Lepidochelys olivacea) e a tartaruga de pente (Eretmochelys imbricata). Estas espécies estão incluídas em categorias de ameaça, tanto mundialmente, de acordo com a lista vermelha de animais ameaçados de extinção da União Internacional para a Conservação da Natureza (IUCN), como regionalmente, de acordo com o Livro Vermelho da Fauna Brasileira Ameaçada de Extinção, do Ministério do Meio Ambiente. As tartarugas marinhas, naturalmente, encontram uma ampla variedade de estressores, tanto naturais quanto antrópicos, como doenças, predação por outros animais, captura incidental em artefatos de pesca, poluição marinha e a caça. A coleta sistemática de dados de tartarugas marinhas encalhadas pode fornecer informação biológica útil, como por exemplo, padrões sazonais e espaciais na ocorrência e mortalidade, estrutura etária, proporção sexual, dieta, variações interanuais associadas a eventos climáticos ou antropogênicos bem como as possíveis causas de mortalidade. O objetivo deste trabalho foi analisar os encalhes de tartarugas marinhas na costa do estado da Paraíba, no período de agosto de 2009 a julho de 2010, enfatizando a observação da ocorrência de ingestão de material antropogênico. Neste período foram registrados 124 encalhes. As espécies observadas foram C. mydas (n = 106), E. imbricata (n = 15), L. olivacea (n = 2) e C. caretta (n = 1). Do total de encalhes que puderam ser mensurados (n = 122), apenas doze indivíduos (9,7%) puderam ser considerados adultos. Em 20 indivíduos, foram encontrados resíduos antropogênicos sintéticos dentro do trato gastrointestinal e destes, em 13 indivíduos foi possível concluir que a causa da morte foi a ingestão destes resíduos. Em 43 indivíduos foram observados outros vestígios de interações humanas, como ferimentos provocados por emaranhamentos em linhas ou redes, ferimentos provocados por colisões com embarcações, contato direto com manchas de óleo e ferimentos provocados por facas e arpões. Em 28,5% das tartarugas encalhadas notou-se a presença de tumores externos sugestivos de fibropapilomatose. Em 9,7% foi possível observar marcas de mordidas de tubarões. Observou-se uma diferença significativa na ocorrência de encalhes entre machos e fêmeas, sendo que as fêmeas foram mais frequentes. Também verificou-se uma diferença significativa na ocorrência de encalhes entre as diferentes estações, sendo que no período de primavera/verão (estação seca) os encalhes foram mais frequentes. O resultado mais preocupante deste estudo foi a observação de evidências de interação com atividades antrópicas em metade dos encalhes analisados. O monitoramento de encalhes se faz necessário em toda a costa do Brasil e do mundo, pois este tem papel fundamental em estudos de ecologia, biologia e conservação destas espécies, gerando assim subsídios para ações locais e direcionadas aos principais problemas observados.
43

Écologie trophique de la tortue verte Chelonia mydas dans les herbiers marins et algueraies du sud-ouest de l'océan Indien / Trophic ecology of green turtles Chelonia mydas in seagrass meadows and algal patches in the Southwestern Indian Ocean

Ballorain, Katia 12 February 2010 (has links)
Les relations interspécifiques sont un indicateur naturel de l'état de santé d'un écosystème et de son éventuelle évolution. Dans le contexte actuel de changement climatique et d'intensification des activités humaines, nous décrivons, par une approche intégrée, les interactions existant entre les tortues vertes et leurs ressources trophiques, afin de contribuer à la compréhension de la dynamique de la biodiversité marine. La tortue verte est la seule tortue marine herbivore aux stades sub-adulte et adulte. Elle se nourrit principalement sur des herbiers de phanérogames marines et des algueraies en milieu côtier relativement peu profonds et constitue ainsi un modèle privilégié pour étudier l'écologie trophique et fonctionnelle des tortues marines en conditions naturelles. Le travail présenté dans ce manuscrit étudie deux populations de tortues vertes : la première s'alimentant de phanérogames marines sur le site de N'Gouja à Mayotte et la seconde d'algues benthiques sur la côte ouest de l'Ile de La Réunion. A ce stade de l'étude, le système tortues vertes-herbier est le mieux connu. Nous proposons une synthèse des relations existant entre le comportement de plongée et d'alimentation d'individus juvéniles et adultes avec la disponibilité trophique au sein d'un herbier marin plurispécifique. Ceci a été obtenu à partir de systèmes d'acquisition embarqués, d'observation directes de tortues vertes et de relevés phyto-écologiques conventionnels. Par ailleurs, notre étude a permis d'engager le suivi du système tortues vertes – herbier marin de N'Gouja et d'en décrire les premières tendances. En quatre ans, une diminution de près de 80 % de la biomasse végétale du site de N'Gouja accentue la pression d'herbivorie des tortues vertes sur l'herbier. Ce phénomène entraîne l'appauvrissement de la diversité spécifique des phanérogames en faveur des espèces végétales pionnières. La diminution parallèle de l'effectif de la population de tortues vertes du site de N'Gouja suggère un modèle alimentaire basé sur le principe de densité-dépendance. Les conséquences d'une surexploitation de l'herbier par les tortues vertes sont alors en opposition avec celles obtenues suite à la simulation d'une pression d'herbivorie nulle. Nous montrons que sous une pression d'herbivorie modérée, un stade successionel intermédiaire de l'herbier est maintenu et la diversité spécifique est favorisée par la diminution des capacités compétitives des espèces consommées. Il découle ainsi de notre étude des indicateurs du stade phytodynamique d'un herbier plurispécifique et de la pression d'herbivorie exercée par les tortues vertes qui permettent d'envisager les réponses écosystémiques d'un système tel que celui de N'Gouja sous différents scénarios environnementaux. Enfin, dans un cadre plus large, nous posons la question de savoir si l'évolution statutaire de Mayotte peut contribuer à approfondir et pérenniser la protection des tortues marines qui se trouvent sur son territoire. Nous décrivons la départementalisation comme un moyen d'accentuer le processus de clarification du droit applicable à Mayotte et d'assurer des moyens humains, matériels, et financiers nécessaires à la protection de l'environnement. Des recensements aériens réalisés au dessus de la côte ouest de l'île de La Réunion révèlent la présence d'individus sexuellement matures et immatures, dont le nombre augmente depuis 1996. Cette approche nous aura permis d'identifier une fréquentation préférentielle des habitats coralliens et de décrire, à partir d'observations sous-marines parallèles, la côte ouest de l'île comme un site d'alimentation d'individus matures et d'individus en phase de croissance. Ce travail renforce les bases scientifiques nécessaires à la mise en place de stratégies de conservation des tortues marines et de leurs habitats. / Reproduction of sea turtles primarily relies on body reserves stored during the time spent on foraging grounds prior to the nesting season. Accordingly, the investigation of foraging behaviour of sea turtles is critical for better assessing their biology but also for conservation issues of these endangered species. Sea turtles contribute significantly to the consuming biomass of their ecosystem and hence to its functioning, thus providing natural indications of the health of the ecosystem. Yet the trophic ecology of sea turtles is poorly documented because their feeding grounds remain poorly known and for most of them hardly accessible. Among sea turtles the green turtle is the only species where sub-adults and adults are mostly herbivorous feeding on seagrass and algae patches in shallow coastal waters. Such fairly accessible marine ecosystems provide a unique opportunity to investigate sea turtle ecology under natural conditions. The study was conducted in two foraging sites of green turtles located in the south-western Indian Ocean: Mayotte (seagrass meadow) and Reunion Island (algae spots). Thanks to fine-scale sampling of feeding activities, we addressed the lack of research investigating the food requirements and the trophic role of green turtles. To day, feeding activities of green turtles are better known on seagrass. We described the habitat use, the food intake, and the herbivory pressure of green turtles exploiting a multi-sepcies seagrass meadow of Mayotte. In Reunion Island, first results provide some information about the habitat use of green turtles. Such results are paramount for the management and conservation sea turtles and their habitats.
44

Insights into the mating systems of green turtle populations from molecular parentage analyses

Wright, Lucy Isabel January 2012 (has links)
Gaining a good understanding of marine turtle mating systems is fundamental for their effective conservation, yet there are distinct gaps in our knowledge of their breeding ecology and life history, owing largely to the difficulty in observing these highly mobile animals at sea. Whilst multiple mating by females, or polyandry, has been documented in all marine turtle species, the fitness consequences of this behaviour have not been fully investigated. Furthermore, male mating patterns, operational sex ratios and the number of males contributing to breeding populations are poorly understood, impeding accurate assessments of population viability. In this thesis, I use molecular-based parentage analysis to study, in detail, the genetic mating system of two green turtle (Chelonia mydas) populations. In the focal population in northern Cyprus, I show that, despite exhibiting a strongly female-biased hatchling sex ratio and contrary to our expectations, there are at least 1.3 breeding males to every nesting female. I go on to assess the breeding frequency of male turtles in the population and determine that males do not breed annually at this site, demonstrating that the observed relatively equal sex ratio of breeders is not the result of a few males mating every year, but that the number of breeding males in the population is greater than expected. I show that 24% of nesting females in the population produce clutches with multiple paternity, but do not detect any fitness benefits to polyandrous females, and discuss the potential role of sexual conflict in influencing female mating decisions. Finally, I reveal a high frequency of multiple paternity in green turtle clutches on Ascension Island, one of the largest green turtle rookeries in the world, and discuss possible causes of variation in the level of polyandry among marine turtle populations. The results presented here shed new light on aspects of marine turtle mating systems that are challenging to study, and illustrate the value of molecular data, not only in describing mating patterns, but in elucidating aspects of life history and behaviour that would otherwise be very difficult to ascertain.
45

Caracterização espacial e temporal da fibropapilomatose em tartarugas marinhas da costa brasileira / Spatiotemporal characterization of fibropapillomatosis in sea turtles of the Brazilian Coast

Baptistotte, Cecilia 11 December 2007 (has links)
Fibropapilomatose (FP) é uma doença caracterizada por múltiplas massas de tumores cutâneos variando de 0,1 a mais de 30 cm em diâmetro. Afeta primariamente tartarugas-verdes (Chelonia mydas), mas também outras espécies de tartarugas marinhas ao redor do mundo. O objetivo deste estudo é, através de dados já sistematicamente coletados pelo Programa Brasileiro de Proteção, Pesquisa e manejo das Tartarugas Marinhas - Projeto TAMAR-IBAMA, caracterizar, no tempo e no espaço, a ocorrência desta doença em tartarugas marinhas na costa brasileira, entre os anos de 2000 a 2005. As tartarugas encontradas, vivas ou mortas, foram identificadas, medidas e examinadas quanto à presença ou ausência de tumores. Nesse período foram examinadas 10.170 tartarugas marinhas, sendo 1.243 tartarugas-de-pente, (Eretmochelys imbricata), das quais 2 apresentaram tumores; entre as 250 tartarugas- cabeçudas, (Caretta caretta), 5 apresentaram tumores; entre as 288 tartarugas-oliva (Lepidochelys olivacea), 3 apresentaram tumores; nenhuma das 30 tartarugas-gigantes, (Dermochelys coriacea) examinadas tinham tumores. A maior parte dos registros (82,20 %; 8.359 de 10.170) correspondeu a tartarugas-verdes (Chelonia mydas), das quais 1.288 apresentavam tumores. Foram coletadas amostras de tumores de 80 tartarugas para análise histopatológica; todas foram positivas para fibropapilomatose. A média da prevalência nacional geral para Chelonia mydas foi de 15.41%; apenas nas áreas costeiras a doença foi verificada. Nenhuma ocorrência foi registrada nas ilhas oceânicas do Atol das Rocas e do Arquipélago de Fernando de Noronha. Os resultados das freqüências de tumores por estado foram: Bahia, 15,81% (211/1335); Ceará, 36,94% (181/490); Espírito Santo, 27,43% (469/1710); Pernambuco-Arquipélago de Fernando de Noronha, 0,00% (0/501); Rio de Janeiro, 5,96% (9/151); Rio Grande do Norte-região costeira, 31,43% (33/105); Rio Grande do Norte-Atol das Rocas, 0,00% (0/486); Sergipe, 18,46% (12/65); São Paulo, 10,73 % (371/3456). Os animais afetados variaram de juvenis com comprimento curvilíneo de carapaça (CCC) mínimo de 30,0 cm, subadultos a adultos com máximo de 112 cm. A prevalência de tumores associado a fibropapilomatose aumentou com o CCC até 80,0 cm e decresceu abruptamente. A caracterização da doença foi realizada com um grupo de 202 tartarugas verdes afetadas em uma agregação no Estado do Espírito Santo. Nesse grupo, o número de tumores variou de 1 a 179 tumores em um único animal, tendo como média 21 tumores por tartaruga afetada. 72,5 % dos tumores estavam localizados na região anterior corpórea do animal, 25,2% na região posterior e 2,3% na carapaça e plastrão. Nenhuma tartaruga apresentou tumores na cavidade oral. Para análise de escore de tumor em tartarugas afetadas com FP, o escore de tumor 1 e 2 foi predominante, com 40,61% (80 de 197) e 51,27% (101 de 197) respectivamente. Apenas 8,12% (16 de 197) das tartarugas tiveram escore de tumor 3. / Fibropapilomatosis (FP) is a disease characterized by multiple masses of cutaneous tumors varying from 0,1 to more than 30 cm in diameter. It has affected primarily green turtles (Chelonia mydas), but also other species of sea turtles around the world. The aim of this study is, through the data already systematically collected by the Brazilian Sea Turtle Protection, Research and Management Program - Projeto TAMAR - IBAMA to characterize the occurrence of this disease in marine turtles along the Brazilian coast to within time and space, from 2000 to 2005. Turtles found alive or dead were identified as for the species, measured and examined as for the presence or absence of tumors. 10.170 sea turtles were examined: 1.243 of them were Hawksbills (Eretmochelys imbricata), two of which showed tumors; five of the 250 loggerhead turtles (Caretta caretta) and three of 288 olive ridley\'s turtles (Lepidochelys olivacea), showed tumors; none of the 30 leatherback (Dermochelys coriacea) carried tumors. Mostly of the records, (82,20%; 8.359/10170) corresponded to green turtles (Chelonia mydas), 1.288 of which had tumors. Samples of tumors were collected from 80 turtles for histopathologycal analysis; all examined samples were positive for fibropapillomatosis. The average nationwide tumor prevalence in Chelonia mydas was 15.41%; the disease was detected only in coastal areas: no occurrence was recorded for the oceanic islands of Atol das Rocas and Fernando de Noronha Archipelago. The tumor frequencies by state were: Bahia, 15,81% (211/1335); Ceará, 36,94% (181/490); Espírito Santo, 27,43% (469/1710); Pernambuco - Archipelago of Fernando de Noronha, 0,00% (0/501); Rio de Janeiro, 5,96% (9/151); Rio Grande do Norte- coastal area, 31,43% (33/105); Rio Grande do Norte - Atol das Rocas, 0,00% (0/486); Sergipe, 18,46% (12/65); São Paulo, 10,73% (371/3456). The affected animals varied from juvenile, with minimum curved carapace length (CCC) 30,0 cm to sub-adults, adults with a maximum 112 cm. The prevalence of tumours associated to fibropapillomatosis increased with CCC up to 80,0 cm and then decreased abruptly. The number of tumors in 202 affected green turtles from an aggregation in the state of Espírito Santo varied from 1 to 179 tumors in a single animal, with an average of 21 tumors per affected turtle. 72,5% of tumors were located in the anterior half of the animal\'s bodies, 25,2% in the posterior area, 2,3% on the shell and plastron. No turtle had tumors in the oral cavity. A predominance of turtles was registered with tumors score 1, 40,61% (80 of 197) and score 2, 51,27% (101/197). Only 8,12% (16/197) of the turtles that had score 3. For analysis of tumor score in affected turtles with FP, the tumors score 1 and 2 was predominant, with (40,61%; 80 of 197) and (51,27%; 101/197) respectively. Only 8,12 % (16/197) of the turtles attained tumors score 3.
46

An assessment of disease on the health of green (Chelonia mydas) and loggerhead (Caretta caretta) turtles in southern Queensland Australia

Mark-Shannon Flint Unknown Date (has links)
Marine turtle numbers are in a state of flux around the world. Six of the seven remaining species of these long-lived animals are threatened; with the seventh being listed data deficient. Reasons for these fluctuations are speculated to be due to human related impacts (direct) and increase in disease occurrence caused by changes in the natural environment (indirect). Most direct impacts have been identified and strategies implemented to mitigate their effects with varying degrees of success; however the indirect effects on marine animals remain an understudied area. This thesis outlined the development of ante- and post-mortem diagnostic techniques to identify prevalent diseases affecting two marine turtle species in southern Queensland over a four year (2006-2009) period. This data was used to determine the impact of disease on turtle survivorship. Two-hundred and ninety green turtles (Chelonia mydas) from Moreton and Shoalwater Bays were captured, clinically assessed and blood sampled. Clinically healthy animals (n = 211) were used to derive biochemical and haematological reference intervals using two methods. Comparisons with clinically unhealthy animals (n = 25) indicated all unhealthy animals had at least some plasma biochemical and haematological values outside the derived intervals (albumin, 48% of unhealthy animals; alkaline phosphatase (ALP), 35%; aspartate transaminase (AST), 13%; creatinine, 30%; globulin, 3%; glucose, 34%; lactic dehydrogenase (LDH), 26%; phosphorus, 22%; sodium, 13%; thrombocytes, 57%; and monocytes, 5%). Amongst small immature animals, those with Chelonibia testudinaria plastron barnacle counts of at least 20 were approximately three times more likely to be unhealthy than turtles with no barnacles. In addition, small immature and mature turtles were more likely to be unhealthy than large immature turtles (Chapter 2). By the same method, 101 loggerhead turtles (Caretta caretta) in Moreton Bay were assessed and bled. Clinically healthy animals (n = 63) were used to derive intervals. Comparisons with clinically unhealthy animals (n = 23) indicated 82% and 45% had at least one biochemical and hematological result, respectively, outside of at least one of the calculated intervals. Neither sex nor maturity (mature versus large immature) influenced the risk of being clinically unhealthy (Chapter 3). A standardised approach to post-mortem examination of marine turtles for veterinary clinicians with a concurrent descriptive review of gross and microscopic pathological lesions commonly seen during examination in Australia (Chapter 4) was used to accurately determine diseases and causes of death in 100 green turtles submitted from various regions of southern Queensland for examination. Spirorchiid parasitism was found to be the most frequently occurring cause of mortality (41.8%), followed by gastrointestinal impaction (11.8%), microbiological infectious diseases (5.2%) and trauma (5.2%). Spirorchiid parasitism with associated inflammation (75%) was the most frequently occurring disease followed by gastrointestinal impaction (5.1%). Season and turtle age had limited influences on disease. Severity of spirorchiidiasis in the brain was independent of severity in other organs (Chapter 5). From these examinations, the most prevalent disease syndrome (spirorchiidiasis) and a previously unreported finding in Australian waters (corneal fibropapillomatosis) were selected to be examined in greater detail. Spirorchiid parasites from four organs in five green turtles were identified by established morphological and molecular techniques. Morphological study of adults identified Carettacola sp. in the serosal wall of the gastrointestinal tract, Hapalotrema mehrai in the heart and Learedius learedi in the spleen. Worms from the brain probably belonged to the genus Neospirorchis. DNA sequences from a portion of the 28S ribosomal RNA gene were obtained; but only matches for Hapalotrema mehrai and Learedius learedi were made. The prevalence and severity of this disease warrants further investigation into development of molecular techniques for use as a prognostic tool for turtles entering rehabilitation (Chapter 6). Chelonid corneal fibropapillomatosis, a previously unreported disease manifestation in Australia, was identified in 0.5% of 787 examined green turtles in 2008 (Chapter 7). This novel syndrome was shown to reduce visibility, potentially negatively affecting turtle survivorship and should be monitored for further spread. Findings from this thesis and the published literature were used to derive a mathematical model to determine the effects of identified diseases on Moreton Bay green turtle survivorship. This model demonstrated diseases at current prevalence will not negatively affect survivorship but an adverse environmental disruption or an increase in current disease frequency may threaten these animals (Chapter 8). Information presented in this thesis was used to test the general hypothesis ‘Differences in disease and health between stranded and functional populations of marine turtles will indicate major and currently unmeasured causes of population decline.’ This hypothesis was partially upheld. Differences in disease and health status between stranded and functional populations were demonstrated, but more work is required to comprehensively examine these statuses. Diagnostics and continued environmental assessment should become the focus of future investigations. These findings should be incorporated in future management strategies.
47

Aspectos reprodutivos em tartarugas marinhas da bacia potiguar RN/CE

Fabr?cio, Mar?lia Anielle da Silva 19 December 2016 (has links)
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2017-04-04T19:56:26Z No. of bitstreams: 1 MariliaAnielleDaSilvaFabricio_DISSERT.pdf: 3688508 bytes, checksum: 5f01a70876dd9ae37f19f323e534b5a3 (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-04-12T23:55:10Z (GMT) No. of bitstreams: 1 MariliaAnielleDaSilvaFabricio_DISSERT.pdf: 3688508 bytes, checksum: 5f01a70876dd9ae37f19f323e534b5a3 (MD5) / Made available in DSpace on 2017-04-12T23:55:10Z (GMT). No. of bitstreams: 1 MariliaAnielleDaSilvaFabricio_DISSERT.pdf: 3688508 bytes, checksum: 5f01a70876dd9ae37f19f323e534b5a3 (MD5) Previous issue date: 2016-12-19 / Existem no mundo apenas sete esp?cies de tartarugas marinhas. Dentre essas, h? registros de ocorr?ncia de cinco esp?cies no litoral do Brasil: Dermochelys coriacea, Chelonia mydas, Caretta caretta, Eretmochelys imbricata e Lepidochelys olivacea. De acordo com a Lista Vermelha da Uni?o Internacional para a Conserva??o da Natureza, todas as esp?cies de tartarugas marinhas existentes no Brasil se encontram amea?adas de extin??o. A maioria dos trabalhos relacionados a propor??o sexual desses r?pteis indicam um desequil?brio populacional, havendo um n?mero excessivo de f?meas. Assim, pesquisas sobre a biologia reprodutiva desses animais s?o extremamente necess?rias e importantes para conserva??o de gera??es futuras dessas esp?cies. Este trabalho tem como objetivo estudar diferentes aspectos morfohistol?gicos das g?nadas de machos e f?meas de tartarugas marinhas na Bacia Potiguar. Foram avaliados animais vivos e mortos, provenientes de encalhes entre as praias de Icapu?/CE e Cai?ara do Norte/RN, totalizando aproximadamente 300 km. Os animais encalhados mortos ou que vieram a ?bito na Base de Reabilita??o do Projeto Cet?ceos da Costa Branca-UERN foram necropsiados por uma equipe veterin?ria. As g?nadas foram coletadas e fixadas em formol a 10%, e posteriormente submetidas a prepara??o histol?gica, atrav?s das t?cnicas de Hematoxilina-Eosina, sendo analisadas em microsc?pio ?ptico. No per?odo de janeiro de 2011 a dezembro de 2015 foram registrados 3.960 encalhes de tartarugas marinhas na ?rea estudada. A amostra apresentou propor??o sexual de 3:1, com predom?nio de f?meas. Oitenta e cinco por cento dos animais registrados foram classificados como pertencentes a fase de desenvolvimento "juvenil". Foram analisadas microscopicamente 86 amostras de tecido gonadal, sendo 53 f?meas e 25 machos da esp?cie Chelonia mydas, 3 f?meas e 3 machos de Eretmochelys imbricata e 2 f?meas de Caretta caretta. Foi poss?vel estabelecer tr?s est?gios de matura??o gonadal: pr? pubescente, pubescente e maduro. O predom?nio das g?nadas analisadas foi de indiv?duos pr? pubescentes, com f?meas apresentando ov?citos homog?neos e machos com t?bulos semin?feros de pequeno di?metro com aus?ncia de espermatozoides. Os esp?cimes pr? pubescentes f?meas apresentaram comprimento curvil?neo da carapa?a (CCC) m?dio de 37,07 cm e os machos 38,68 cm; Pubescentes f?meas 77,04 cm e machos 89,92 cm, F?meas maduras com 101,35 cm e um indiv?duo macho maduro com 105 cm. Pesquisas sobre aspectos histol?gicos relacionados ao desenvolvimento ovariano e testicular de tartarugas marinhas s?o escassas, mas, os resultados obtidos est?o em concord?ncia com o que j? foi descrito. Considera-se a necessidade de continuidade de trabalhos como esse, associando os dados morfol?gicos e biom?tricos ?s an?lises histol?gicas para o melhor entendimento sobre a matura??o sexual das tartarugas marinhas e implementa??o de propostas de conserva??o para essas esp?cies. / Among the seven species of sea turtles, five occurs on the Brazilian coast: Dermochelys coriacea, Chelonia mydas, Caretta caretta, Eretmochelys imbricata e Lepidochelys olivacea. According to the Red List of the IUCN, all species of sea turtles in Brazil are endangered. The majority of works related that the sexual proportion of these animals indicate a population imbalance, having a number excessive of females. Thus, studies of reproductive biology of sea turtles are extremely necessary and important for the conservation of these species for future generations. This work aims to study different morphohistological aspects of male and female's gonads of sea turtle in Potiguar Basin. For this, were evaluated dead and living animals, from strandings between the beaches of Icapu?/CE and Cai?ara do Norte/RN, totaling approximately 300 km. The dead animals were necropsied. During the procedure, the gonads were collected and fixed in formalin 10%, then submitted to histological process, through the techniques of hematoxylin-eosin, according Tolosa (2005), being analyzed in an optical microscope. Between January 2011 and December 2015 were recorded 3.960 stranding of sea turtles in the study area. The sample showed sex ratio of 3:1, with a predominance of females. . Eighty-five percent of the animals were classified juvenile. 86 samples of gonadal tissue wereanalized microscopically, being 58 females and 28 males, of Chelonia mydas, Eretmochelys imbricata e Caretta caretta. It was possible to establish three stages of maturation: pre-pubertal, pubertal and mature. The predominance was of pre-pubertal individuals, females presenting homogeneous oocytes and males with seminiferous tubules with a small diameter with absence of sperm. The pre-pubertal females specimens exhibit an average of 37,07 cm (CCC) and the males 38,68 cm (CCC); Pubertal females with an average of 77,04 cm and males 89,92 cm; mature females with 101,9 cm (CCC) and a single mature male with 105 cm. Researches on histological aspects related to ovarian and testicular development of sea turtles are scarce, but, the obtained results are in agreement with what has already been described. Researches like this, associating morphological and biometric data to histological analyzes, are necessary for the best knowledge about sexual maturity of these animals and implementation of conservation proposals for these species.
48

Caracterização espacial e temporal da fibropapilomatose em tartarugas marinhas da costa brasileira / Spatiotemporal characterization of fibropapillomatosis in sea turtles of the Brazilian Coast

Cecilia Baptistotte 11 December 2007 (has links)
Fibropapilomatose (FP) é uma doença caracterizada por múltiplas massas de tumores cutâneos variando de 0,1 a mais de 30 cm em diâmetro. Afeta primariamente tartarugas-verdes (Chelonia mydas), mas também outras espécies de tartarugas marinhas ao redor do mundo. O objetivo deste estudo é, através de dados já sistematicamente coletados pelo Programa Brasileiro de Proteção, Pesquisa e manejo das Tartarugas Marinhas - Projeto TAMAR-IBAMA, caracterizar, no tempo e no espaço, a ocorrência desta doença em tartarugas marinhas na costa brasileira, entre os anos de 2000 a 2005. As tartarugas encontradas, vivas ou mortas, foram identificadas, medidas e examinadas quanto à presença ou ausência de tumores. Nesse período foram examinadas 10.170 tartarugas marinhas, sendo 1.243 tartarugas-de-pente, (Eretmochelys imbricata), das quais 2 apresentaram tumores; entre as 250 tartarugas- cabeçudas, (Caretta caretta), 5 apresentaram tumores; entre as 288 tartarugas-oliva (Lepidochelys olivacea), 3 apresentaram tumores; nenhuma das 30 tartarugas-gigantes, (Dermochelys coriacea) examinadas tinham tumores. A maior parte dos registros (82,20 %; 8.359 de 10.170) correspondeu a tartarugas-verdes (Chelonia mydas), das quais 1.288 apresentavam tumores. Foram coletadas amostras de tumores de 80 tartarugas para análise histopatológica; todas foram positivas para fibropapilomatose. A média da prevalência nacional geral para Chelonia mydas foi de 15.41%; apenas nas áreas costeiras a doença foi verificada. Nenhuma ocorrência foi registrada nas ilhas oceânicas do Atol das Rocas e do Arquipélago de Fernando de Noronha. Os resultados das freqüências de tumores por estado foram: Bahia, 15,81% (211/1335); Ceará, 36,94% (181/490); Espírito Santo, 27,43% (469/1710); Pernambuco-Arquipélago de Fernando de Noronha, 0,00% (0/501); Rio de Janeiro, 5,96% (9/151); Rio Grande do Norte-região costeira, 31,43% (33/105); Rio Grande do Norte-Atol das Rocas, 0,00% (0/486); Sergipe, 18,46% (12/65); São Paulo, 10,73 % (371/3456). Os animais afetados variaram de juvenis com comprimento curvilíneo de carapaça (CCC) mínimo de 30,0 cm, subadultos a adultos com máximo de 112 cm. A prevalência de tumores associado a fibropapilomatose aumentou com o CCC até 80,0 cm e decresceu abruptamente. A caracterização da doença foi realizada com um grupo de 202 tartarugas verdes afetadas em uma agregação no Estado do Espírito Santo. Nesse grupo, o número de tumores variou de 1 a 179 tumores em um único animal, tendo como média 21 tumores por tartaruga afetada. 72,5 % dos tumores estavam localizados na região anterior corpórea do animal, 25,2% na região posterior e 2,3% na carapaça e plastrão. Nenhuma tartaruga apresentou tumores na cavidade oral. Para análise de escore de tumor em tartarugas afetadas com FP, o escore de tumor 1 e 2 foi predominante, com 40,61% (80 de 197) e 51,27% (101 de 197) respectivamente. Apenas 8,12% (16 de 197) das tartarugas tiveram escore de tumor 3. / Fibropapilomatosis (FP) is a disease characterized by multiple masses of cutaneous tumors varying from 0,1 to more than 30 cm in diameter. It has affected primarily green turtles (Chelonia mydas), but also other species of sea turtles around the world. The aim of this study is, through the data already systematically collected by the Brazilian Sea Turtle Protection, Research and Management Program - Projeto TAMAR - IBAMA to characterize the occurrence of this disease in marine turtles along the Brazilian coast to within time and space, from 2000 to 2005. Turtles found alive or dead were identified as for the species, measured and examined as for the presence or absence of tumors. 10.170 sea turtles were examined: 1.243 of them were Hawksbills (Eretmochelys imbricata), two of which showed tumors; five of the 250 loggerhead turtles (Caretta caretta) and three of 288 olive ridley\'s turtles (Lepidochelys olivacea), showed tumors; none of the 30 leatherback (Dermochelys coriacea) carried tumors. Mostly of the records, (82,20%; 8.359/10170) corresponded to green turtles (Chelonia mydas), 1.288 of which had tumors. Samples of tumors were collected from 80 turtles for histopathologycal analysis; all examined samples were positive for fibropapillomatosis. The average nationwide tumor prevalence in Chelonia mydas was 15.41%; the disease was detected only in coastal areas: no occurrence was recorded for the oceanic islands of Atol das Rocas and Fernando de Noronha Archipelago. The tumor frequencies by state were: Bahia, 15,81% (211/1335); Ceará, 36,94% (181/490); Espírito Santo, 27,43% (469/1710); Pernambuco - Archipelago of Fernando de Noronha, 0,00% (0/501); Rio de Janeiro, 5,96% (9/151); Rio Grande do Norte- coastal area, 31,43% (33/105); Rio Grande do Norte - Atol das Rocas, 0,00% (0/486); Sergipe, 18,46% (12/65); São Paulo, 10,73% (371/3456). The affected animals varied from juvenile, with minimum curved carapace length (CCC) 30,0 cm to sub-adults, adults with a maximum 112 cm. The prevalence of tumours associated to fibropapillomatosis increased with CCC up to 80,0 cm and then decreased abruptly. The number of tumors in 202 affected green turtles from an aggregation in the state of Espírito Santo varied from 1 to 179 tumors in a single animal, with an average of 21 tumors per affected turtle. 72,5% of tumors were located in the anterior half of the animal\'s bodies, 25,2% in the posterior area, 2,3% on the shell and plastron. No turtle had tumors in the oral cavity. A predominance of turtles was registered with tumors score 1, 40,61% (80 of 197) and score 2, 51,27% (101/197). Only 8,12% (16/197) of the turtles that had score 3. For analysis of tumor score in affected turtles with FP, the tumors score 1 and 2 was predominant, with (40,61%; 80 of 197) and (51,27%; 101/197) respectively. Only 8,12 % (16/197) of the turtles attained tumors score 3.
49

<strong>MOVEMENTS, HOME RANGES, AND HABITAT USE OF  JUVENILE GREEN TURTLES IN SANTA ELENA BAY, MATAPALITO BAY, AND LEONCILLOS BAY IN COSTA RICA</strong>

Fanqi Wu (16317180) 13 June 2023 (has links)
<p>This study monitored daily and seasonal locations of juvenile green turtles in three coastal bays of northwest Costa Rica, determining their home ranges and assessing their habitat use. My objective was to produce insights which might help future Pacific Ocean green turtle conservation efforts.</p> <p>I tracked 14 juvenile green turtles for 51-629 days using acoustic transmitters (VECOM v16) and 12 acoustic receivers (VECOM VR2Tx and VR2W) in 5 study area habitats: sandy areas, reef patches, macroalgae, rocky reefs, and mangroves. I divided these 14 turtles into large (equal to or larger than 65 cm CCL) and small (smaller than 65 cm CCL) size classes so I could highlight any changes as they grew toward adulthood. </p> <p>Both the large and small size turtles used habitats differently during the dry and rainy seasons. During the dry season, the large juveniles had a High Detection Rate (HDR) of 40% in the macroalgae area. During the rainy season, their HDR was 33% in the reef patch area. The small juveniles had their HDR in the reef patch area during both seasons: 33% in the dry season and 43% in the rainy season. The mean home range for the 14 turtles was 1.96 km²; their core use area was 0.19 km2. I saw no connection between body size and home range. The HDR findings suggest that juvenile green turtles preferred reef patches, rocky reefs, and macroalgae habitat types. The large juveniles prefer vegetation areas more as they grew; similar to that of adult green turtles. Some turtles moved between Matapalito Bay and Santa Elena Bay and along the coast to small bays east of Matapalito Bay. Travel speed varied between 0.23 km/h and 12.90 km/h with a mean of 1.57 km/h.  </p> <p>My findings highlight certain habitat areas preferred by Pacific juvenile green turtles. This can guide conservationists in identifying and protecting similar habitats in other inshore Pacific bays in Central America. By protecting habitat areas that are important for juvenile green turtles, this can help rebuild the green turtle population in the Pacific Ocean. </p>
50

Foraging Ecology and Stress in Sea Turtles

Chelsea E Clyde-Brockway (6823772) 13 August 2019 (has links)
As ectothermic marine megafauna, sea turtle physiology and ecology are tightly intertwined with temperature, seasonality, and oceanography. Identifying how turtles respond when exposed to cold water, how they adapt to cold environments when they need to explore cold environments in order to forage, and what foraging resources are exploited by sea turtles are all components central to their conservation. Cold-stunning is a well-documented phenomenon that occurs when water induced decreases in sea turtle body temperature cause turtles to become immobilized and wash ashore. While most cold-stunned turtles are rescued and rehabilitated, we do not know whether cold-stunning is an acute transient occurrence, or a symptom of a bigger environmental problem. Further, while in some environments avoiding cold water is preferential, in other habitats, sea turtles need to inhabit cold environments in order to forage. Along the Eastern Pacific Rim, discrete upwelling locations are characterized by high primary productivity and unusually cold water. In these environments, avoidance is not possible and sea turtles require physiological adaptions to mitigate body temperature decreases in cold water. Little is known about how turtles handle upwelling environments, despite the fact that sea turtles remain in these habitats regardless of water temperature fluctuations. Because upwelling habitats provide increased nutrient presence, and sea turtles are opportunistic foragers, quantification of diet composition will further our understanding of why sea turtles remain in cold water environments year-round. Diet composition in multiple populations of cohabitating sea turtles revealed partitioning that results in reduced inter-specific competition. Further, flexibility in diets provides a wide range of ecosystem services central to habitat resiliency. Therefore, conservation of endangered sea turtles requires complete ecosystem conservation, and complete understanding of the interconnectivity of sea turtles and their environments is crucial.<br>

Page generated in 0.4347 seconds