• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 32
  • 15
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 147
  • 147
  • 33
  • 32
  • 28
  • 23
  • 22
  • 22
  • 17
  • 13
  • 12
  • 12
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Analysis of the COED process and optimization of flue gas heat recovery from a second law perspective

Unruh, Terry Lee. January 1979 (has links)
Call number: LD2668 .T4 1979 U57 / Master of Science
82

Modelling of process systems with genetic programming

Lotz, Marco 12 1900 (has links)
Thesis (MScEng (Process Engineering))--University of Stellenbosch, 2006. / Genetic programming (GP) is a methodology that imitates genetic algorithms, which uses mutation and replication to produce algorithms or model structures based on Darwinian survival-of-the-fittest principles. Despite its obvious po-tential in process systems engineering, GP does not appear to have gained large-scale acceptance in process engineering applications. In this thesis, therefore, the following hypothesis was considered: Genetic programming offers a competitive approach towards the automatic generation of process models from data. This was done by comparing three different GP algorithms to classification and regression trees (CART) as benchmark. Although these models could be assessed on the basis of several different criteria, the assessment was limited to the predictive power and interpretability of the models. The reason for using CART as a benchmark, was that it is well-established as a nonlinear approach to modelling, and more importantly, it can generate interpretable models in the form of IF-THEN rules. Six case studies were considered. Two of these were based on simulated data (a regression and a classification problem), while the other four were based on real-world data obtained from the process industries (three classification problems and one regression problem). In the two simulated case studies, the CART models outperformed the GP models both in terms of predictive power and interpretability. In the four real word case studies, two of the GP algorithms and CART performed equally in terms of predictive power. Mixed results were obtained as far as the interpretability of the models was concerned. The CART models always produced sets of IF-THEN rules that were in principle easy to interpret. However, when many of these rules are needed to represent the system (large trees), the tree models lose their interpretability – as was indeed the case in the majority of the case studies considered. Nonetheless, the CART models produced more interpretable structures in almost all the case studies. The exception was a case study related to the classification of hot rolled steel plates (which could have surface defects or not). In this case, the one of the GP models produced a singularly simple model, with the same predictive power as that of the classification tree. Although GP models and their construction were generally more complex than classification/regression models and did not appear to afford any particular advantages in predictive power over the classification/regression trees, they could therefore provide more concise, interpretable models than CART. For this reason, the hypothesis of the thesis should arguably be accepted, especially if a high premium is placed on the development of interpretable models.
83

Bioconversion of alkylbenzenes by Yarrowia lipolytica

Lind, Aingy Chantel 03 1900 (has links)
Thesis (MScEng (Process Engineering))--University of Stellenbosch, 2009. / The abundance of alkane by-products formed in South Africa presents a feedstock opportunity for the production of a wide range of commercially important products, such as long-chain dioic acids and alcohols. These compounds are formed as intermediates through the biological conversion of alkanes, a route which is particularly attractive when compared with chemical conversion due to its operation under milder process conditions. Furthermore, advances in genetic manipulation, which enable the accumulation of a range of metabolic intermediates, make the biological route remarkably flexible. From the literature review Yarrowia lipolytica was identified as a promising organism for use in studying alkane bioconversion because of its ability to produce large quantities of fatty acids when grown on n-paraffins as a sole carbon source. The bioconversion of alkanes will not only depend on the genetic modification but also on the process conditions to maximise growth and bioconversion. The overall objective of this project was therefore to investigate the potential of Y. lipolytica for alkane bioconversion by defining the conditions that maximise both cell growth and bioconversion. The Y. lipolytica strains supplied (TVN348, TVN493 and WT), however, were not yet modified to the extent that accumulation of metabolic intermediates was possible. Use was therefore made of a model system in which the alkane substrate was substituted with an even chain alkylbenzene. Since Y. lipolytica is unable to metabolise the benzene ring, the alkylbenzene is converted to the metabolic intermediate, phenyl acetic acid (PAA), and the potential for bioconversion assessed through measuring the accumulation of PAA. The specific objectives of the project were therefore 1) to define and quantify the parameters for the establishment of an effective model system in shake flasks with respect to trace elements, buffering, added nitrogen, oxygen supply, glucose concentration, alkylbenzene substrate and inducer requirements 2) to use the defined model system to identify the most promising strain of Y. lipolytica TVN348, TVN493 and WT 3) to use the defined model system and selected strain for evaluation of the influence of time of substrate addition and glucose concentration on cell growth and bioconversion of Y. lipolytica under controlled conditions in an instrumented bioreactor Furthermore, since poor reproducibility in cell growth and bioconversion had been prevalent in previous studies, it was also aimed to identify and statistically quantify the reproducibility between duplicate or triplicate samples in each experiment and between sets of different experiments with respect to PAA formation and cell concentrations. Studies were conducted in shake flask cultures to define and quantify the parameters for the model system. The parameters assessed included trace elements, buffering, nitrogen concentration, oxygen supply, glucose concentration, alkylbenzene substrate type and possible inducer requirements. Trace elements, phosphate buffering and added nitrogen did not significantly affect the cell growth of Y. lipolytica TVN348. The cell concentration of Y. lipolytica TVN348 and TVN493 was increased by 65% and 43% respectively for an increase in oxygen supply by decreasing the working volume from 150ml to 50ml, while the cell concentration of Y. lipolytica WT was increased by 41% when oxygen supply was increased by switching from non-baffled to baffled flasks in 50ml cultures. Bioconversion was also increased for an increase in oxygen supply: 2.4mM to 29.0mM PAA (Y. lipolytica TVN348) and 1.2mM to 21.7mM PAA (Y. lipolytica TVN493) for a decrease in working volume; 10.5mM to 46.6mM PAA (Y. lipolytica WT) when switching from non-baffled to baffled flasks. These results indicated that adequate oxygen supply is crucial to both growth and bioconversion, and that further study should be conducted in 50ml working volumes. Cell concentrations obtained in 1.6% (wt/v) and 3.2% (wt/v) glucose cultures (3.95x108cells/ml and 4.03x108cells/ml respectively) indicated that cell growth was neither enhanced nor inhibited by 3.2% (wt/v) glucose. Of the range of substrates examined (propylbenzene, butylbenzene, sec-butylbenzene, hexylbenzene, ethyltoluene and tert-butyltoluene for Y. lipolytica TVN348 and TVN493; octylbenzene and decylbenzene for Y. lipolytica WT), hexylbenzene was regarded as the best substrate for bioconversion (14.7mM and 14.1mM PAA for TVN348 and TVN493 respectively; 42.6mM PAA for WT). Lastly, the absence of a requirement for an additional inducer such as ethanol or oleic acid was confirmed when PAA was formed from hexylbenzene in the culture containing additional glucose (25.0mM). This suggested that when using hexylbenzene as substrate, bioconversion was induced provided sufficient glucose was available for cell maintenance. Results from duplicate or triplicate flasks in each individual shake flask experiment were reproducible and conclusions were based solely on results which showed 95% confidence intervals. However, reproducibility problems were experienced with results between different sets of experiments carried out under the same conditions. The model system was therefore defined by: 1) no addition of trace elements, additional buffering or added nitrogen, 2) cultures grown in 50ml volumes to supply an adequate amount of oxygen crucial for growth and bioconversion, 3) 3.2% (wt/v) glucose and 4) addition of 1% (v/v) hexylbenzene at 24h with no inducer requirements. Use of the model system in shake flask cultures to identify the most promising of the three strains of Y. lipolytica supplied demonstrated that there was no significant difference in cell growth or bioconversion between these strains. Y. lipolytica WT (which has no genetic modifications) was therefore used for further investigation until an appropriate strain could be substituted when it became available. The growth and bioconversion of Y. lipolytica WT was further investigated under controlled conditions in a bioreactor. The influence of time of substrate addition (11h, 24h, 48h) and glucose concentration (3.2% and 6.4% (wt/v)) on growth and bioconversion was examined. When hexylbenzene was added at 48h, cell growth was increased (8.90x108cells/ml) when compared to two of the triplicate cultures with hexylbenzene addition at 24h (4.74x108cells/ml and 3.92x108cells/ml) and the culture with hexylbenzene addition at 11h (2.82x108cells/ml). The third of the triplicate cultures with hexylbenzene addition at 24h, on the other hand, exhibited the strongest growth (2.23x109cells/ml). The poor reproducibility between the triplicate cultures with hexylbenzene addition as 24h made it difficult to determine whether hexylbenzene addition at 24h or 48h maximised cell growth. Furthermore, the cell growth was not significantly improved when the glucose concentration was increased from 3.2% (wt/v) to 6.4% (wt/v) (7.47x108cells/ml for 6.4% glucose culture), however it was also not inhibited. The highest amount of specific PAA formed by Y. lipolytica WT was found when hexylbenzene was added at 11h (7.4x10-11mmol PAA/cell), however the highest accumulated PAA was produced in the culture that exhibited the strongest growth with hexylbenzene addition at 24h (41.4mM). This suggested that the bioconversion of hexylbenzene was maximised when it was added during the active growth phase. It is therefore recommended to conduct fed-batch experiments in future to maintain the active growth phase. Accumulated PAA was increased in 6.4% (wt/v) glucose culture (15.2mM PAA) when compared with two of the 3.2% (wt/v) glucose cultures (5.4mM and 4.3mM PAA). These results indicated that the increased glucose concentration did not inhibit the bioconversion. Furthermore, PAA was formed when 5% (wt/v) residual glucose was observed in the culture, suggesting that the bioconversion of hexylbenzene was not inhibited at glucose concentrations as high as 5.0% (wt/v). If future work were to be conducted in bioreactor culture where glucose is added in fed-batch operation, glucose concentrations in cultures of up to 5% (wt/v) could be considered for initial studies. During bioconversion by Y. lipolytica, the PAA measured after hexylbenzene exhaustion did not, however, correspond to 100% conversion. Further, poor reproducibility was found in the bioreactor cultures. The disappearance of hexylbenzene without a corresponding accumulation of PAA and poor reproducibility was investigated by determining whether PAA was further degraded or alternatively, whether other metabolic intermediates were being formed and accumulated from the hexylbenzene. However, substitution of the hexylbenzene with PAA as substrate confirmed that PAA could not be metabolised. Further, NMR analyses of both the aqueous and organic phases of the culture did not identify any additional metabolic intermediates. It is recommended that additional analyses be conducted on the aqueous and organic phases to further assess the possible accumulation of intermediates. The development of the model system in shake flask cultures demonstrated the importance of adequate oxygen supply for both cell growth and bioconversion. It was also shown that no inducer was needed because hexylbenzene acted as its own substrate inducer. Furthermore, comparison of Y. lipolytica strains TVN348, TVN493 and WT under the defined conditions of the model system revealed that the genetically modified strains (TVN348, TVN493) did not exhibit enhanced bioconversion. Bioreactor cultures using the model system under controlled conditions further showed that bioconversion was not inhibited at a 5% (wt/v) residual glucose concentration and suggested that bioconversion was maximised when hexylbenzene was added during active growth phase. This informs on future work, suggesting fed-batch operation in order to extend the active growth phase, where glucose concentrations in the bioreactor of up to 5% (wt/v) can be considered.
84

Ionic liquids as solvents in separation processes.

Warren, David Mercer. January 2003 (has links)
Due to the ever increasing need for sustainable development, the chemical and allied industries have been at the focus of much change. Decreasing tolerances on pollution via waste streams has resulted in a re-examination of many chemical processes. This has ushered in the era of 'green chemistry' which incorporates the synthesis of a process in both a sustainable and economically viable manner. In the petroleum and chemical industries, this has led to the search for alternatives to volatile organic compounds. Ionic liquids provide one such alternative. With a wide liquid phase and no measurable vapour pressure, ionic liquids have been found to be successful as a medium for reactions. Ionic liquids differ from high-temperature molten salts in that they have a significantly lower melting point. This work investigates the use of ionic liquids as solvents in separations. The work focuses on the separation of alpha-olefins from complex mixtures. The ionic liquids used in this study were: • l-methyl-3-octyl-imidazolium chloride • 4-methyl-N-butyl-pyridinium tetrafluoroborate • trihexyl-tetradecyl-phosphonium chloride Three experimental techniques used to evaluate ionic liquids were: • gas-liquid chromatography • liquid-liquid equilibria measurements • vapour-liquid equilibria measurements l-Methyl-3-octyl-imidazolium chloride ((MOIM)C1) was used as a stationary phase in gas-liquid chromatography. The solutes used were: • Alkanes: n-Pentane; n-Hexane; n-Heptane; n-Octane • Alkenes: 1-Hexene; 1-Heptene; l-Octene • Alkynes: l-Hexyne; l-Heptyne; 1-0ctyne • Cycloalkanes: Cyclopentane; Cyclohexane; Cycloheptane • Aromatics: Benzene; Toluene Activity coefficients at infinite dilution were measured at temperatures (298.15, 308.15 and 318.15) K. Values at 298.15 K ranged from 1.99 for benzene to 26.1 for n-octane. From the temperature dependence of the activity coefficients, the partial excess molar enthalpies at infinite dilution were calculated. These range from 2.0 kJ.mol'l for l-octyne to 7.3 kJ.mol·1 for n-pentane. (MOIM)C1 shows reasonable ability to separate 1-hexene from the longer n-alkanes and aromatics. 4-Methyl-N-butyl-pyridinium tetrafluoroborate (BuMePyBF) was used as a solvent in liquid-liquid equilibria measurements. The following systems were measured at 298.2 K: • LLE System 1: BuMePyBF4 + 1-Hexene + Toluene • LLE System 2: BuMePyBF4 + 1-Hexene + Ethanol • LLE System 3: BuMePyBF4 + 1-Hexene + 2-Butanone • LLE System 4: BuMePyBF4 + 1-0ctene + Ethanol LLE System 1 is a type 11 system and the other systems being type I. All systems exhibit a large two-phase region. LLE System 1 shows low distribution. LLE System 3 show almost equal distribution between phases resulting in a distribution ratio of close to 1. LLE Systems 2 and 4 show high distribution ratios at low concentrations of solute. LLE Systems 1 and 3 show low to moderate selectivity of the solvent towards the solute. LLE Systems 2 and 4 show high to moderate selectivity, but decrease exponentially with increasing solute concentration in the organic phase. For all systems investigated, the solvent shows no miscibility with feed solutions of low to medium solute concentration. The binodial curves were correlated to the Hlavaty equation, the beta function and the log gamma function. The correlations yielded acceptable results for LLE Systems 2, 3 and 4. The tie-lines were correlated to the NRTL model, with LLE systems 2 and 4 giving acceptable results and LLE systems 1 and 3 give excellent results. The following binary vapour-liquid equilibrium systems were measured: • Acetone + Methanol at 99,4 kPa • l-Hexene + 2-Butanone at 74.8 kPa The acetone + methanol system exhibits a minimum boiling azeotrope at 0.78 mole fraction acetone. The l-hexene + 2-butanone system exhibits a minimum boiling azeotrope at 0.83 mole fraction l-hexene. Trihexyl-tetradecyl-phosphonium chloride (CJ3C1PhCl was then added to the above systems in order to evaluate it as a solvent in extractive distillation. (CJ3C1PhCI shifts the azeotrope of the acetone + methanol system to a higher acetone concentration, but does not remove it altogether. (CJ3C1PhCI has a negative effect on the relative volatility of the l-hexene + 2-butanone, thus rendering it ineffective as an extractive distillation solvent for this system. Another aspect that was considered in this work was the production of an ionic liquid. Synthesis steps and experimental considerations were discussed. A major factor in the use of ionic liquids is the cost of the ionic liquid itself. The major problem associated with ionic liquids is the general lack of available information that is necessary for them to be implemented in a process. Ionic liquids show potential as solvents in liquid-liquid extraction for a number of systems. Their potential as solvents in extractive distillation is probably limited, due to their miscibility/immiscibility properties, to systems involving slightly polar to highly polar compounds. / Thesis (M.Sc.Eng.)-University of Natal, Durban, 2003.
85

Contribution to the Optimization and Flexible Management of Chemical Processes

Ferrer Nadal, Sergio 19 June 2008 (has links)
La industria química ha experimentado en las últimas décadas un aumento en la competencia por la cual las empresas se ven obligadas a adaptarse a un mercado cambiante y cada vez más exigente. Aunque la globalización ha abierto nuevos mercados, ha incrementado también el número de competidores, de tal manera que sólo las empresas que usen las plantas más integradas y eficientes podrán mantenerse en el negocio. En este contexto global, el principal propósito de esta tesis es desarrollar métodos que exploten la flexibilidad de los procesos, con el objetivo de aumentar la eficiencia de las plantas y asegurar los requerimientos de seguridad y calidad de los productos. Esta tesis contribuye a la optimización y a la gestión de la producción desde pequeñas plantas que usen procesos discontinuos hasta grandes plantas de procesado continuo.En primer lugar, esta tesis trata la gestión de los procesos continuos en los que suelen fabricar productos muy similares a gran escala. La gran ventaja de los procesos continuos es que pueden conseguir mayor consistencia en la calidad de los productos y que pueden aprovechar las economías de escala que reducen los costes y residuos. Sin embargo, la industria química para mantenerse competitiva necesita adaptar continuamente sus procesos a las condiciones del mercado y de operación. El sistema de control supervisor presentado en esta parte de la tesis disminuye el tiempo de reacción frente a incidentes en los procesos continuos y re-optimiza la producción en tiempo real, si existe posibilidad de mejora.A continuación, esta tesis trata la gestión de los procesos semicontinuos que permiten una operación más flexible y personalizada. Los procesos semicontinuos operan con puestas en marcha y paradas periódicas para acomodar las frecuentes transiciones entre diferentes productos. Esta tesis presenta un nuevo concepto de fabricación flexible que permite programar perfiles variables de velocidad de producción dentro de cada campaña de producción.La mayor parte del trabajo de investigación de esta tesis se dedica a la planificación de la producción en los procesos discontinuos por lotes, utilizados principalmente en la producción de productos químicos con alto valor añadido. Estos procesos ofrecen varias ventajas respecto a los procesos continuos y semicontinuos debido a la mayor flexibilidad para acomodar diversos productos, diferentes capacidades de producción, y la posibilidad de realizar operaciones completamente diferentes en los mismos equipos. Sin embargo, la obtención del plan de producción óptimo usando se complica al aumentar la complejidad de la planta y/o el número de lotes a planificar. La simplificación de considerar tiempos de transferencia despreciables es generalmente aceptada en la literatura para evitar la complejidad del manejo de las operaciones de transferencia. En cambio, esta tesis pretende resaltar el papel crítico que juegan las operaciones de transferencia en la sincronización de tareas, y en la consiguiente determinación de planes de producción factibles.Siguiendo con los procesos por lotes, esta tesis demuestra que el uso del concepto de recetas flexibles mejora la operación de los procesos en ambientes de producción con mucha incertidumbre. La flexibilidad de las receta se considera como una oportunidad adicional, tanto para la planificación de la producción reactiva como preactiva, reduciendo el riesgo de llegar a resultados económicamente desfavorables.Finalmente, esta tesis presenta las plantas discontinuas sin tuberías como una alternativas a las plantas por lotes clásicas. En la búsqueda de formas más competitivas y efectivas de producción, la flexibilidad para producir un elevado número de productos en plantas por lotes es limitada debido a la necesidad de equipos fijos conectados por tuberías y frecuentes tareas de limpieza. Las plantas sin tuberías presentan una mayor flexibilidad ya que el material se transfiere entre estaciones de procesamiento usando equipos que se mueven dentro de la planta. El trabajo presentado en esta parte de la tesis contribuye a la mejora en la gestión de este tipo de plantas proponiendo una formulación más eficiente a las encontradas en la literatura que resuelve el problema de la planificación de la producción.En resumen, esta tesis desarrolla nuevas estrategias de modelado y métodos de resolución encaminados al soporte de la toma de decisiones que explotan la flexibilidad intrínseca de los procesos químicos. Las principales ventajas de cada una de las contribuciones de esta tesis se demuestran mediante su aplicación a diferentes casos de estudio. / The chemical industry has become increasingly competitive over the past decades. Companies are required to adapt to changing market conditions and meet stricter product specifications. While globalization has opened new markets for the chemical industry, it has also increased the competitor pool, giving an advantage to companies with more efficient and highly integrated plants.In this context, the main aim of this thesis is to demonstrate new concepts and computational methods that exploit process flexibility to enhance plant profitability under transient operating conditions. These methods ensure that safety and product quality requirements are consistently met. This thesis makes contributions to the optimization and management of production in plants ranging from small batch plants to large capacity continuous processes.First, this thesis addresses the management of continuous processes, in which similar products are mass produced. Continuous processes can achieve the highest consistency and product quality by taking advantage of economies of scale and reduced manufacturing costs and waste. However, in order to remain competitive in the market, plants are required to dynamically adapt their processes to fit the continuously changing market and operating conditions. The supervisory control system presented in this part of the thesis decreases the system reaction time to incidences and re-optimizes the production in real time if the opportunity for improved performance exists.Next, this thesis addresses the management of semicontinuous processes, which allow more customized and flexible operation. Semicontinuous processes run with periodic start-ups and shutdowns to accommodate frequent product transitions. This thesis proposes an optimization model that creates improved production schedules by introducing a new concept of flexible manufacturing that allows production rate profiles to be programmed within each operation campaign.The major part of the research work of this thesis deals with the operational management of batch processes, which are mainly used for the production of high value-added chemicals. Batch processing offers the advantage of increased flexibility in product variety, production volume, and the assortment of operations that can be processed by a particular piece of equipment. However, the trade-off is that production scheduling is significantly complicated by the large number of batches involved with different production paths. In order to avoid the complexity of managing transfer operations, the assumption of negligible transfer times is generally accepted in batch scheduling. Conversely, this thesis highlights the critical role that transfer operations play in the synchronization of tasks and in determining the feasibility of production schedules.Continuing to focus on batch plant operation, this thesis demonstrates that the use of the concept of flexible recipes enhances the operation batch plants within an uncertain environment. Recipe flexibility is considered as an additional opportunity for reactive scheduling as well as a proactive way to reduce the risk of meeting unfavorable scenarios.Finally, this thesis examines pipeless plants as an alternative to batch plants. In the search for more competitive and effective ways of production, flexibility of batch plants for producing a large number of products is limited due to the need for equipment, piping and frequent cleaning tasks. Pipeless plants have enhanced flexibility over batch plants, because the material is moved along its production path through moveable vessels. This part of the thesis contributes to the optimization of the management of pipeless plants by proposing an alternative formulation for solving short-term scheduling problems.In summary, this thesis provides novel modeling approaches and solution methods aimed at supporting the decision-making process in plant production scheduling which exploit the existing flexibility in chemical processes. The main advantages of each contribution are highlighted through case studies.
86

Contribució a l'estudi de la modelització i l'optimització de l'operació de plantes químiques multipropòsit de funcionament discontinu

Graells Sobré, Moisès 14 February 1996 (has links)
Aquest treball de tesi s'adreça a la indústria de procés químic d'operació discontínua tot i que també pot resultar profitós per altres situacions de fabricació per lots. Aquests tipus d'indústries són molt variats i s'inclouen en sectors com el de la química fina, el farmacèutic, l'agroalimentari i, en definitiva, l'elaboració d'especialitats. La seva importància econòmica rau tant en el seu significatiu volum de producció com en l'alt valor afegit que sovint tenen els productes.L'objecte de l'estudi és la gestió dels recursos de fabricació i l'optimització de l'operació de la planta per tal d'ajustar la producció resultant als requeriments de la demanda. La natura discontínua i dinàmica dels processos que hi tenen lloc reclama la presa de decisions en termes d'assignació de tasques a equips (reactors, filtres i altres aparells), de seqüenciació de productes i temporització de les operacions. Es tracta, doncs, d'un problema de programació d'activitats.El primer pas vers la solució d'aquest problema és la modelització del sistema estudiat. Aquest treball proposa un model d'operació detallat que inclou, a més de la compartició per part dels diferents productes de recursos generals (temps, equips, serveis...), aspectes més específics de la indústria química. Són les necessitats de transferència i emmagatzamatge de productes, tant intermedis com acabats, de natura molt probablement fluïda. I són també, les tasques de preparació i neteja que, depenent de la seqüència de productes, cal aplicar als equips emprats.La modelització de l'emmagatzemament també considera la possible inestabilitat de certs intermedis i la conseqüent limitació de l'espera abans de ser processats. De fet, la modelització incorpora un nou esquema conceptual que permet la segmentació de les receptes dels diferents productes en sèries de tasques lligades als intermedis estables. Llavors, la descripció d'un programa d'operacions complex mitjançant una sèrie d'ordres de fabricació d'aquests intermedis proporciona una notable simplificació del problema que redueix el número de restriccions a considerar i facilita el procediment d'optimització.L'optimització mitjançant mètodes rigorosos ja establerts només resulta indicada per problemes molt simples en comparació amb el que es planteja en aquest treball. És per això que s'ha desenvolupat una metodologia heurística general que permet abordar aquest problema patró sota les diferents circumstàncies de cada cas particular. En una primera part es procedeix a la generació d'alternatives de producció considerant els casos possibles i eliminant els ineficients sota una sèrie de criteris preestablerts. Aquestes alternatives s'expressen com seqüències de fabricació d'intermedis estables i posteriorment poden ser millorades sota diferents objectius bé manualment o bé emprant mètodes sistemàtics.La validació de la metodologia proposada és possible gràcies a la comparació amb casos de la literatura. En proposar exemples de major complexitat, la utilització de mètodes estocàstics es demostra molt eficient per resoldre problemes per als quals és difícil trobar regles de solució. Llavors, la validació d'aquest casos és possible estadísticament.En conclusió, d'aquest treball en resulta una metodologia general i flexible que s'adapta a la majoria de característiques d'un tipus de problemes que, de moment i en última instància, han de ser resolts de manera particular. La seva complexitat continua reclamant la nostra intuïció. / This thesis concerns batch chemical process industries, although it may be of interest in other batch processing areas. This kind of industry is diverse and includes a variety of sectors such as fine chemicals, pharmaceuticals, food and agriculture industry and speciality manufacturing. The economical significance of this industrial activity resides on both, its large production volume and its high added value. The thesis is aimed at studying the management of limited resources and the optimization of plant operation in order to have the production meet the demand requirements. The inherent discontinuous and dynamic nature of this kind of processes needs decision-making in terms of unit-to-task assignment (reactors, filters and other apparatuses), in terms of product sequencing and in terms of operation timing. The first step towards the solution of this problem is system modelling. This work proposes a detailed operation model that includes the general sharing of resources (time, equipment, utilities, etc.), as well as more specific aspects related to the chemical industry. These aspects are the special needs for material transfer and storage, both final and intermediate, which are likely to be of fluid nature. Additionally, these aspects also include the special set-up and cleaning tasks that the equipment units require depending on the sequence of tasks performed.Storage modelling also considers the different stability of the intermediate substances and the resulting limitation of the waiting time before processing. Thus, the modelling incorporates a novel conceptual framework allowing the segmentation of the recipes into different series of tasks defined by the stable intermediate products. Hence, the description of a complex operation schedule by a sequence of production orders related to these intermediate products allows a significant problem simplification, which results in the reduction of the number of constraints to be considered and enhances the performance of the search. Optimization via established rigorous methods is only suitable for problems simpler than those addressed in this thesis. This is the reason for the development of a general heuristic methodology. The first part generates production alternative paths through an enumerative procedure that eliminates inefficient options according to given pre-established criteria. These alternative paths are characterized as production sequences of storable intermediate products that are next improved regarding different objective functions either manually or automatically.The validation of the proposed methodology is achieved through a comparative study using cases reported in the literature. For those more complex cases, the use of stochastic methods has demonstrated to be very effective when scheduling rules are not available. For these cases, the assessment and validation is achieved through statistical analysis.In conclusion, this thesis results in a general and flexible methodology that accommodates the most of the features of a kind of scheduling and planning problems that finally require particular solution strategies. The more complex the problem, the more the human intuition is to some extend still required.
87

Carbon Dioxide as a Benign Solvent for Homogeneous Catalyst Recovery and Recycle

Jones, Rebecca S. 19 July 2005 (has links)
We have successfully investigated the use of CO2 as a miscibility switch to create an environment in which we can run a homogeneously catalyzed reaction while maintaining a heterogeneous separation. We explored the use of this technique with fluorous biphasic systems, a fluorous solid support, and aqueous biphasic systems. In the case of the fluorous systems, CO2 was added to induce solubility of the fluorous catalyst. When the reaction was completed, CO2 was vented and the system returned to a biphasic state, making the separation easy. For the aqueous biphasic systems, the organic phase is chosen such that it is fully miscible with water at ambient conditions. Examples include acetonitrile, THF, and dioxane. The addition of CO2 reduces the polarity of the solvent and causes a phase split. The recovery of the water-soluble catalyst is once again heterogeneous. The application to aqueous biphasic systems is the most exciting studied. Aqueous biphasic systems are used industrially in the hydroformylation of propylene. With our technique, these systems can be extended to more hydrophobic substrates. We have shown a rate increase of 65 fold and 99% product recovery at modest pressures for the hydroformylation of 1-octene. These aqueous biphasic systems also show much promise in the arena of enzyme catalyzed reactions. We can create an environment in which the enzyme kinetics will no longer be mass transfer limited.
88

Multivariate Modeling in Chemical Toner Manufacturing Process

Khorami, Hassan January 2013 (has links)
Process control and monitoring is a common problem in high value added chemical manufacturing industries where batch processes are used to produce wide range of products on the same piece of equipment. This results in frequent adjustments on control and monitoring schemes. A chemical toner manufacturing process is representative of an industrial case which is used in this thesis. Process control and monitoring problem of batch processes have been researched, mostly through the simulation, and published in the past . However, the concept of applying the subject to chemical toner manufacturing process or to use a single indicator for multiple pieces of equipment have never been visited previously. In the case study of this research, there are many different factors that may affect the final quality of the products including reactor batch temperature, jacket temperature, impeller speed, rate of the addition of material to the reactor, or process variable associated with the pre-weight tank. One of the challenging tasks for engineers is monitoring of these process variables and to make necessary adjustments during the progression of a batch and change controls strategy of future batches upon completion of an existing batch. Another objective of the proposed research is the establishment of the operational boundaries to monitor the process through the usage of process trajectories of the history of the past successful batches. In this research, process measurements and product quality values of the past successful batches were collected and projected into matrix of data; and preprocessed through time alignment, centering, and scaling. Then the preprocessed data was projected into lower dimensions (latent variables) to produce latent variables and their trajectories during successful batches. Following the identification of latent variables, an empirical model was built through a 4-fold cross validation that can represent the operation of a successful batch. The behavior of two abnormal batches, batch 517 and 629, is then compared to the model by testing its statistical properties. Once the abnormal batches were flagged, their data set were folded back to original dimension to form a localization path for the time of abnormality and process variables that contributed to the abnormality. In each case the process measurement were used to establish operational boundaries on the latent variable space.
89

Vapour-liquid equilibrium measurements at moderate pressures using a semi-automatic glass recirculating still.

Lilwanth, Hitesh. 15 September 2014 (has links)
Vapour-liquid equilibrium (VLE) data of high accuracy and reliability is essential in the development and optimization of separation and chemical processes. This study focuses on satisfying the growing demand for precise VLE data at low to moderate pressures, by development of a computer-aided dynamic glass still which is semi-automated. The modified dynamic glass still of Joseph et al. (2001) was employed to achieve precise measurement of phase equilibrium data for a pressure range of 0 to 500 kPa. The study involved the assembling and commissioning of a new moderate pressure dynamic still and various peripheral apparati. The digital measurement and control systems were developed in the object-oriented graphical programming language LabVIEW. The digital proportional controller with integral action developed by Eitelberg (2009) was adapted for the control of pressure and temperature. Pressure and temperature measurements were obtained by using a WIKA TXM pressure transducer and Pt-100 temperature sensor respectively. The calculated combined standard uncertainties in pressure measurements were ±0.005 kPa, ±0.013kPa and ±0.15kPa for the 0-10 kPa, 10-100 kPa and 100-500 kPa pressure ranges respectively. A combined standard uncertainty in temperature of ±0.02 K was calculated. The published data of Joseph et al., (2001) and Gmehling et al,. (1995) for the cyclohexane (1) and ethanol (2) system at 40kPa and 1-hexene (1) + N-methyl pyrrolidone-2 (NMP) (2) system at 363.15 K respectively served as test systems. NMP is regarded as one of the most commonly used solvents in the chemical industry due to its unique properties such as low volatility, thermal and chemical stability. As a result the isothermal measurement of 1-hexene (1) + N-methyl pyrrolidone-2 (NMP) (2) system were conducted at 373.15 K constituting new VLE data. A further system comprising 1-propanol (1) and 2-butanol (2) was also measured at an isothermal temperature of 393.15 K. The measured data were regressed using the combined and direct methods. The equations of state of Peng-Robinson (1976) and Soave-Redlich-Kwong (1972) combined with the mixing rules of Wong-Sandler (1992) in conjunction with a Gibbs excess energy model was utilized for the direct method. The activity coefficient models namely Wilson (1964) and NRTL (Renon and Prausnitz, 1968) were chosen to describe the liquid non-idealities while the vapour phase non-ideality was described with the virial equation of state with the Hayden and O’ Connell (1975) correlation. Thermodynamic consistency of the measured data was confirmed using the point test of Van Ness et al. (1973) and the direct test of Van Ness (1995). / M.Sc.Eng. University of KwaZulu-Natal, Durban 2014.
90

Coupled Thermo-Hydro-Mechanical-Chemical (THMC) Responses of Ontario’s Host Sedimentary Rocks for Nuclear Waste Repositories to Past and Future Glaciations and Deglaciations

Nasir, Othman 10 October 2013 (has links)
Glaciation is considered one of the main natural processes that can have a significant impact on the long term performance of DGRs. The northern part of the American continent has been subjected to a series of strong glaciation and deglaciation events over the past million years. Glacial cycles cause loading and unloading, temperature changes and hydraulic head changes at the ground surface. These changes can be classified as transient boundary conditions. It is widely accepted that the periodic pattern of past glacial cycles during the Late Quaternary period are resultant of the Earth’s orbital geometry changes that is expected to continue in the future. Therefore, from the safety perspective of DGRs, such probable events need to be taken into account. The objective of this thesis is to develop a numerical model to investigate the thermo-hydro-mechanical-chemical (THMC) coupled processes that have resulted from long term past and future climate changes and glaciation cycles on a proposed DGR in sedimentary rocks in southern Ontario. The first application is done on a large geological cross section that includes the entire Michigan basin by using a hydro-mechanical (HM) coupled process. The results are compared with field data of anomalous pore water pressures from deep boreholes in sedimentary rocks of southern Ontario. In this work. The modeling results seem to support the hypothesis that at least the underpressures in the Ordovician formation could be partially attributed to past glaciation. The second application is made on site conditions by using the THMC model. The results for the pore water pressure, tracer profiles, permafrost depth and effective stress profile are compared with the available field data, the results show that the solute transport in the natural limestone and shale barrier formations is controlled by diffusion, which provide evidence that the main mechanism of transport at depth is diffusion-dominant. The third application is made on site conditions to determine the effect of underground changes in DGRs due to DGR construction. The results show that future glaciation loads will induce larger increases in effective stresses on the shaft. Furthermore, it is found that hypothetical nuclide transport in a failed shaft can be controlled by diffusion and advection. The simulation results show that the solute transported in a failed shaft can reach the shallow bedrock groundwater zone. These results might imply that a failed shaft will substantially lose its effectiveness as a barrier. The fourth application is proposed to investigate the geochemical evolution of sedimentary host rock in a near field scale. In this part, a new thermo-hydro-mechanical-geochemical simulator (COMSOL-PHREEQC) is developed. It is anticipated that there will be a geochemical reaction within the host rock that results from interaction with the water enriched with the CO2 generated by nuclear waste.

Page generated in 0.0593 seconds