• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 20
  • 8
  • 6
  • 4
  • 2
  • 2
  • 2
  • Tagged with
  • 96
  • 29
  • 16
  • 15
  • 13
  • 12
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Exploring a Discrete Element Approach for Chemically Mediated Deformation at Granular Contact in Calcite Minerals

Mahat, Santosh 28 August 2019 (has links)
No description available.
32

Synthesis and Study of Chemo-Hydrothermally Derived Water-Soluble Chitosan and Chiosan-Metal Oxide Composites

Basumallick, Srijita 01 January 2014 (has links)
Chitosan (CS) is a man-made sugar based biopolymer derived from chitin, the second most abundant natural polymer after cellulose. Chitin is sourced from crustacean species such as shrimps and crabs. The chemical structure of chitin contains N-Acetyl D-glucosamine monomer units which forms CS upon deacetylation. In CS, ?-(1-4) linked D-glucosamine units are randomly distributed. Approximately 75% - 80% sugar units contains primary amine groups in commercially available low molecular weight CS. Biodegradability, low toxicity, mucoadhesive and transfecting properties of CS polymer are attractive for applications as oral and nasal drug delivery systems. Chitosan polymer is water insoluble at neutral pH. To solubilize CS, dilute mineral acid (such as hydrochloric acid and nitric acid) or organic acid (such as acetic acid) is often used. CS contains both hydroxyl and primary amine groups in its structure. In acidic solution, the amine functional groups become protonated (positively charged). Positively charged CS remains stable only in low pH condition due to electrostatic repulsion of charged polymer segments. Therefore, by using a suitable anionic (negatively charged) cross-linker, stable CS particles (such as nanoparticles and microspheres) can be prepared. This is popularly known as ionic gelation method. Extensive studies have been done on the synthesis of drug loaded CS particles where particle integrity is maintained by ionic gelation using tripolyphosphate (TPP, an anionic cross-linker). Drug encapsulated CS-TPP composite particles are shown to maintain biodegradability and biocompatibility. The CS-TPP composite particles exhibits very limited dispersibility at neutral pH conditions specifically in neutral buffered conditions. A number of biomedical applications (including systemic drug formulations) however demands buffer-stable CS composite particles for achieving optimal therapeutic outcome. To overcome the above dispersibility issues, CS polymer and CS particles units have been chemically modified using water soluble motifs (such as water soluble polymer or ligands). This approach is very cumbersome and usually involves multiple purification steps. Chemical modification of natural CS chain introduces risks of compromising biodegradability and biocompatibility. Therefore, there is a strong need for developing a straightforward method of making water soluble CS and CS particles. Chapter 1 of this dissertation presents an overview of the CS polymer, various applications of CS polymers, methods of making CS polymers and CS particles, current limitations of synthesis methods for preparing stable chitosan particles at neutral pH conditions and finally delineates the scope of the proposed research work. Chapter 2 describes development of chemo-hydrothermal synthesis method for producing water soluble CS polymer and water dispersible CS composite particles. In this method, a chemical (depolymerizing agent) is used to treat CS polymer in a hydrothermal (high temperature and high pressure) condition. Two types of depolymerizing agents have been used, an inorganic acid (e.g. hydrochloric acid, HCl) and a bicarboxylic organic acid (e.g. tartaric acid, TA). In both cases, 100% depolymerized CS polymer was obtained. Chemical characteristics of the depolymerized CS were comparable to acid solubilized CS. CS polymer exhibits weak fluorescence. Interestingly, hydrothermally depolymerized CS shows strong fluorescence properties irrespective of the nature of depolymerizing agent used. TA not only depolymerized CS but also formed CS-TA composite particulate structures in solution via self-assembly. The CS-TA composite particles are stable in a wide pH range from 5 to 11. Detailed spectroscopic and microscopic studies have been done to understand the basic mechanism of particle formation and increase in fluorescence properties (i.e. structure-property relationship). Usefulness of CS-TA in solubilizing water-insoluble cargos (such as fluorescein isothiocyanate, FITC) has been demonstrated. Chapter 3 is focused on hydrothermal synthesis of mixed-valence copper (Cu) oxide loaded CS-TA composite particles and their characterization. Crystalline Cu oxide nanoparticles were coated with the CS-TA layer. Water dispersibility of Cu oxide greatly improved upon coating with CS-TA material. To demonstrate catalytic activity of Cu-oxide loaded CS-TA film in sequestering carbon dioxide (CO2), an electrochemical setup was used. Electrochemical reduction of CO2 was successfully demonstrated. It was observed that CS-TA environment not only maintained catalytic properties of Cu oxide but also allowed solution processing of Cu-oxide film onto the electrode surface. Chapter 4 discusses a convenient method of making monodispersed water dispersible Cu loaded chitosan nanoparticles (Cu-CS) using HCl depolymerized CS polymer. The purpose of this study was to investigate if there was any improvement in antibacterial properties of Cu-CS nanoparticles prepared using hydrothermally treated CS polymer. Interestingly, it was observed that the antibacterial efficacy of Cu was not compromised in Cu-CS nanoparticles. Moreover, the materials exhibited improvement in antibacterial efficacy against both Gram-negative and Gram-positive bacteria species. A plausible mechanism has been proposed to explain antibacterial results. Chapter 5 summarizes major findings of this dissertation research and presents future research directions.
33

Comparison of Consumer Acceptance, Physico-chemical Properties, and Bioactive Delivery of Blueberry Extract and Whole Blueberry Powder Confections

Myers, Meredith R., Myers 08 October 2018 (has links)
No description available.
34

Characterization of binding of tRNA and ligands to T box antiterminator

Anupam, Rajaneesh 27 July 2007 (has links)
No description available.
35

Investigation of endogenous p21 expression and its correlation to therapy resistance in high-risk neuroblastoma

Sorteberg, Agnes January 2021 (has links)
Neuroblastoma (NB) is a childhood cancer with a highly complex nature. High-risk NB patients undergo intensive treatment regimens that are often followed by long-term side effects. This, in addition to the emergence of resistant cancer cells, highlights a need for novel therapeutic targets and treatment strategies to improve outcome in NB. P21 is a cyclin-dependent kinase inhibitor considered to play a role in tumor resistance and aggressiveness due to its involvement in cell cycle and/or apoptosis. This project aimed to explore the expression of endogenous p21 in high-risk NB cell lines and whether p21 could be a therapeutic target for high-risk NB. Endogenous p21 levels were investigated using RT-qPCR and quantitative immunocytochemistry in eight high-risk NB cell lines. A small molecular inhibitor of p21, UC2288, was used in these cell lines to investigate tumour cell viability following p21 inhibition. In addition, combination treatment with UC2288 and the chemotherapy drug cisplatin was performed on resistant NB cell lines. Our results show variable expression of p21, where cell lines with high endogenous p21 expression showed sensitivity to single agent treatment with cisplatin or UC2288. Moreover, resistant NB cell lines showed lower endogenous p21 expression, however, combination treatment with UC2288 and cisplatin showed reduced viability, indicating sensitivity to combination treatment. This project highlights the potential of using p21 as a therapeutic target as well as a predictive biomarker in high-risk NB.
36

A PHARMACOKINETIC BASED STUDY TO BETTER UNDERSTAND THE REPORTED COGNITIVE DEFICITS FOR 5-FLUOROURACIL AND METHOTREXATE IN MALE SWISS-WEBSTER MICE

GANTI, VAISHNAVI January 2014 (has links)
Chemotherapy related neurotoxicity is the decrease in cognitive function observed in patients receiving chemotherapy for breast cancer. For cancers with higher survival rates such as breast cancer, quality of life for patients after treatment cessation is a major concern. In studies performed in our laboratory, we reported cognitive deficiencies in male Swiss-Webster mice on administering 75 mg/kg 5-FU with 3.2 mg/kg MTX and these deficits were significantly greater than groups receiving either drug alone or in another higher dose combination. The probable mechanisms for the reported drug-drug interaction (DDI) between 5-FU and MTX could be either pharmacokinetic (PK) or pharmacological. Since the reported study consists of a combination of two drugs, it is imperative to determine if the PK of either drug was altered. On performing the PK based study we established the nature of the DDI to be PK based. We observed statistically significant changes for PK parameters clearance and apparent volume of distribution. Since, 5-FU and MTX are high clearance drugs, uptake transporters responsible for presenting the drugs to the clearing organs are the limiting factors for their clearance. Therefore, for any PK based interactions observed between 5-FU and MTX in the different dose groups a highly probable mechanism would be interactions at the site of uptake transporters. Based on the physicochemical properties of 5-FU and MTX and the results observed form the PK study, we hypothesized transporter-based interactions to be a probable mechanism for the observed DDI. From the transporter based studies we hypothesized 5-FU probably inhibited the uptake of MTX's transport across the blood brain barrier (BBB). To date the transport of MTX and other similar folates has not been characterized extensively. However, MTX is a very close analogue for reduced folates and therefore shares the transporter reduced folate carrier-1 (Rfc-1) expressed abundantly at the BBB, with endogenous reduced folates. Hence we hypothesized the decreased exposure of MTX in the presence of 5-FU would most probably be as a result of inhibition of uptake transporters such as Rfc-1. Finally, we developed a mathematical PK model for MTX to predict appropriately drug concentrations in the plasma and the brain tissue. The utility of the model was to support the hypothesized interactions responsible for the observed PK data. This models utility is to provide the PK component for the future PK-pharmacodynamic models, which would narrow the gap between the reported cognitive deficits and the PK results reported in this dissertation. / Pharmaceutical Sciences
37

Numerical modeling of localized damage in plain and reinforced concrete structure

Moallemi, Sina January 2017 (has links)
The primary objective of this research is to develop and verify a methodology for modeling three dimensional discrete crack growth in concrete and reinforced concrete structures. Two main sources of damage, considered in this work, include the mechanical loading and the chemical interaction. The behavior of concrete is brittle in tension and becomes ductile behavior under compressive loading. At the same time, the chemical interaction triggers a progressive degradation of strength parameters. The main focus in this research is on numerical analysis of localized damage that is associated with formation of macrocracks. The specific form of chemical interaction examined here involves the alkali-silica reaction (ASR). The approach used in this work for describing the propagation of macrocraks is based on the volume averaging technique. This scheme represents a simplified form of strong discontinuity approach (SDA). It incorporates the notion of a ‘characteristic length’, which is defined as the ratio of area of the crack surface to the considered referential volume. It is demonstrated, based on an extensive numerical study, that this approach gives mesh-independent results which are consistent with the experimental evidence. The accuracy of the solutions is virtually the same as that based on SDA and/or the Extended Finite Element Method (XFEM), while the computational effort is significantly smaller. In order to describe the behavior of the fractured zone, a traction velocity discontinuity relation is formulated that is representative of different modes of damage propagation, including crack opening in tensile regime as well as shear band formation under compression. For tracing the discontinuity within domain, crack smoothening algorithm is employed to overcome any numerical instabilities that may occur close to ultimate load of the structure. The general methodology, as outlined above, has been enhanced by incorporating the chemoplasticity framework to describe the damage propagation in concrete affected by chemical interaction, i.e. continuing ASR. The latter is associated with progressive expansion of the silica gel that is coupled with degradation of strength properties. An implicit scheme has been developed, incorporating the return mapping algorithm, for the integration of the governing constitutive relations. The framework has been implemented in Abaqus software to examine the crack propagation pattern in structural elements subjected to continuing ASR. Another major topic addressed in this thesis is the ‘size effect’ phenomenon. The existing experimental studies, conducted primarily on various concrete structures, clearly show that the ultimate strength is strongly affected by the size of the structure. This phenomenon stems primarily from the effect of localized damage that accompanies the structural failure. The quantitative response depends on the geometry of the structure, type of loading and the material properties. The size effect has been investigated here for a number of notched and un-notched concrete beams, of different geometries, subjected to three-point bending. Both mechanical loading and the chemical interaction have been considered. The next topic considered in this study deals with analysis of localized fracture in 3D reinforced concrete structures. Here, a mesoscale approach is employed whereby the material is perceived as a composite medium comprising two constituents, i.e. concrete matrix and steel reinforcement. The response at the macroscale is obtained via a homogenization procedure that incorporates again the volume averaging. The latter incorporates a set of static and kinematic constraints that are representative of the response prior to the onset of fracture. After the formation of macrocracks, a traction-separation law within the fractured zone is modified by incorporating the Timoshenko beam theory in order to assess the stiffness characteristics in the presence of reinforcement. A number of numerical examples are given that examine the crack pattern formation and the associated fracture mechanism in concrete beams at different intensity of reinforcement. The final chapter of this thesis provides an illustrative example of the application of the proposed methodology to the analysis of a large scale structure. The focus here is on the assessment of structural damage in a hydraulic structure subjected to ASR continuing over of period of a few decades. The results, in term of the predicted extent of damage as well as the displacement history at some specific locations, are compared with in-situ monitoring. / Thesis / Doctor of Philosophy (PhD)
38

Contribution to the requalification of alkali silica reaction (ASR) damaged structures : assessment of the ASR advancement in aggregates by alkali silica reaction / Contribution à la requalification des structures endommagées par l’alcali réaction : evaluation de l’avancement de l’alcali réaction dans les granulats

Gao, Xiao Xiao 16 December 2010 (has links)
Afin de répondre aux questions des propriétaires de structures atteintes de réaction alcali-silice (RAS), ce travail se concentre sur une partie d'une méthodologie globale, proposée initialement par le LMDC et EDF, et dont le but est l'étude du comportement mécanique des constructions endommagées par la RAS. Pour atteindre cet objectif, l'avancement chimique de la RAS des granulats récupérés dans les structures affectées doit être évalué. Ainsi, ce travail est consacré à la quantification de la silice potentiellement réactive des granulats, par l'utilisation de deux approches : une approche indirecte par un test d'expansion et une approche directe par des méthodes chimiques. La présentation du manuscrit s'articule autour des points suivants :• Un test d'expansion pertinent et rapide sur mortiers pour relier la quantité de silice réactive à l'expansion mesurée. Les conditions expérimentales suivantes ont été choisies pour tester différentes tailles et natures de granulats, ainsi que différentes tailles d'éprouvettes : solution de NaOH à 1 mol/l et température de conservation de 60°C.• Une méthode chimique rapide de dissolution sélective pour mesurer directement la quantité de silice réactive disponible pour la RAS. La méthode HF / HF+HCl a été trouvé comme étant la plus efficace.• Un modèle chemo-mécanique pour analyser les effets de la taille des granulats et des éprouvettes, et évaluer l'avancement chimique de la réaction.Finalement, une méthodologie est proposée pour calculer la constante cinétique de la réaction dans le cadre de la requalification des structures atteintes de RAS. / In order to answer the questions of the ASR-affected structures owners, this work focused on a part of a global methodology, which is proposed originally by the LMDC and EDF, aiming to reassess the mechanical behavior of ASR-damaged constructions. To achieve this purpose, the chemical advancement of ASR in the aggregates recovered from the structure should be evaluated. Thus, this work focuses on the assessment of the potentially reactive silica content with two main methods: indirectly by expansion test and directly by chemical methods. The presentation of this manuscript is around the following points: • A relevant and rapid expansion test on mortars to link the reactive silica content to measured expansion. The experimental condition: 1 mol/l NaOH solution conserved at 60°C is chosen to test different aggregate sizes, specimen sizes and natures of aggregate. • A fast chemical method of selective dissolution to measure directly the silica available for ASR. Acid/basic methods are tested and compared; HF / HF+HCl method is found to be the most effective. • A chemo-mechanical model to analyze the effect of aggregate size and specimen size, and evaluate the chemical advancement of ASR. Finally, a methodology is proposed to calculate the kinetics constant in the framework of structural requalification. Key words: alkali-silica reaction (ASR), chemical advancement, reactive silica, expansion test, chemical test, chemo-mechanical model, kinetic constant, selective dissolution
39

Korrelation der p53-, EGFR- und SGLT1-Expression im histopathologischen Präparat mit den Nebenwirkungen und dem Outcome einer primären Radio(chemo)Therapie bei Patienten mit lokal fortgeschrittenem Kopf-Hals-Tumor / Correlation of p53-, EGFR and SGLT1-Expression in biopsies of locally advanced, inoperable head and neck cancer with the toxicity and the outcome of a primary radio(chemo)therapy)

Storf, Hannah Siu-Fa 13 March 2018 (has links)
No description available.
40

Multi-level extensions for the fast and robust overlapping Schwarz preconditioners

Röver, Friederike 14 June 2023 (has links)
Der GDSW-Vorkonditionierer ist ein zweistufiges überlappendes Schwarz-Gebietszerlegungsverfahren mit einem energieminimierenden Grobraum, dessen parallele Skalierbarkeit durch das direkt gelöste Grobproblem begrenzt ist. Zur Verbesserung der parallelen Skalierbarkeit wurde hier eine mehrstufige Erweiterung eingeführt. Für den Fall skalarer elliptischer Probleme wurde eine Konditionierungszahlschranke aufgestellt. Die parallele Implementierung wurde in das quelloffene ShyLU/FROSch Paket der Trilinos-Softwarebibliothek (http://trilinos.org) integriert und auf mehreren der leistungsstärksten Supercomputern der Welt (JUQUEEN, Forschungszentrum Jülich; SuperMUC-NG, LRZ Garching; Theta, Argonne Leadership Computing Facility, Argonne National Laboratory, USA) für Modellprobleme (Laplace und lineare Elastizität) getestet. Das angestrebte Ziel einer verbesserten parallelen Skalierbarkeit wurde erreicht, der Bereich der Skalierbarkeit wurde um mehr als eine Größenordnung erweitert. Die größten Rechnungen verwendeten mehr als 200000 Prozessorkerne des Theta Supercomputers. Zudem wurde die Anwendung des GDSW-Vorkonditionierers auf ein vollständig gekoppeltes nichtlineare Deformations-Diffusions Problem in der Chemomechanik betrachtet.

Page generated in 0.02 seconds