• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 20
  • 8
  • 6
  • 4
  • 2
  • 2
  • 2
  • Tagged with
  • 96
  • 29
  • 16
  • 15
  • 13
  • 12
  • 11
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Investigation of the role of VHL-HIF signaling in DNA repair and apoptosis in zebrafish

Kim, H.R., Santhakumar, K., Markham, E., Baldera, D., Greenald, D., Bryant, H.E., El-Khamisy, Sherif, van Eeden, F.J. 25 August 2020 (has links)
Yes / pVHL is a tumor suppressor. The lack of its function leads to various tumors, among which ccRCC (clear cell renal cell carcinoma) has the most serious outcome due to its resistance to chemotherapies and radiotherapies. Although HIF promotes the progression of ccRCC, the precise mechanism by which the loss of VHL leads to tumor initiation remains unclear. We exploited two zebrafish vhl mutants, vhl and vll, and Tg(phd3:: EGFP)i144 fish to identify crucial functions of Vhl in tumor initiation. Through the mutant analysis, we found that the role of pVHL in DNA repair is conserved in zebrafish Vll. Interestingly, we also discovered that Hif activation strongly suppressed genotoxic stress induced DNA repair defects and apoptosis in vll and brca2 mutants and in embryos lacking ATM activity. These results suggest the potential of HIF as a clinical modulator that can protect cells from accumulating DNA damage and apoptosis which can lead to cancers and neurodegenerative disorders. / The work was supported by two BBSRC Grants: BB/R015457/1 and BB/M02332X/1.
12

Modeling of hydro-chemo-mechanical behavior of clay soils for prediction of landslide displacements

Ghalamzan Esfahani, Farzaneh 08 October 2021 (has links)
The present thesis is composed of two parts. The first part presents the chemo-mechanical effect on the volumetric and shearing behaviour of saturated soil as a continuum. The second part presents the chemo-mechanical effect on the shearing behaviour of a discontinuity. Following Gajo and Loret, 2003, saturated soil is considered as a two-phase deformable porous medium, namely solid and fluid phase consisting of different species. There are clay particles, adsorbed water and ion in the solid phase. The fluid phase includes pore water and salt which may diffuse through the porous medium. In addition, water may be exchanged between solid and fluid phases while the mass of clay particles and ions in the solid phase remains constant. Thus, the balance equations are momentum balance, the mass balance of pore water and salt in the fluid phase, the mass balance of absorbed water. A two-dimensional element is proposed to approximate the solution of the balance equations which has been implemented in a user-defined subroutine (UEL) of the commercial code ABAQUS. This element has taken into account the 2D displacement of the soil skeleton, multidimensional flow of water, osmotic effect, advection and diffusion of salt. A new hyperelastic law is presented by extending the chemo-mechanical model proposed by Loret et al., 2002. The innovative aspects of the proposed model are the following: 1) both the tangent shear stiffness and bulk stiffness depend on the applied stress state and pore water solution, 2) the anisotropy of fabric tensor is introduced in the elasticity law. Moreover, the yield function has been modified to obtain smaller peak strength for highly overconsolidated samples to have better agreement with experimental results. The proposed 2D model is validated with experimental results on natural bentonite (a very active clay) and the soil extracted from low activity clay of Costa della Gaveta slope in Southern Italy. The swelling and swelling pressure of these two types of soil have been computed and compared with the experimental data to show the accuracy and reliability of the proposed model. Furthermore, the effects of elastic anisotropy are investigated on the soil behaviour such as swelling, swelling pressure, stress paths and horizontal stress. Furthermore, a simplified analysis has been performed to show the effect of swelling pressure on slope stability. In the second part, a contact element is proposed to account for the flow of water and diffusion of salt in addition to displacement in the simulation of interface behaviour. This element has been implemented in a user-defined subroutine (UEL) of ABAQUS. Moreover, a nonlinear elasticity law is proposed in which traction in the contact region has been taken into account. The Mohr-Columb yield criterion is used for the plastic regime in which it is assumed that the friction angle is a function of salt concentration and displacement rate based on the experimental data. Some preliminary results are shown for the flux of salt and water through the element. In addition, the effects of salt concentration and displacement rate are presented on the shearing behaviour of the contact element.
13

Chemical Approaches to Understanding Glycobiology

Yi, Wen 29 October 2008 (has links)
No description available.
14

Chemo-Hygro-Geomechanics of Enhanced Crack Propagation

Hu, Manman January 2015 (has links)
<p>This dissertation studies the chemo-hygro-mechanical coupling involved in the process of crack propagation encountered both in natural and engineered context. Chemical processes are likely to affect the mechanical properties of geo-materials, resulting in possible weakening effect. The deformation and micro-cracking induced by material weakening in turn enhances the overall mass removal. In this study, several models within both elasticity and plasticity domain are developed for a better understanding of the enhanced crack propagation. A deformational plasticity model based on experimental observations is addressed. Rigid-plasticity models are applied to various boundary conditions. In the chemo-elasticity model, chemical dissolution is assumed to be a function of a comprehensive strain invariant. One-way coupling and two-way coupling models are discussed. In the two-way coupling model, volumetric strain coupling and deviatoric strain coupling are compared. A variety of loading modes are adopted to investigate the chemical enhancement of propagation of a single crack. The behavior of the material is either rigid-plastic, or elastic with the variable of mass removal enters the constitutive equation as a chemical strain. Comparison between the results from two models is presented and discussed.</p> / Dissertation
15

New Bio- and Chemo-Catalytic Methods for the Total Synthesis of Sorbicillinoids and Ambigols

Milzarek, Tobias Michael 31 March 2022 (has links)
Natural products fulfill an important role in the development of new drugs due to their diverse biological activities. Two prominent examples of pharmaceutically attractive classes of natural products are the fungal sorbicillinoids and the cyanobacterial ambigols. The sorbicillinoids are a polyketide family with over 100 members possessing complex molecular architectures and various bioactivities, ranging from antibiotic and antiviral properties to cytotoxicity. The group of ambigols isolated from the terrestrial cyanophyte Fischerella ambigua, comprises only five representatives that exhibit an analogous diversity of biomedically relevent activities. In order to exploit the great potential of these two classes of natural products, the focus of this work is set, on the one hand, on the targeted derivatization of the sorbicillinoids and, on the other hand, on the investigation of the biosynthesis of the ambigols and the development of an efficient synthetic strategy accessing this compound class. In the first part of this thesis, the previously established chemo-enzymatic one-pot approach, enabling the total synthesis of complex sorbicillinoids, was extended to the preparation of a focu- sed, antiviral sorbicatechol-like compound library. Furthermore, the antiviral evaluation of the library led to five derivatives exhibiting anti-HIV activity with IC50 values in the range of 32–77 μM. Besides, the natural substrate spectrum of the monooxygenase SorbC, playing the key role in the chemo-enzymatic approach, was expanded by a substrate mimicking strategy and by stepwise sorbicillin modification. Flexible long-chain ester functionalities were introduced to imitate the sorbyl side chain in sorbicillin. The successful enzymatic conversion of these derivatives represented an important breakthrough in overcoming substrate limitations. The final completion of the substrate scope was achieved through the formation of backbone-modified sorbicillin substrates. The analysis of the biocatalytic oxidative dearomatization of these compounds demonstrated the high tolerance of SorbC, enabling the straightforward synthesis of altered Diels-Alder und Michael addition products. In total, the chemo-enzymatic methodology has thus been expanded to prepare several new sorbicillinoids, inlcuding the formation of unnatural derivatives through the comprehensive broadening of the natural substrate scope. In the second part of this work, the focus was placed on the elucidation of ambigol biosynthesis by heterologous expression in Synechococcus elongatus PCC 7942. In vitro and in vivo experiments with the two cytochrome P450 monooxygenases confirmed their participation in the selective construction of the biaryl and biaryl ether linkages between the dichlorophenolic subunits. Co- incubation of biaryl bond forming oxidoreductase Ab2 with appropriate mono- and dimeric precursors resulted in the first reported chemo-enzymatic formation of ambigol A. The further examination of the other genetic elements showed that ambigol biosynthesis starts from the shikimate pathway (Ab7) leading, via Claisen rearrangement, to 4-hydroxybenzoic acid (Ab5). The intermediate is regioselectively chlorinated by the FAD-dependent halogenase Ab10 after being activated with ATP and coenzyme A (Ab6). Catalyzed hydrolysis of the thioester by the NRPS module Ab9 is generating 3-chloro-4-hydroxybenzoic acid, which undergoes decarboxylative halogenation by Ab1, leading to the key substrate of the cytochrome P450 monooxygenases Ab2 and Ab3. In summary, the research on ambigol biosynthesis allowed important conclusions regarding the chlorination of the precursors and the selective assembly of the biaryl and biaryl ether linkages. In addition to the biosynthetic analysis, a total synthetic approach to this class of natural products was developed. The basis for this was the targeted synthesis of the central building blocks prepared by highly regioselective halogenation and reactivity-directing protecting groups. The subsequent implementation of the biaryl bonds was performed by an optimized Suzuki cross-coupling reaction using the corresponding boronic acids. The key step of the synthetic strategy was the generation of mono- and bis-iodonium salts to install the required biaryl ether structural elements. The aryl transfer reaction with λ3-iodanes in combination with Suzuki cross-coupling accomplished a straightforward synthetic methodology accessing all known ambigols and unnatural derivatives bearing special biaryl coupling sites or consisting exclusively of 2,4-dichlorophenol units. / Naturstoffe spielen aufgrund ihrer diversen biologischen Aktivitäten eine wichtige Rolle in der Entwicklung neuer Medikamente. Zwei bedeutende Beispiele für pharmazeutisch wertvolle Naturstoffklassen sind die Sorbicillinoide aus Pilzen und die cyanobakteriellen Ambigole. Die Sorbicillinoide sind eine Polyketidfamilie mit über 100 Mitgliedern, die eine komplexe molekulare Architektur und verschiedene Bioaktivitäten besitzen, welche wiederum von antibiotischen und antiviralen Eigenschaften bis zu Cytotoxizität reichen. Die Gruppe der Ambigole, isoliert aus dem terrestrischen Cyanophyten Fischerella ambigua, umfasst nur fünf Vertreter, die aber eine vergleichbare Vielfalt an biomedizinisch relevanten Aktivitäten aufweisen. Um das große Potenzial der beiden Naturstoffklassen zu nutzen, liegt der Fokus dieser Arbeit einerseits auf der gezielten Derivatisierung der Sorbicillinoide und andererseits auf der Untersuchung der Biosynthese der Ambigole und der Entwicklung einer effizienten Synthesestrategie als Zugang zu dieser Verbindungsklasse. Im ersten Teil dieser Arbeit wurde der zuvor etablierte, chemo-enzymatische Ein-Topf-Ansatz, der zur Totalsynthese komplexer Sorbicillinoide führte, zum Aufbau einer fokussierten, antiviralen Bibliothek an Sorbicatechol-Derivaten erweitert. Darüber hinaus zeigte die Auswertung des antiviralen Potentials der Bibliothek fünf Derivate, die eine anti-HIV Aktivität mit IC50-Werten im Bereich von 32-77 μM besitzen. Außerdem wurde das natürliche Substratspektrum der Schlüsselmonooxygenase SorbC für den chemo-enzymatischen Ansatz durch Substratnachahmung und schrittweiser Sorbicillin-Modifikation erweitert. Zur Imitation der Sorbyl-Seitenkette in Sorbicillin wurden flexible, langkettige Esterfunktionalitäten eingeführt. Deren erfolgreiche enzymatische Umsetzung stellt einen wichtigen Durchbruch bei der Überwindung der Substratlimitationen von SorbC dar. Zur Vervollständigung des Substratspektrums wurde eine Synthesestrategie zum Aufbau von Sorbicllin-Derivaten mit modifizierten, aromatischen Substituenten entwicklet. Die Analyse der biokatalytischen oxidativen Dearomatisierung dieser Verbindungen verdeutlichte die hohe Promiskuität von SorbC, was die unkomplizierte Totalsynthese von abgewandelten Diels-Alder- und Michael-Additionsprodukten ermöglicht. Insgesamt wurden mit der chemo- enzymatischen Methode mehrere neue Sorbicillinoide hergestellt, einschließlich der Bildung von unnatürlichen Derivaten durch die umfassende Ausweitung des natürlichen Substratspektrums. Im zweiten Teil dieser Arbeit lag der Fokus auf der Aufklärung der Biosynthese der Ambigole durch heterologe Expression in Synechococcus elongatus PCC 7942. In vitro- und in vivo-Experimente mit den beiden Cytochrom P450 Monooxygenasen bestätigten deren Beteiligung an der selektiven Bildung der Biaryl- und Biarylether-Bindungen zwischen den Dichlorphenol-Untereinheiten. Die Co-Inkubation der biarylbildenden Oxidoreduktase Ab2 mit geeigneten mono- und dimeren Vorstufen führte zur ersten chemo-enzymatischen Synthese von Ambigol A. Weitere Untersu- chungen der anderen genetischen Elemente zeigten, dass die Ambigol Biosynthese mit dem Shikimat-Stoffwechselweg (Ab7) beginnt, der über eine Claisen-Umlagerung (Ab5) zu 4-Hydroxybenzoesäure führt. Das Intermediat wird durch die FAD-abhängige Halogenase Ab10 regioselektiv chloriert, nachdem es mit ATP und Coenzym A aktiviert wurde (Ab6). Durch katalysierte Hydro- lyse des Thioesters durch das NRPS-Modul Ab9 entsteht 3-Chlor-4-hydroxybenzoesäure. Die Carbonsäure wird mittels decarboxylativer Halogenierung (Ab1) in das Schlüsselsubstrat der Cytochrom P450-Monooxygenasen Ab2 und Ab3 umgewandelt. Zusammenfassend ergab die Erforschung der Ambigol Biosynthese wichtige Rückschlüsse auf die Chlorierungsmethoden der entsprechenden Vorstufen und den selektiven Aufbau der Biaryl- und Biarylether-Bindungen in der Natur. Neben der Analyse der Biosynthese wurde auch eine Totalsynthese zu dieser Naturstoffklasse entwickelt. Grundlage hierfür war der gezielte Aufbau der Kernbausteine, die mithilfe hoch regioselektiver Halogenierungen und reaktivitätslenkenden Schutzgruppen dargestellt wurden. Die anschließende Einführung der Biarylbindungen erfolgte durch eine optimierte Suzuki- Kreuzkupplung unter Verwendung der entsprechenden Boronsäuren. Der Schlüsselschritt der Synthesestrategie war die Synthese von Mono- und Bis-Iodoniumsalzen, über welche die benötigten Biarylether-Strukturelemente eingebaut werden konnten. Die Aryltransfer-Reaktion mit λ3-Iodanen in Kombination mit einer Suzuki-Kreuzkupplung ermöglichte den direkten Aufbau aller bekannten Ambigole sowie unnatürlicher Derivate mit speziellen Biarylkupplungsstellen oder Analoga, die ausschließlich aus 2,4-Dichlorphenol-Bausteinen bestehen.
16

Comportement des ciments pétroliers au jeune âge et intégrité des puits / Early age behavior of oil-well cement paste and wells integrity

Agofack, Nicolaine 06 March 2015 (has links)
Lors du forage des puits d'hydrocarbure, une pâte de ciment est coulée dans l'espace annulaire entre le cuvelage en acier et les formations géologiques traversées. Pompée à l'état liquide, cette pâte de ciment fait sa prise le long du puits sous différentes conditions de température et de pression. La gaine de ciment ainsi mise en place a pour principales fonctions de promouvoir l'étanchéité pour protéger le casing contre la corrosion, de fournir le support mécanique pour assurer la stabilité du puits et d'isoler les différents fluides dans les couches traversées. Au cours de sa vie dans le puits, depuis le forage à la complétion et de la production à l'abandon, la gaine de ciment est soumise à différentes sollicitations mécaniques et thermiques qui peuvent l'endommager et altérer ses principales fonctions. La réponse de la pâte de ciment soumis à ces sollicitations dépend non seulement des conditions d'hydratation mais aussi de l'histoire des chargements précédemment appliqués. La prédiction du comportement de la gaine de ciment doit donc se faire à l'aide d'une modélisation numérique qui nécessite une loi de comportement pour la pâte de ciment. Le but de cette thèse est d'établir une loi de comportement de la pâte de ciment en cours d'hydratation pendant le jeune-âge (les 144 premières heures). Pour ce faire, des essais calorimétriques, de mesures de vitesse des ondes et des essais œdométriques ont été réalisés sur une pâte de ciment pétrolier classe G (w/c = 0,44) en cours de prise. Les conditions d'hydratation explorées vont de 7 à 30°C pour les températures et de 0,3 à 45MPa pour les pressions. Les résultats expérimentaux ont montré que les déformations volumiques de la pâte de ciment dues à son hydratation (retrait macroscopique) sont considérablement influencées par la contrainte sous laquelle la pâte de ciment s'hydrate. Plus la contrainte d'hydratation est élevée, plus élevé est le retrait macroscopique à 144 heures. Inversement, les déformations irréversibles dues à un cycle de chargement mécanique à cet âge sont moins importantes pour les contraintes plus élevées. Les résultats ont également montrés qu'au cours de la prise du ciment, il existe un temps critique à partir duquel l'application des cycles de chargement mécanique crée des déformations résiduelles dans la pâte de ciment. Ce temps critique arrive à un degré d'hydratation relativement constant, compris entre 0,18 et 0,20. Le modèle « Boundary Nucleation and Growth » a été utilisé pour étudier la dépendance de ce temps critique à la pression et à la température. Pour la modélisation du retrait macroscopique et de la réponse contrainte – déformation de la pâte de ciment, un modèle élasto-plastique chemo-poro-mécanique couplé, prenant en compte la désaturation du milieu, a été développé. Ce modèle utilise une surface de charge fermée de type Cam-Clay et une loi plastique associée. La loi d'écrouissage dépend des déformations volumiques plastiques et du degré d'hydratation. Les paramètres du modèle ont été évalués pour simuler le retrait macroscopique de la pâte de ciment hydratée sous différentes contraintes et températures. A un degré d'hydratation donnée, le modèle permet également de simuler la réponse contrainte-déformation due à un chargement mécanique / When drilling oil & gas well, cement slurry is pumped between the casing and the rock formation. This cement slurry sets at different conditions of temperature and pressure. The role of this cement sheath is to provide zonal isolation of different fluid along the well, to protect the casing against corrosion and to provide mechanical support. During the life of the well, from drilling to completion, production and P&A (plug and abandonment), the cement sheath is submitted to various mechanical and thermal loading that can potentially damage its properties and alter its performance. The behavior of cement paste submitted to theses solicitations depends both on the hydration condition and the loadings previously applied on the cement paste. The prediction of cement sheath behavior should be done by numerical modeling, which needs a constitutive law for cement paste. The purpose of the present work is to establish a constitutive law of cement paste during its hydration at early age (first 144 hours). The approach is based on combined calorimetric, wave velocities and oedometric tests on an oil-well class G cement paste with water-to-cement ratio equals 0.44. The hydration conditions explored are 7 to 30°C for temperature and 0.3 to 45MPa for pressure. The experimental results showed that the volumetric strain due to cement hydration (macroscopic shrinkage) depends considerably on the hydration pressure. At 144 hours of hydration, the macroscopic shrinkage increases with the hydration pressure increase. But, the residual strain due to application of mechanical cycle at this age is less for cement hydrated under higher pressure. The experimental results revealed that during the hydration there is a critical time after which, the application of mechanical loading can potentially induce residual strain in cement paste. This time is reached at constant hydration degree between 0.18 and 0.20. The Boundary Nucleation and Growth model was used to model the pressure and temperature dependence of this critical time. A coupled elasto-plastic chemo-poro-mechanical model is developed to simulate the macroscopic shrinkage of cement paste hydrated at different conditions of temperature and pressure. A modified Cam-Clay type yield surface with associate flow rule is used. The hardening law depends both on the degree of hydration and on the plastic volumetric strain. At constant degree of hydration, the developed model permits to simulate the stress – strain behavior of cement paste due to the mechanical loading
17

Coupling between transport, mechanical properties and degradation by dissolution of rock reservoir / Couplage entre transport, comportement mécanique et dégradation par dissolution de réservoirs de roche

Wojtacki, Kajetan Tomasz 16 December 2015 (has links)
L'objectif de cette thèse est d'analyser l'évolution des propriétés mécaniques et de transport effectives de roches aquifères,qui sont soumises à une dégradation progressive par attaque chimique due à la dissolution par CO2.L'étude proposée porte sur les conditions à long terme et en champ lointain, lorsque la dégradation de la matrice poreuse peut être supposée homogène à l'échelle de l'échantillon.La morphologie du réseau de pores et du squelette solide définissant les propriétés macroscopiques majeures de la roche (perméabilité, élasticité),la modélisation d'un tel matériau poreux doit être basée sur une caractérisation morphologique et statistique des roches étudiées.Tout d'abord, une méthode de reconstruction inspirée du processus naturel de formation des grès est développée afin d'obtenir des représentations statistiquement équivalentes à de véritables échantillons.Les échantillons générés sont sélectionnés afin de satisfaire les informations morphologiques extraites de l'analyse des images microtomographiques d'échantillons de roche naturelle.Une méthodologie afin d'estimer les propriétés mécaniques équivalentes des échantillons générés, fondées directement sur des maillages réguliers considérés comme images binaires, est présentée.Le comportement mécanique équivalent est obtenu dans le cadre de l'homogénéisation périodique.Mais en raison du manque de périodicité géométrique des échantillons considérés, deux approches différentes sont développées :la reconstruction de VER par symétrie de réflexion ou l'addition d'une couche homogène associée à une méthode de point fixe.L’évolution de la perméabilité est estimée de manière classique en utilisant la méthode de mise à l'échelle dans la forme de la loi de Darcy. Enfin, la dissolution chimique du matériau est abordée par dilatation morphologique de la phase poreuse.De plus, une analyse détaillée de l'évolution des descripteurs morphologiques liée aux modifications de la microstructure lors des étapes de dissolution est présentée.La relation entre les propriétés morphologiques - perméabilité - modules d'élasticité est également fournie.La méthodologie développée dans ce travail pourra être facilement appliquée à d'autres classes de matériaux hétérogènes. / The aim of this thesis is to analyse evolution of effective mechanical and transport properties of rock aquifer, which is subjected to progressive chemical degradation due to CO2 dissolution. The proposed study focuses on long-term and far field conditions, when degradation of porous matrix can be assumed to be homogeneous at sample scale. It is very well known that morphology of pore network and solid skeleton defines important macroscopic properties of the rock (permeability, stiffness). Therefore, modelling of such porous material should be based on morphological and statistical characterisation of investigated rocks. First of all, in order to obtain statistically equivalent representations of real specimen a reconstruction method inspired by natural process of sandstone formation is adapted. Then the selected generated samples satisfy morphological informations which are extracted by analysing microtomography of the natural rock sample. Secondly, a methodology to estimate effective mechanical properties of investigated material, based directly on binary images, is featured. Effective mechanical behaviour is obtain within the framework of periodic homogenization, However due to lack of geometrical periodicity two different approaches are used (reflectional symmetry of considered RVE and a fixed point method, using additional layer spread over the considered geometry). Evolution of permeability is estimated in classical way using upscaling method in the form of Darcy's law. Finally, chemical dissolution of material is tackled in a simplified way by performing morphological dilation of porous phase. Detailed analysis of chosen morphological descriptors evolution, triggered by modifications of microstructures is provided. The relation between morphological properties – permeability – elastic moduli is also provided. The methodology developed in this work could be easily applied to other heterogeneous materials.
18

Comportement des ciments pétroliers au jeune âge et intégrité des puits / Early age behavior of oil-well cement paste and wells integrity

Agofack, Nicolaine 06 March 2015 (has links)
Lors du forage des puits d'hydrocarbure, une pâte de ciment est coulée dans l'espace annulaire entre le cuvelage en acier et les formations géologiques traversées. Pompée à l'état liquide, cette pâte de ciment fait sa prise le long du puits sous différentes conditions de température et de pression. La gaine de ciment ainsi mise en place a pour principales fonctions de promouvoir l'étanchéité pour protéger le casing contre la corrosion, de fournir le support mécanique pour assurer la stabilité du puits et d'isoler les différents fluides dans les couches traversées. Au cours de sa vie dans le puits, depuis le forage à la complétion et de la production à l'abandon, la gaine de ciment est soumise à différentes sollicitations mécaniques et thermiques qui peuvent l'endommager et altérer ses principales fonctions. La réponse de la pâte de ciment soumis à ces sollicitations dépend non seulement des conditions d'hydratation mais aussi de l'histoire des chargements précédemment appliqués. La prédiction du comportement de la gaine de ciment doit donc se faire à l'aide d'une modélisation numérique qui nécessite une loi de comportement pour la pâte de ciment. Le but de cette thèse est d'établir une loi de comportement de la pâte de ciment en cours d'hydratation pendant le jeune-âge (les 144 premières heures). Pour ce faire, des essais calorimétriques, de mesures de vitesse des ondes et des essais œdométriques ont été réalisés sur une pâte de ciment pétrolier classe G (w/c = 0,44) en cours de prise. Les conditions d'hydratation explorées vont de 7 à 30°C pour les températures et de 0,3 à 45MPa pour les pressions. Les résultats expérimentaux ont montré que les déformations volumiques de la pâte de ciment dues à son hydratation (retrait macroscopique) sont considérablement influencées par la contrainte sous laquelle la pâte de ciment s'hydrate. Plus la contrainte d'hydratation est élevée, plus élevé est le retrait macroscopique à 144 heures. Inversement, les déformations irréversibles dues à un cycle de chargement mécanique à cet âge sont moins importantes pour les contraintes plus élevées. Les résultats ont également montrés qu'au cours de la prise du ciment, il existe un temps critique à partir duquel l'application des cycles de chargement mécanique crée des déformations résiduelles dans la pâte de ciment. Ce temps critique arrive à un degré d'hydratation relativement constant, compris entre 0,18 et 0,20. Le modèle « Boundary Nucleation and Growth » a été utilisé pour étudier la dépendance de ce temps critique à la pression et à la température. Pour la modélisation du retrait macroscopique et de la réponse contrainte – déformation de la pâte de ciment, un modèle élasto-plastique chemo-poro-mécanique couplé, prenant en compte la désaturation du milieu, a été développé. Ce modèle utilise une surface de charge fermée de type Cam-Clay et une loi plastique associée. La loi d'écrouissage dépend des déformations volumiques plastiques et du degré d'hydratation. Les paramètres du modèle ont été évalués pour simuler le retrait macroscopique de la pâte de ciment hydratée sous différentes contraintes et températures. A un degré d'hydratation donnée, le modèle permet également de simuler la réponse contrainte-déformation due à un chargement mécanique / When drilling oil & gas well, cement slurry is pumped between the casing and the rock formation. This cement slurry sets at different conditions of temperature and pressure. The role of this cement sheath is to provide zonal isolation of different fluid along the well, to protect the casing against corrosion and to provide mechanical support. During the life of the well, from drilling to completion, production and P&A (plug and abandonment), the cement sheath is submitted to various mechanical and thermal loading that can potentially damage its properties and alter its performance. The behavior of cement paste submitted to theses solicitations depends both on the hydration condition and the loadings previously applied on the cement paste. The prediction of cement sheath behavior should be done by numerical modeling, which needs a constitutive law for cement paste. The purpose of the present work is to establish a constitutive law of cement paste during its hydration at early age (first 144 hours). The approach is based on combined calorimetric, wave velocities and oedometric tests on an oil-well class G cement paste with water-to-cement ratio equals 0.44. The hydration conditions explored are 7 to 30°C for temperature and 0.3 to 45MPa for pressure. The experimental results showed that the volumetric strain due to cement hydration (macroscopic shrinkage) depends considerably on the hydration pressure. At 144 hours of hydration, the macroscopic shrinkage increases with the hydration pressure increase. But, the residual strain due to application of mechanical cycle at this age is less for cement hydrated under higher pressure. The experimental results revealed that during the hydration there is a critical time after which, the application of mechanical loading can potentially induce residual strain in cement paste. This time is reached at constant hydration degree between 0.18 and 0.20. The Boundary Nucleation and Growth model was used to model the pressure and temperature dependence of this critical time. A coupled elasto-plastic chemo-poro-mechanical model is developed to simulate the macroscopic shrinkage of cement paste hydrated at different conditions of temperature and pressure. A modified Cam-Clay type yield surface with associate flow rule is used. The hardening law depends both on the degree of hydration and on the plastic volumetric strain. At constant degree of hydration, the developed model permits to simulate the stress – strain behavior of cement paste due to the mechanical loading
19

Convective patterns triggered by chemical reactions, dissolution and cross-diffusion: an experimental study

Lemaigre, Lorena 13 May 2016 (has links)
Comprendre l'effet de réactions chimiques sur les fluides en écoulement est une problématique au coeur de nombreuses applications telles que la remédiation de sols pollués ou le stockage géologique du CO2. Dans ce cadre, l'objectif de notre travail est de comprendre par une approche expérimentale dans quelle mesure une réaction chimique peut modifier le développement et les propriétés de motifs convectifs résultant d'instabilités hydrodynamiques dues à des gradients de densité dans le champ de gravité. Nos expériences sont effectuées par mise en contact de solutions aqueuses réactives ou de liquides non réactifs dans une cellule de Hele-Shaw verticale. Ce réacteur modèle constitué de deux plaques en verre séparées par un mince interstice est en effet communément utilisé pour l'étude de mouvements de fluides à l'échelle du laboratoire. Nous analysons dans divers cas les structures spatio-temporelles résultant du développement de profils de densité instables engendrés par des réactions chimiques, des processus de dissolution ou de diffusion croisée. Lors de notre thèse, nous avons tout d'abord étudié l'interaction entre une réaction acide-base et les instabilités hydrodynamiques dues à un gradient de densité, plus particulièrement la double diffusion et l'instabilité de Rayleigh-Taylor. Nous avons montré que cette simple réaction chimique de type A+B—>C brise la symétrie haut-bas caractéristique des motifs convectifs non réactifs. Nous nous sommes ensuite intéressés à une réaction chimique de cinétique plus complexe :la réaction oscillante de Belousov-Zhabotinsky. Nous avons séparé les réactifs dans l'espace de manière à localiser la réaction à l'interface entre deux solutions de composition différente. Notre objectif est d'ainsi obtenir un oscillateur localisé et d'en comprendre l'effet sur les instabilités hydrodynamiques. Pour ce faire, nous avons d'abord caractérisé les motifs réaction-diffusion qui se développent dans cette géométrie particulière. Nous avons montré qu'en l'absence de convection, la ségrégation spatiale des réactifs donne lieu à des variations spatiales de l'excitabilité, et par conséquent à l'apparition d'un ou deux trains d'ondes localisés spatialement. Dans le cas convectif, nous avons observé que ces trains d'onde peuvent également apparaître de manière localisée en fonction du type d'instabilité hydrodynamique qui se développe et que les réactions chimiques permettent d'obtenir de nouveaux motifs originaux. Nous avons également caractérisé les motifs hydrodynamiques qui apparaissent à cause de la diffusion croisée dans des microémulsions. Nous avons montré que, si le gradient de concentration d'une espèce peut engendrer un flux d'une autre espèce, une stratification instable de densité peut en résulter, ce qui engendre de la convection. Enfin nous avons étudié la dissolution convective d'une phase organique (formate d'alkyle) dans une phase aqueuse. Nous avons montré que lorsque le degré de miscibilité entre les deux phases augmente au-delà d'un certain seuil, les mouvements de fluide sont plus intenses. Nos résultats ont permis de comprendre l'effet de réactions bimoléculaires ou oscillantes ainsi que de la dissolution ou de la diffusion croisée sur les propriétés de structures de type réaction-diffusion-convection. Ces travaux ouvrent la voie à l'étude de nouveaux motifs spatio-temporels auto-organisés couplant le pouvoir organisateur des réactions d'une part et de l'hydrodynamique d'autre part et ce, tant dans des solutions aqueuses que dans des milieux plus complexes comprenant différentes phases. / The understanding of the effect of chemical reactions on fluid motions is an issue at the heart of numerous applications, such as polluted soil remediation or geological storage of CO2. In this context, the goal of our work is to understand through an experimental approach to what extent a chemical reaction is able to modify the development and the properties of buoyancy-driven convective patterns. Our experiments are carried out by putting in contact reactive aqueous solutions or non reactive liquids in a vertical Hele-Shaw cell. This model reactor consists in two glass plates separated by a thin gap and is commonly used to study fluid motions at the laboratory scale. We analyze in various cases the spatio-temporal structures resulting from the build-up of unstable density gradients due to chemical reactions, dissolution processes or cross-diffusion. During our thesis, we first studied the interplay between an acid-base reaction and buoyancy-driven instabilities, namely double diffusion and the Rayleigh-Taylor instability. We have shown that this simple A+B -->C type of reaction breaks the up-down symmetry which is characteristic of the non reactive patterns. Next we focused on a chemical reaction featuring more complex kinetics, namely the oscillating Belousov-Zhabotinsky reaction. The reactants were initially segregated in space in order to spatially localize the reaction at the interface between two solutions with different composition. Our aim is to obtain a localized chemical oscillator and to study its effect on buoyancy-driven flows. To do so, we first characterized the corresponding reaction-diffusion patterns which develop from this particular initial condition. We showed that, in the absence of convection, the spatial segregation of the reactants produces spatial gradients in the excitability and hence the nucleation of one or two spatially localized wave trains. We observed that in the presence of convective motions, these wave trains can also appear and remain localized, according to the type of buoyancy-driven instability which is at play. Moreover the chemical reaction triggers the onset of additional patterns. We have also characterized the hydrodynamic patterns which appear due to cross-diffusion in microemulsions. We have shown that, if a concentration gradient of one species is able to trigger a flux of another species, an unstable density stratification may appear and cause the onset of convection. Finally we have studied the convective dissolution of an organic phase (alkyl formate) into an aqueous phase. We have shown that, above a certain threshold, an increase in the miscibility between the two phases leads to an increase in the intensity of the fluid motions. Our results help to understand the effect of bimolecular or oscillating reactions, dissolution processes and cross-diffusion on the properties of reaction-diffusion-convection structures. This work paves the way towards the study of novel self-organized spatio-temporal patterns coupling the organizing power of chemical reactions and of hydrodynamic flows, both in aqueous solutions and multiphase media. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
20

Comportement des ciments pétroliers au jeune âge et intégrité des puits / Early age behavior of oil-well cement paste and wells integrity

Agofack, Nicolaine 06 March 2015 (has links)
Lors du forage des puits d'hydrocarbure, une pâte de ciment est coulée dans l'espace annulaire entre le cuvelage en acier et les formations géologiques traversées. Pompée à l'état liquide, cette pâte de ciment fait sa prise le long du puits sous différentes conditions de température et de pression. La gaine de ciment ainsi mise en place a pour principales fonctions de promouvoir l'étanchéité pour protéger le casing contre la corrosion, de fournir le support mécanique pour assurer la stabilité du puits et d'isoler les différents fluides dans les couches traversées. Au cours de sa vie dans le puits, depuis le forage à la complétion et de la production à l'abandon, la gaine de ciment est soumise à différentes sollicitations mécaniques et thermiques qui peuvent l'endommager et altérer ses principales fonctions. La réponse de la pâte de ciment soumis à ces sollicitations dépend non seulement des conditions d'hydratation mais aussi de l'histoire des chargements précédemment appliqués. La prédiction du comportement de la gaine de ciment doit donc se faire à l'aide d'une modélisation numérique qui nécessite une loi de comportement pour la pâte de ciment. Le but de cette thèse est d'établir une loi de comportement de la pâte de ciment en cours d'hydratation pendant le jeune-âge (les 144 premières heures). Pour ce faire, des essais calorimétriques, de mesures de vitesse des ondes et des essais œdométriques ont été réalisés sur une pâte de ciment pétrolier classe G (w/c = 0,44) en cours de prise. Les conditions d'hydratation explorées vont de 7 à 30°C pour les températures et de 0,3 à 45MPa pour les pressions. Les résultats expérimentaux ont montré que les déformations volumiques de la pâte de ciment dues à son hydratation (retrait macroscopique) sont considérablement influencées par la contrainte sous laquelle la pâte de ciment s'hydrate. Plus la contrainte d'hydratation est élevée, plus élevé est le retrait macroscopique à 144 heures. Inversement, les déformations irréversibles dues à un cycle de chargement mécanique à cet âge sont moins importantes pour les contraintes plus élevées. Les résultats ont également montrés qu'au cours de la prise du ciment, il existe un temps critique à partir duquel l'application des cycles de chargement mécanique crée des déformations résiduelles dans la pâte de ciment. Ce temps critique arrive à un degré d'hydratation relativement constant, compris entre 0,18 et 0,20. Le modèle « Boundary Nucleation and Growth » a été utilisé pour étudier la dépendance de ce temps critique à la pression et à la température. Pour la modélisation du retrait macroscopique et de la réponse contrainte – déformation de la pâte de ciment, un modèle élasto-plastique chemo-poro-mécanique couplé, prenant en compte la désaturation du milieu, a été développé. Ce modèle utilise une surface de charge fermée de type Cam-Clay et une loi plastique associée. La loi d'écrouissage dépend des déformations volumiques plastiques et du degré d'hydratation. Les paramètres du modèle ont été évalués pour simuler le retrait macroscopique de la pâte de ciment hydratée sous différentes contraintes et températures. A un degré d'hydratation donnée, le modèle permet également de simuler la réponse contrainte-déformation due à un chargement mécanique / When drilling oil & gas well, cement slurry is pumped between the casing and the rock formation. This cement slurry sets at different conditions of temperature and pressure. The role of this cement sheath is to provide zonal isolation of different fluid along the well, to protect the casing against corrosion and to provide mechanical support. During the life of the well, from drilling to completion, production and P&A (plug and abandonment), the cement sheath is submitted to various mechanical and thermal loading that can potentially damage its properties and alter its performance. The behavior of cement paste submitted to theses solicitations depends both on the hydration condition and the loadings previously applied on the cement paste. The prediction of cement sheath behavior should be done by numerical modeling, which needs a constitutive law for cement paste. The purpose of the present work is to establish a constitutive law of cement paste during its hydration at early age (first 144 hours). The approach is based on combined calorimetric, wave velocities and oedometric tests on an oil-well class G cement paste with water-to-cement ratio equals 0.44. The hydration conditions explored are 7 to 30°C for temperature and 0.3 to 45MPa for pressure. The experimental results showed that the volumetric strain due to cement hydration (macroscopic shrinkage) depends considerably on the hydration pressure. At 144 hours of hydration, the macroscopic shrinkage increases with the hydration pressure increase. But, the residual strain due to application of mechanical cycle at this age is less for cement hydrated under higher pressure. The experimental results revealed that during the hydration there is a critical time after which, the application of mechanical loading can potentially induce residual strain in cement paste. This time is reached at constant hydration degree between 0.18 and 0.20. The Boundary Nucleation and Growth model was used to model the pressure and temperature dependence of this critical time. A coupled elasto-plastic chemo-poro-mechanical model is developed to simulate the macroscopic shrinkage of cement paste hydrated at different conditions of temperature and pressure. A modified Cam-Clay type yield surface with associate flow rule is used. The hardening law depends both on the degree of hydration and on the plastic volumetric strain. At constant degree of hydration, the developed model permits to simulate the stress – strain behavior of cement paste due to the mechanical loading

Page generated in 0.1189 seconds