• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 4
  • 1
  • Tagged with
  • 61
  • 61
  • 20
  • 20
  • 18
  • 15
  • 12
  • 9
  • 9
  • 9
  • 8
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Developing Ocean Color Algorithm using Moderate Resolution Imaging Spectroradiometer (MODIS) Sensor for Shallow Coastal Water Bodies

Abbas, Mohd Manzar 20 June 2018 (has links)
This study analyses the spatial and temporal variability of chlorophyll-a in Chesapeake Bay; assesses the performance of Ocean Color 3M (OC3M) algorithm; and develops a novel algorithm to estimate chlorophyll-a for coastal shallow water. The OC3M algorithm yields an accurate estimate of chlorophyll-a concentration for deep ocean water (RMSE=0.016), but it failed to perform well in the coastal water system (RMSE=23.17) of Chesapeake Bay. A novel algorithm was developed which utilizes green and red bands of the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The novel algorithm derived the chlorophyll-a concentration more accurately in Chesapeake Bay (RMSE=4.20) than the OC3M algorithm. The study indicated that the algorithm that uses red bands could improve the satellite estimation of chlorophyll-a in the coastal water system by reducing the noise associated with bottom reflectance and colored dissolved organic matter (CDOM)
52

Bayesian hierarchical approaches to analyze spatiotemporal dynamics of fish populations

Bi, Rujia 03 September 2020 (has links)
The study of spatiotemporal dynamics of fish populations is important for both stock assessment and fishery management. I explored the impacts of environmental and anthropogenic factors on spatiotemporal patterns of fish populations, and contributed to stock assessment and management by incorporating the inherent spatial structure. Hierarchical models were developed to specify spatial and temporal variations, and Bayesian methods were adopted to fit the models. Yellow perch (Perca flavescens) is one of the most important commercial and recreational fisheries in Lake Erie, which is currently managed using four management units (MUs), with each assessed by a spatially-independent stock-specific assessment model. The current spatially-independent stock-specific assessment assumes that movement of yellow perch among MUs in Lake Erie is statistically negligible and biologically insignificant. I investigated whether the assumption is violated and the effect this assumption has on assessment. I first explored the spatiotemporal patterns of yellow perch abundance in Lake Erie based on data from a 27-year gillnet survey, and analyzed the impacts of environmental factors on spatiotemporal dynamics of the population. I found that yellow perch relative biomass index displayed clear temporal variation and spatial heterogeneity, however the two middle MUs displayed spatial similarities. I then developed a state-space model based on a 7-year tag-recovery data to explore movements of yellow perch among MUs, and performed a simulation analysis to evaluate the impacts of sample size on movement estimates. The results suggested substantial movement between the two stocks in the central basin, and the accuracy and precision of movement estimates increased with increasing sample size. These results demonstrate that the assumption on movements among MUs is violated, and it is necessary to incorporate regional connectivity into stock assessment. I thus developed a tag-integrated multi-region model to incorporate movements into a spatial stock assessment by integrating the tag-recovery data with 45-years of fisheries data. I then compared population projections such as recruitment and abundance derived from the tag-integrated multi-region model and the current spatial-independent stock-specific assessment model to detect the influence of hypotheses on with/without movements among MUs. Differences between the population projections from the two models suggested that the integration of regional stock dynamics has significant influence on stock estimates. American Shad (Alosa sapidissima), Hickory Shad (A. mediocris) and river herrings, including Alewife (A. pseudoharengus) and Blueback Herring (A. aestivalis), are anadromous pelagic fishes that spend most of the annual cycle at sea and enter coastal rivers in spring to spawn. Alosa fisheries were once one of the most valuable along the Atlantic coast, but have declined in recent decades due to pollution, overfishing and dam construction. Management actions have been implemented to restore the populations, and stocks in different river systems have displayed different recovery trends. I developed a Bayesian hierarchical spatiotemporal model to identify the population trends of these species among rivers in the Chesapeake Bay basin and to identify environmental and anthropogenic factors influencing their distribution and abundance. The results demonstrated river-specific heterogeneity of the spatiotemporal dynamics of these species and indicated the river-specific impacts of multiple factors including water temperature, river flow, chlorophyll a concentration and total phosphorus concentration on their population dynamics. Given the importance of these two case studies, analyses to diagnose the factors influencing population dynamics and to develop models to consider spatial complexity are highly valuable to practical fisheries management. Models incorporating spatiotemporal variation describe population dynamics more accurately, improve the accuracy of stock assessments, and would provide better recommendations for management purposes. / Doctor of Philosophy / Many fish populations exhibit complex spatial structure, but the spatial patterns have been incorporated into stock assessment only in few cases. A full understanding of spatial structure of fish populations is needed to better manage the populations. Stock assessment and management strategies should depend on the inherent spatial structure of the target fish population. There have been many approaches developed to analyze spatial structure of fish populations. In this dissertation, I developed quantitative models to analyze fish demographic data and tagging data to explore spatial structure of fish populations. Yellow perch (Perca flavescens) in Lake Erie and Alosa group including American Shad (Alosa sapidissima), Hickory Shad (A. mediocris) and river herrings (Alewife A. pseudoharengus and Blueback Herring A. aestivalis) in selected tributaries of the Chesapeake Bay were taken as examples. Fishery-independent data for yellow perch displayed spatial similarities in the central basin of Lake Erie. Distinct temporal trends were observed in relative abundance data for Alosa sp. in different tributaries of the Chesapeake Bay. Substantial yellow perch movement among the central basin of the Lake was observed in tagging data. Ignoring the inherent spatial structure may cause fish to be overfished in some regions and underfished in others. To maximize the effectiveness of management in all regions for fish populations, I highly recommend incorporating spatial structure into stock assessment and management such as the ones developed in this dissertation.
53

Monitoring pesticides in the soil, groundwater, and submarine groundwater discharge of the Chesapeake Bay Area

Schicho, Douglas Linden 05 September 2009 (has links)
The first objective of this research was to determine if pesticides were leaching into the shallow groundwater beneath agricultural sites, and if so, to determine a correlation between soil and groundwater pesticide concentrations. The second was to examine the correlation between pesticide concentrations measured by gas chromatography with electron capture detector (GC/ECD) and an immunoassay method developed by OHMICRON Corporation. Samples from four agricultural and one reference (undeveloped) site were analyzed for pesticides over an 11 month period from April, 1992 to February, 1993. One hundred and nineteen separate groundwater samples were analyzed for: alachlor, atrazine, carbofuran, cyanazine, and metolachlor. Pesticide analysis of groundwater and seepage meter water was carried out by immunoassay and by solid phase extraction (SPE) with octadecyl bonded extraction disks followed by GC/ECD. Fifty-five soil and sediment samples were Soxhlet extracted followed by gas chromatography/mass spectrometry (GC/MS). Pesticides were detected in 13.4% groundwater samples by GC/ECD with only one detection being greater than 1 ppb. The immunoassay method detected pesticides in 32% of the groundwater samples with the majority of these detections also being below 1 ppb. Alachlor and/or metolachlor were detected in 44% of the soil samples at concentrations ranging from 7 ppb to 485 ppb. The study concluded that the majority of the target pesticides were being adsorbed by the soil and only limited amounts, less than 1 ppb, were being transported to the groundwater. It was also concluded that the immunoassay had lower limits of detection, but may yield some false positive results. / Master of Science
54

Two analyses of costs of agricultural NPS pollution: Transactions costs of expanding nutrient trading to agricultural working lands and Impacts of TCs and differential BMP adoption rates on the cost of reducing agricultural NPS pollution in Virginia

Rees, Gwendolen Jayne 12 June 2015 (has links)
For over 30 years, federal and state governments have been engaged in a collective effort to improve the water quality and living resources in the Chesapeake Bay (CB), focusing particularly on reducing delivered nitrogen and phosphorus loads. However, achievement of water quality objectives remains elusive. In Virginia, agriculture represents the single largest source of nutrient loads to the Chesapeake Bay. Despite aggressive regulatory efforts in other nutrient source sectors, state authorities rely on educational programs and voluntary financial assistance programs to induce landowners to adopt best management practices (BMPs) that reduce agricultural nutrient loads. This study explores two economic aspects of efforts to reduce agricultural nonpoint source (NPS) pollution in the Virginia portion of the CB watershed. Firstly, current and possible future transactions costs associated with specific aspects of agricultural NPS participation in water quality trading (WQT) programs are examined in Chapter 1. A case study approach is used to consider the possible cost consequences of expanding the use of NPS credits from agricultural 'working lands' BMPs in Virginia. Findings indicate that overall transactions costs for nutrient trades involving agricultural NPS in Virginia are currently relatively low, due to the type of activities being credited: simple land conversions. Based on best available evidence, the administrative transactions costs of creating credits on agricultural 'working lands' using management and structural BMPs will be 2 to 5 times more costly on a per project basis than for credits generated from land conversions. Compliance monitoring protocols were found to be a significant driver of costs for credits generated from working agricultural lands. These results suggest an important cost/risk tradeoff between verification cost and compliance certainty for program designers to consider. The second study (Chapter 2) considers the economic cost of meeting pollution reduction targets for the Virginia portion of the CB Watershed. Existing cost models are based on simplifying behavioral assumptions about public transactions costs, conservation adoption rates, and implementation costs of agricultural BMPs. This study builds on the existing literature and uses the estimates of transactions costs from Chapter 1 together with information on producer BMP adoption rates to examine the implications of including transactions costs and differential BMP costs and adoption rates when estimating the minimum costs of achieving specified nutrient reduction goals in Virginia. The paper uses a cost-minimizing mathematical programming approach and models a number of different cost scenarios. Results indicate that inclusion of transactions costs substantially affects estimates of total costs of meeting nutrient reduction goals; on average total costs increased by 44 percent, but ranged between 19 and 81 percent depending on the scenario analyzed. Analysis of the modelled scenarios shows that those BMPs that account for the most implementation costs do not necessarily account for the most transactions costs (and vice versa). This suggests that transactions costs should be acknowledged to vary with the type of practices being implemented, rather than being approximated as either a fixed amount or a fixed proportion of implementation costs. In addition, the analysis highlights the disproportionate costs associated with achieving nutrient reductions via high-cost adopters, and suggests there may be a role for education or extension to assist landholders to lower opportunity costs of participating in conservation. / Master of Science
55

The occurrence and toxicology of heavy metals in Chesapeake Bay waterfowl

Di Giulio, Richard T. January 1982 (has links)
The goals of this study were to elucidate relationships between food habits and tissue accumulations of heavy metals in Chesapeake Bay waterfowl and to determine effects of chronic cadmium and lead ingestion on energy metabolism in waterfowl. Concentrations of cadmium, lead, copper, and zinc were measured in 774 livers, 266 kidneys, and 271 ulnar bones from 15 species of ducks obtained from the Chesapeake Bay region. Liver and kidney concentrations of cadmium were highest among two carnivorous sea duck species, Clangula hyemalis and Melanitta deglandi. In contrast, lead concentrations in three tissues were generally highest in largely herbivorous species, such as Anas platyrhynchos, Anas rubripes, and Anas strepera. Spent shot may be an important source for tissue burdens of lead in these ducks. No marked trends were observed between food habits and tissue concentrations of copper or zinc. Cadmium and lead concentrations were generally higher in benthic macrophytes than in soft tissues of clams collected from several locations in the Bay. These results suggest that the change that has occurred in the food habits of some Chesapeake Bay ducks, most notably Aythya valisineria to diets composed largely of clams rather than aquatic vegetation probably did not increase ingestion of these elements. In experiments conducted with A. platyrhynchos, chronic ingestion of equal dietary concentrations of cadmium and lead resulted in about 15 times greater accumulation of cadmium than lead in livers and kidneys. However, while ulnar bones accumulated lead, cadmium concentrations in bones remained below detection limits. Cadmium ingestion enhanced renal accumulation of copper and zinc, perhaps due to induction of metallothionein by cadmium. In combination with an imposed food restriction, cadmium ingestion appeared to alter some indices of energy metabolism, such as plasma concentrations of free fatty acids and triiodothyronine, at dietary cadmium levels far below those eliciting similar responses in the absence of a food restriction. Those results suggest the importance of considering interactions with other stressors when examining potential effects of environmental contaminants on wild animals. / Ph. D.
56

Spatial variation in fishery exploitation of mature female blue crabs (C. sapidus) in Chesapeake Bay

Corrick, Corey Travis 01 January 2018 (has links)
From 2008 to 2012, the total U.S. commercial landings of blue crabs (Callinectes sapidus Rathbun, 1896) averaged over 173 million lbs. Chesapeake Bay and its tributaries are important contributors to this fishery, providing greater than 30% of national commercial landings annually. In Chesapeake Bay, C. sapidus exhibits a complex life cycle in which mated females migrate to the saline waters of the Bay mouth to spawn. During migration, females can traverse multiple management jurisdictions, complicating effective management of this important fishery. Sustained declines in harvest have led to management strategies focused on protecting the female spawning stock in an attempt to enhance recruitment back into the Bay. This study presents the results of a broad scale mark-recapture study (n=7,072) in 11 Chesapeake Bay subestuaries and one coastal embayment, designed to track female migration and quantify spatial variation in exploitation rates of mature female blue crabs. Tagging was conducted in fall 2014 (September and October), when most females have matured and begin to migrate to the spawning grounds, and in summer 2015 (July), when additional females mature and migrate to the spawning grounds. Approximately 8.1% of tagged females were recaptured within one year of release. Overall, the exploitation rate of the 2015 blue crab spawning stock in Chesapeake Bay was 10.5%; however exploitation varied widely among systems (4.0-28.5%). This estimate is below both the management target and threshold exploitation rates and the population grew in subsequent years, suggesting recruitment overfishing of blue crabs was not occurring in Chesapeake Bay at this time.
57

Maintaining a Nitrogen Cap for Virginia's Potomac River: The Contribution of Alternative Development Patterns

Doley, Todd Michael 05 February 1999 (has links)
The Chesapeake Bay, once one of the worlds most productive estuaries, has been severely impacted by human activity in the water and on the lands around it. Viewed as an ecosystem, the Bay is no longer able to support the variety and abundance of biota that it was historically able to. Several decades of research on the Chesapeake have pointed to human activities as being the principle reason for this decline. Of these detrimental activities, elevated inputs of Nitrogen and Phosphorus to the Bay were singled out as being the greatest cause of water quality deterioration. The state of Virginia is trying to reduce its annual load of Nitrogen, to the Potomac River, to 60% of what the load was estimated to be in 1985. Virginia would like to accomplish this goal at the lowest cost to its citizens. Therefore the state needs to determine the combination of nitrogen control efforts which will achieve the goal at the lowest cost. The state would also like to be able to maintain nitrogen loads at or below this cap level, indefinitely into the future. This study was undertaken with three primary objectives. The first was to project the level of annual nitrogen inputs to the Potomac River, from the state of Virginia, over the next 15 years. The second was to estimate the minimum annual costs necessary to achieve and maintain a 40% reduction in total nitrogen inputs, using the Virginia's estimated 1985 inputs as a baseline. The final objective was to assess the potential cost savings that may result from using one of two alternative development patterns within the rapidly urbanizing Northern Virginia portion of the Potomac Watershed. The first alternative is prohibiting low-density development within the Northern Virginia region, and the second is to restrict all new development to be within 5 miles of an existing urban area. Study results suggest that there has been no significant progress toward meeting the nitrogen reduction goal, due to the increase in population within the watershed, over the past 13 years. To attain the goal in 1998, a minimum of $27 million, above what is currently being spent annually, would be required. Under the current land use trend within Virginia's Potomac Basin, the annual cost for maintaining the goal is estimated to rise to $38 million annually, in 1998 dollars, by the year 2013. This is a 40% increase in cost. If the first alternative development pattern is adhered to over this 15-year period, then the annual cost will be $33 million, for an annual cost saving of approximately $5 million in 2013. The second alternative could achieve similar results if implemented, costing roughly $5 million less in 2013 than the annual cost per year under the current trend. These findings suggest that the use of alternative development patterns can help slow but not prevent the annual cost, of maintaining the cap, from rising. The study indicates that the reason for the continuous rise in annual cost, over this fifteen-year period, is due primarily to an increase in nitrogen loading to the Potomac that will result from the wastewater disposal needs of the growing population within the Basin. Furthermore, the state will eventually exhaust its lower cost options for reducing Nitrogen loadings, and at that point the annual cost for maintaining the Nitrogen Cap will begin to rise exponentially. Under current land use trends this rapid rise in cost is unlikely to occur within the next 15 years, and is more apt to occur sometime within the next 20 to 40 years. Once annual expenditures begin to rise exponentially it is unlikely that the state of Virginia would be able to maintain its 40% reduction goal. / Master of Science
58

The Population Ecology, Molecular Ecology, and Phylogeography of the Diamondback Terrapin (Malaclemys terrapin)

Converse, Paul E. 19 September 2016 (has links)
No description available.
59

Costs of Meeting Water Quality Goals under Climate Change in Urbanizing Watersheds: The Case of Difficult Run, Virginia

Giuffria, Jonathon Michael 28 June 2016 (has links)
Urban environments have been identified as a non-point source contributor of nutrient loadings into watersheds. Interannual surges of nutrient loadings into local water systems are more damaging than mean interannual nutrient loadings. Virginia has outlined the need to reduce urban nutrient loadings. Mean interannual nutrient loadings and interannual nutrient loadings variability are expected to increase under climate change (CC). However, there are few studies that provide a predictive framework for abating nutrient loadings under CC. Thus, there is a lack of information regarding how effective water quality policy will be in the future. Using the Difficult Run watershed in Fairfax County, VA, as a site of study, we used mathematical programming to compare how the costs of abating nutrient loads differed under differing climates in the Mid-Atlantic. We first compared the costs of abating mean interannual nutrient loadings in the watershed based on historical climate conditions to those predicted for CC. We then evaluated how changes in the interannual variability of nutrient loadings for CC affect the costs of meeting watershed goals. We found that abating mean interannual nutrient loadings was substantially costlier for CC relative to meeting the same goals under historical climate conditions. Further, we found that the costs of abating interannual nutrient loadings variability increased under CC relative to meeting the same goals under historical climate. One implication of this study suggests that policy makers seeking to meet water quality goals over time must front-load supplemental BMPs today in order to offset the changes predicted for CC. / Master of Science
60

Cactus Hill, Rubis-Pearsall and Blueberry Hill : one is an accident; two is a coincidence; three is a pattern : predicting "old dirt" in the Nottoway river valley of Southeastern Virginia, USA

Johnson, Michael Farley January 2012 (has links)
This thesis covers more than thirty years of the author's research into the Paleoamerican period of the Middle Atlantic Region of North America, including the last 19+ years of focused work on the Cactus Hill site (44SX202) and replication of the Paleoamerican occupation discovered there. Using a landform and geology based predictive model derived from the Paleoamerican occupation at Cactus Hill, the author directed preliminary archaeological testing in three other areas of the same Nottoway River Valley, where Cactus Hill is located. These areas were the Barr site, located 11 miles (18 km.) downriver from Cactus Hill; the Chub Sandhill Natural Resource Conservation Area, located 19 miles (30 km.) downriver from Cactus Hill; and the Blueberry Hill site (44SX327), located approximately 1,000 feet (300 meters) east of Cactus Hill. The latter two produced OSL dated, pre-Younger-Dryas landforms, as predicted. The Rubis-Pearsall site (44SX360), located in the Chub Sandhill preserve also produced a buried Paleoamerican, Clovis age cultural level confirming the model. In addition to the OSL dates, Blueberry Hill also produced a distinct and apparently discrete activity surface with a possible pre-Clovis age Cactus Hill point at the same depth as the Paleoamerican levels at Cactus Hill and Rubis-Pearsall.

Page generated in 0.0749 seconds