Spelling suggestions: "subject:"chitosane."" "subject:"chitosanen.""
31 |
Propriétés anticorrosives du chitosane et du N-(2-carboxylate)benzoylchitosane de sodium pour la protection du ferDupont, Caroline 13 April 2018 (has links)
La corrosion est un phénomène spontané et inévitable qui engendre de nombreux problèmes ayant de sérieux impacts économiques et environnementaux. Les alliages à base de fer, largement utilisés dans l'industrie, sont particulièrement sensibles aux milieux corrosifs naturels tels les environnements marins. La corrosion induite par l'eau de mer entraîne la dégradation rapide des ouvrages métalliques qui y sont exposés et met conséquemment en péril leur bon fonctionnement. Actuellement, les techniques de protection contre la corrosion qui sont employées pour ralentir la vitesse de corrosion ne sont pas efficaces dans toutes les situations et certaines de ces méthodes ont des conséquences néfastes sur l'environnement (ex : utilisation d'inhibiteurs de corrosion toxiques). Par souci de préservation des écosystèmes naturels, la recherche de solutions écologiques de protection contre la corrosion croît en importance. Le chitosane (CS) est un polymère naturel de glucosamine qui présente des caractéristiques physico-chimiques particulièrement intéressantes dans une perspective d'interactions avec les métaux. Aucune étude jusqu'à ce jour ne s'est intéressée au potentiel du CS pour la protection des métaux soumis aux conditions marines. Le présent travail évalue dans un premier temps l'efficacité d'un dérivé de CS comme inhibiteur de la corrosion du fer. Ainsi, la diminution du courant d'oxydation du fer en présence de N-(2-carboxylate)benzoylchitosane de sodium a démontré la capacité de ce dérivé de CS à diminuer la vitesse de corrosion du métal. Les résultats obtenus se traduisent notamment par une augmentation considérable de la résistance à la corrosion localisée induite par les chlorures. Dans un deuxième temps, des revêtements de CS ont été formés par un processus de déposition électrochimiquement induit. La formation de films de CS uniformes a constitué un défi important dans cette étude et il a été démontré que l'étape de neutralisation du revêtement est cruciale. Différentes techniques d'analyses de surface comme la microscopie électronique à balayage et l'ellipsométrie ont été employées afin de caractériser les films de CS électrogénérés. Enfin, l'évaluation de l'effet d'un revêtement de CS sur un substrat de fer a prouvé qu'il constitue une barrière physique efficace qui empêche les espèces corrosives présentes dans l'eau d'atteindre la surface métallique à protéger.
|
32 |
Développement et caractérisation de films biodégradables à base d'acide polylactique et de chitosaneDabaghi Zadeh, Erfan 08 May 2024 (has links)
Récemment, la protection de l'environnement à travers le développement de matériaux biodégradables est devenue un sujet pour de nouvelles recherches. D'autre part, les polymères biodégradables ont démontré une efficacité raisonnable pour surmonter la restriction des ressources pétrochimiques dans l'avenir. L'objectif principal de cette étude est de développer des films biodégradables à partir de chitosane (CS) et de l'acide polylactique (PLA) comme des biopolymères de base pour les emballages alimentaires. Des mélanges de films biodégradables de CS et de PLA ont été préparés par la technique de synthèse en solution. Malgré les bonnes propriétés du CS et du PLA, telles que la résistance à l'humidité, les propriétés mécaniques élevées du PLA et les propriétés antimicrobiennes du CS, il existe plusieurs limites lorsqu'on mélange ces matériaux dont l'immiscibilité et le manque de ductilité mènent à des films hétérogènes avec une grande sensibilité à l'eau. Néanmoins, l’ajout d’autres composants, tels que le polycaprolactone (PCL) et le polyéthylène glycole (PEG), est fortement approprié pour améliorer respectivement l'adhérence interfaciale du système PLA/CS et sa ductilité. Tous les films développés dans le cadre de ce projet ont été de évalués en termes d’améliorations des propriétés mécaniques, de température de transition vitreuse Tg (pour évaluer la miscibilité entre le CS et le PLA) et de perméabilité à l'oxygène. / Environment protection through the development of biodegradable materials has become a principal subject for novel investigations in recent years. On the other hand, biodegradable polymers have demonstrated a reasonable efficiency to overcome the restriction of petrochemical resources in the future. The main objective of this study is to develop biodegradable films from chitosan (CS) and polylactic acid (PLA) as base bio-polymers for food packaging. Biodegradable films of CS and PLA were prepared by the solution-casting technique. Despite the desirable properties of CS and PLA, such as moisture resistance and high mechanical properties of PLA and antimicrobial properties of chitosan films, several drawbacks in blending these materials were observed. These drawbacks include CS/PLA immiscibility and lack of ductility leading to some remaining particles in the final films and heterogeneous films with high water sensitivity. Nevertheless, the addition of polycaprolactone (PCL) and polyethylene glycol (PEG) is strongly suitable to improve PLA/CS interfacial adhesion and PLA/CS film ductility. All the blend films were evaluated in terms of improvement of their mechanical properties, their glass transition temperature Tg (to evaluate the miscibility between CS and PLA) and their oxygen permeability.
|
33 |
Développement de matrices composites à base de collagène et de chitosane pour la régénération de cartilageMighri, Nabila 12 July 2024 (has links)
Après une perte importante d’un tissu cartilagineux, plusieurs possibilités s’offrent aux chirurgiens pour remplacer cette perte tissulaire. Parmi, cela nous trouvons, les greffes autologues ou allogéniques et l’utilisation de polymères biocompatibles. Sans oublier que jusqu’aujourd’hui, les propriétés et la structure du cartilage natif n’ont pas été entièrement imitées par l’ingénierie tissulaire. Étant donné les limitations des méthodes actuelles, telles que : la pénurie des donneurs, l’immunogénicité des greffons allogéniques, et le manque d’intégration des polymères l’ingénierie tissulaire du cartilage pourrait constituer une excellente alternative aux méthodes actuelles. Nos objectifs pour cette thèse sont (i) de produire une matrice composite constituée de polymères naturels; (ii) d’évaluer les propriétés physicochimiques de ces matrices composites, et (iii) d’évaluer les propriétés biologiques de ces matrices pour la production de tissu cartilagineux. Nous avons réalisé qu’une combinaison des deux biopolymères, le collagène et le chitosane, nous a permis d’obtenir une matrice avec des propriétés mécaniques et biologiques renforcées en comparaison à une matrice de collagène seul. La caractérisation physicochimique de nos matrices nous a permis de mieux comprendre les types de réactions chimiques produites entre les deux polymères et les différents autres constituants de la matrice utilisés pour des fins mécaniques, tel que le glutaraldéhyde, et pour des fins biologique, s tels que l’acide glutamique et la glycine. En second lieu, nos résultats portant sur la caractérisation biologique nous ont permis de confirmer que nos matrices composites produites, ensemencées de chondrocytes, favorisent l’adhésion et la prolifération de ces cellules. Nos résultats démontrent de façon tangible l’efficacité d’une combinaison entre le collagène et le chitosane pour la régénération in vitro de tissus cartilagineux. Ces résultats devront être confirmés in vivo en utilisant un modèle animal afin de confirmer la pertinence des membranes composite à base de collagène et de chitosane pour des applications biomédicales, dont le remplacement du cartilage endommagé. / Given the large number of patients suffering from cartilage damage, with different degrees of severity affecting all ages, a wide range of approaches has been designed. These include autologous or allogeneic grafts, the implementation of polymers, etc. However, each of these cartilage replacement do have significant limitations, such as the scarcity of donors, the risk of infection and disease transmission, the immunogenicity of the polymer implants and their reduced integration with native tissue. To overcome these limitations, tissue engineering cartilage could be an excellent alternative. The objectives of our studies are (i) to produce a natural composite matrix containing collagen and chitosan, (ii) evaluate the physicochemical properties of these composite matrices, and (iii) investigate the biological properties of these matrices for the production of cartilage tissue. Our structural and ultrastructural analyses demonstrated that collagen porous membrane can be coated with chitosan at different concentration leading to the formation of a natural composite matrix. The physicochemical characterization confirmed the chitosan interaction with collagen leading to a mechanically stable matrix that can easily be handled. It is also important to mention that the use of cross-linker such as glutaraldehyde improved the mechanical properties of the composite matrix. These designed composite matrixes were biocompatible allowing cell adhesion and growth. These biological activities were improved when composite matrix was pre-treated with glutamic acid and glycine. Such matrix offered appropriate condition allowing the adhesion and growth of chondrocytes. Overall, we were able to design a composite matrix by combining collagen membrane and chitosan solutions. Although very interesting, our in vitro data should be confirmed by in vivo studies using an animal model, prior to clinical applications.
|
34 |
Design, development, and validation of chitosan-based coating via catechol oxidation for controlled drug releaseVeloso, Felipe Da Silva 20 December 2024 (has links)
Les cathéters veineux centraux (CVC) sont largement utilisés pour administrer des chimiothérapies, des hémodialyses et d'autres traitements. Généralement fabriqués en polydiméthylsiloxane (PDMS), ces dispositifs médicaux présentent un risque intrinsèque d'infection en raison de la formation possible d'un biofilm, augmentant ainsi le risque de complications, également connues sous le nom d'infections sanguines associées aux cathéters centraux (CLABSI). Les revêtements polymères libérant des médicaments constituent une stratégie bien connue pour lutter contre la formation de biofilms. Toutefois, la stabilité du revêtement sur le substrat au fil du temps constitue un défi majeur. Par conséquent, ce travail vise à développer un revêtement à base de chitosane conçu pour avoir une adhérence et une stabilité maximales afin d'assurer une libération soutenue des médicaments et des propriétés antibactériennes au fil du temps. Un revêtement composé de chitosane (CS) comme vecteur de médicament, d'acide caféique (CA) et de sulfate de cuivre (Cu) comme réticulants, et de moxifloxacine (Mox) comme antibiotique, a été déposé par un processus de coulée et de revêtement par immersion sur une surface de PDMS fonctionnalisée. Un facteur crucial pour la stabilité du revêtement est l'environnement dans lequel il sera implanté. À notre connaissance, l'étude de la stabilité du revêtement sous écoulement (c'est-à-dire sous contrainte de cisaillement) et en présence d'un milieu pseudo-physiologique qui imite le plasma humain dans de telles conditions n'a pas encore été abordée dans la littérature. Les résultats ont montré que le chitosane sans la présence de réticulants (formulation de contrôle) n'est pas en mesure d'assurer une libération contrôlée et une activité antibactérienne prolongée contre *E. coli* et *S. aureus*. En revanche, la formulation optimisée a pu démontrer une activité antibactérienne pendant 21 jours, sans toxicité pour les fibroblastes dermiques humains, et a montré une plus grande force d'adhésion que la formulation de contrôle. En comparant la formulation de contrôle à la formulation optimisée, il est évident qu'en optimisant l'enrobage à base de chitosane, sa stabilité dans le temps a également été optimisée par rapport à la formulation de contrôle. Ces résultats encouragent donc l'application de la technologie développée ici pour produire des revêtements antibactériens à base de chitosane pour les CVC en PDMS afin de lutter contre les infections nosocomiales à répétition, ainsi qu'une méthode originale développée pour vérifier la stabilité des revêtements *in vitro*, reproduisant certaines des conditions soumis *in vivo*. / Central venous catheters (CVCs) are largely used to administer chemotherapy, hemodialysis, and other treatments. Mostly made of polydimethylsiloxane (PDMS), these medical devices present an intrinsic risk of infection due to the possible formation of biofilm, thus increasing the risk of complications, also known as Central line-associated bloodstream infection (CLABSI). Drug-releasing polymer coatings are a well-recognized strategy for combating biofilm formation. However, the coating's stability on the substrate throughout time is a major challenge. Therefore, this work aims to develop a chitosan-based coating designed to have maximum adhesion and stability to ensure sustained drug release and antibacterial properties over time. A coating composed of chitosan (CS) as a drug carrier, caffeic acid (CA) and copper sulphate (Cu) as crosslinkers, and moxifloxacin (Mox) as an antibiotic, was deposited through a casting and dip-coating process onto functionalized PDMS surface. A crucial factor for the stability of the coating is the environment in which it will be implanted. As far as we know, the study of coating stability under flow (i.e. shear stress) and in the presence of a pseudo-physiological medium that mimics human plasma under such conditions has not yet been addressed in the literature. The results showed that chitosan without the presence of crosslinkers (control formulation) is not able to provide controlled release and prolonged antibacterial activity against *E. coli* and *S. aureus*. On the other hand, the optimized formulation was able to demonstrate antibacterial activity for up to 21 days, without demonstrating toxicity to human dermal fibroblasts and showed greater adhesion strength than the control formulation. By comparing the control formulation with the optimized formulation, it was evident that the later had increased stability over time. Thus, these results encourage the application of the technology developed here to produce antibacterial coatings based on chitosan for CVCs made of PDMS to control CLABSI, as well as an original method developed for checking the stability of coatings *in vitro*, mimicking some of the conditions reported *in vivo*.
|
35 |
Effets de dérivés de chitosane sur la production de cytokines macrophagiques et adipocytaires dans des modèles murin et aviaireMonges, Alexia January 2006 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
36 |
Immobilisation d’un système lactoperoxydase dans un enrobage de chitosane dans le but de prolonger la conservation des mangues / Immobilization of a lactoperoxidase system in a coating of chitosan to extend the shelf life of mangoesCisse, Mohamed 06 July 2012 (has links)
L'exportation des mangues est limitée par le mûrissement rapide et la prolifération microbienne sur les fruits. Cette thèse propose une nouvelle approche sûre et saine utilisant des molécules d'origine naturelle pour améliorer la conservation post-récolte des mangues et ainsi participer à la préservation de la santé des consommateurs et à une amélioration des potentialités du commerce international de certains pays exportateurs. Ces travaux ont montré que l'immobilisation du système lactoperoxydase dans le film de chitosane appliqué sur l'épiderme des mangues pouvait maintenir la qualité microbiologique et physicochimique des fruits traités. Le couplage Chitosane-Système lactoperoxydase a prolongé la durée de conservation des mangues durant plus de deux semaines sans altérer leurs qualités organoleptiques.Ce travail a permis également de mettre en évidence la synergie entre le système lactoperoxydase et la concentration de chitosane. Un enrobage optimum de 1% de chitosane a permis de fixer le système enzymatique et de maintenir les mangues en bon état sanitaire. La présence d'iode dans le système lactoperoxydase n'agit pas de manière significative sur la conservation des mangues. / The mango export is limited by the rapid ripening and microbial growth on the fruit. This thesis proposes a new approach to safe and healthy using natural molecules to improve post-harvest conservation of mango and thus help preserve the health of consumers and improved the potential of international trade in certain exporting countries. This work shown that the immobilization of the lactoperoxidase in the chitosan film and applied as coating of mangoes could maintain the microbiological and physicochemical quality of fruits. Chitosan-coupling lactoperoxidase system extended the shelf life of mangoes for over two weeks without affecting their organoleptic quality.This work also helped to highlight the synergy between the lactoperoxidase and the concentration of chitosan. An optimum coating made from 1% chitosan allowed to fix the enzyme system and to maintain the mangoes in a good sanitary condition. The presence of iodine in the lactoperoxidase does not act significantly on the conservation of mangoes.
|
37 |
Implant chargé en nanoparticules pour la libération contrôlée et le ciblage lymphatique de nucléotides et d’analogues nucléotidiques / Multi-stage delivery of nucleotides and nucleotide analogs to lymph nodes and leukocytesGiacalone, Giovanna 28 November 2014 (has links)
Les nucléotides naturels et les analogues nucléotidiques présentent des activités pharmacologiques importantes : par exemple, le nucléotide adénosine triphosphate (ATP) présente un intérêt pour le traitement de l'ischémie ou de plaques d'athérosclérose. L'utilisation clinique de ces molécules est cependant limitée en raison de la présence d'un groupe triphosphate, qui est sujet à l'hydrolyse in vivo, et responsable de la forte hydrophilie des molécules, ce qui limite fortement leur capture par les cellules cibles et l'accès à leurs cibles pharmacologiques intracellulaires. Pour surmonter ces limitations et permettre l'administration de nucléotides et d’analogues nucléotidiques, l'utilisation de systèmes de drug delivery comme les nanoparticules pourrait assurer la protection et l'administration ciblée des molécules actives. Cependant, les nanoparticules conçues pour l’administration intraveineuse ne sont pas toujours adaptées au traitement de certaines maladies chroniques. C’est pour cela qu’un implant sous-cutané avec des caractéristiques de libération prolongée peut représenter une alternative valable, tout en étant peu invasif et capable d’atteindre les tissus lymphatiques, cible importante de plusieurs thérapies.Le premier chapitre de cette thèse porte sur la formulation de nanoparticules pour encapsuler l’ATP ou la zidovudine triphosphate (AZT-TP), grâce à la présence du chitosane (CS). Ces nanoparticules sont formées par interactions ioniques entre les charges positives du chitosane et les charges négatives des groupes triphosphates de l’ATP ou de l’AZT-TP. Dans ce travail, les nanoparticules sont caractérisées et leur délivrance cellulaire de l’ATP et de l’AZT-TP est démontrée sur une lignée cellulaire de macrophages. Dans un deuxième temps, la stabilité de ces systèmes a été améliorée afin d'obtenir un meilleur comportement en conditions physiologiques. Cette amélioration de la stabilité a été obtenue par la complexation du fer(III) au chitosane (CS-Fe). Cette stratégie a été appliquée aux nanoparticules de tripolyphosphate (TPP) et d’ATP. Les nanoparticules ont été ensuite testées sur deux lignées de cellules macrophagiques, montrant une internalisation améliorée de l’ATP par rapport aux nanoparticules précédentes. Enfin, les nanoparticules à base de CS-Fe et ATP ont été dispersées dans une solution de PLGA, dans le but de mettre au point un implant à formation in situ. Une fois en contact avec les fluides physiologiques, la suspension prend la forme d’un dépôt solide. Des études de libération in vitro montrent la capacité des systèmes de retenir les nanoparticules à l’intérieur de la matrice et de les libérer de façon progressive pendant 5 jours. Après administration sous-cutanée chez la souris, les implants de PLGA contenant les nanoparticules ont retenu l’ATP au lieu de l’injection jusqu’à 50 heures, comparé à quelques heures pour l’ATP libre et les nanoparticules libres, montrant ainsi leur pertinence comme systèmes pour la libération prolongée de nucléotides. / Natural nucleotides and nucleotide analogs display important pharmacological activities: for example the nucleotide adenosine triphosphate (ATP) could be an interesting molecule for the treatment of ischemia or atherosclerotic plaques. The clinical use of these molecules is however limited due to the presence of a triphosphate group, which is prone to hydrolysis in vivo, and responsible for the high hydrophilicity of the molecules, thereby strongly limiting their uptake by targeted cells and access to their intracellular pharmacological targets. To overcome these limitations and enable the administration of nucleotides and nucleotide analogs, the use of drug delivery systems such as nanoparticles may enable the protection and the targeted delivery of these drugs. Nanoparticles designed for intravenous injections are however not always convenient, e.g. in the case of chronic diseases. Therefore, a subcutaneous implant with sustained release features might represent a valid alternative, which is less invasive and can reach lymphatic tissues (important targets of many therapies). The first chapter of this thesis presents the formulation of nanoparticles to encapsulate ATP as well as zidovudine triphosphate (AZT-TP), thanks to the presence of chitosan (CS). These nanoparticles are formed through ionic interactions between the positive charges of chitosan and the negative charges of the triphosphate groups of ATP or AZT-TP. In this work, nanoparticles are characterized and their cellular delivery of ATP and AZT-TP inside a macrophage cell line is demonstrated. In a second time, the stability of these systems has been improved in order to obtain a better behavior in physiological conditions. This improved stability has been achieved through the complexation of chitosan to iron(III) (CS-Fe). This strategy has been applied to TPP and ATP nanoparticles. These nanoparticles have been tested on two macrophages cell lines showing an improved internalization compared to the previous ones. Finally, CS-Fe/ATP nanoparticles have been dispersed in a PLGA solution in order to develop an in situ forming implant. Once in contact with physiological fluids, the suspension turns into a solid depot. In vitro release studies show the ability of the systems to retain nanoparticles inside the matrix and to gradually release them over 5 days. After subcutaneous administration to mice, PLGA implants containing nanoparticles were able to retain ATP at the injection site for up to 50 hours, as compared to few hours of free ATP or free nanoparticles, showing therefore their relevance as sustained release systems of nucleotides.
|
38 |
Mise en forme et caractérisation de biomatériaux pour la prévention des fistules pancréatiques après pancréatectomies / Characterization of biomaterials for pancreatic fistula preventionCastel, Marion 21 April 2017 (has links)
Dans le cas d'une tumeur pancréatique, la chirurgie d'exérèse est le traitement de première intention lorsqu'elle est possible. Les pancréatectomies sont des actes à haut risque, entraînant un taux de morbidité de 50%. L'une des complications les plus graves est l'apparition de fistules pancréatiques (FP) qui surviennent dans 15 à 20 % des cas, pour lesquelles il n'existe aucune solution de prévention. Cette thèse porte sur l'élaboration d'un biomatériau pour la prévention des FP. Le cahier des charges, défini avec l'équipe chirurgicale, nous a orienté vers un dispositif médical sous forme de pansement absorbant, présentant des propriétés mécaniques adaptées, ainsi qu'une résistance aux enzymes pancréatiques serait intéressant. Un biomatériau constitué de deux couches a été imaginé : 1) une matrice absorbante constituée d'un complexe polyélectrolyte (PEC) sous forme de film, 2) une couche supérieure imperméable permettant de limiter la diffusion des enzymes pancréatiques dans le milieu péritonéal ; afin de répondre aux spécifications demandées par l'équipe médicale. La première partie de ce travail a porté sur l'optimisation de la mise en forme de la matrice sous forme de film à partir de PEC d'alginate (ALG) et de chitosane (CHI) présentant différents ratio de polymères (ALG-CHI 50/50 et ALG-CHI 63/37). L'influence de la technique d'homogénéisation des PEC, sous ultra-turrax (UT) ou au Stephan (ST) a été étudiée sur les propriétés physico-chimiques des films obtenus. Les propriétés de biodégradation, de gonflement et de cytotoxicité sont principalement influencées par le ratio des polymères. En revanche, leurs structure et propriétés mécaniques sont essentiellement influencées par la technique d'homogénéisation utilisée lors de l'élaboration du PEC. Au vu de ces résultats, le choix de la matrice au contact de l'anastomose ou de la tranche pancréatique s'est arrêté sur le PEC ALG-CHI 63/37 UT. La deuxième partie de cette thèse a été consacrée à l'incorporation d'une couche imperméable à la surface supérieure du film. Deux polymères ont été testés : l'acide polylactique (PLA) et le polycaprolactone (PCL). Ils ont été incorporés après fonctionnalisation de la surface du film. La matrice ALG-CHI 63/37 UT recouverte de PLA présente une surface plus hydrophobe, des propriétés mécaniques adaptées, une bonne résistance aux enzymes pancréatiques tout en possédant des propriétés de gonflement intéressantes. Le biomatériau ainsi obtenu est un bon candidat qui répond au cahier des charges d'un pansement indiqué pour la prévention des fistules pancréatiques. / Resection surgery is the first-line treatment indicated for pancreatic tumor. The morbidity of this surgery is high with a complication rate around 50%. One of the most serious complications is the occurrence of pancreatic fistula (PF), which occurs in 15-20% of cases. To date, no biomaterial available on the market is indicated for the prevention of the onset of PF following pancreatectomy. This project focuses on the development of a biomaterial for the prevention of PF. Specifications identified by the surgical team oriented us to ward an absorbent dressing with sufficient mechanical properties and pancreatic enzymes resistance. A biomaterial made up of two layers was designed: 1) an absorbent matrix, in the form of a film, constituted by a polyelectrolyte complex (PEC), 2) an impermeable backing layer expected to limit the diffusion of the pancreatic enzymes into the peritoneal medium; to meet surgeons' specifications. The first part of this work focused on the optimization of the preparation of the matrix, composed of alginate (ALG) and chitosan (CHI) PECs films with different polymer ratios (ALG-CHI 50/50and ALG-CHI 63/37). The influence of the technique of homogenization of PEC, ultra-turrax (UT) or Stephan (ST) was studied on the physicochemical properties of the films. Biodegradation, swelling and cytotoxicity were shown to be mainly influenced by the ratio of polymers used. On the other hand, structure and mechanical properties are mainly influenced by the homogenization technique. With these results, the choice of the matrix to pancreatic application was set as the PEC ALG-CHI 63/37 UT. The second part of the present work was devoted to the incorporation of an impermeable backing layer on the upper film surface. Two polymers were evaluated: polylactic acid (PLA) and polycaprolactone (PCL). They were incorporated after the functionalization of the film surface. The PLA-coated ALG-CHI 63/37 UT matrix led to more hydrophobic surfaces, as well as adaptated mechanical properties and resistance to pancreatic enzymes with interesting swelling properties. The obtained biomaterial is a promising candidate responding to the specifications for a dressing indicated for the prevention of PF.
|
39 |
Caractérisation et comparaison des propriétés immunostimulantes de nanoparticules biodégradables de poly(acide lactique) et de chitosane après adsorption de TLR ligands ou d’antigènes du VIH1 / Characterization and comparison of the immunostimulatory properties of biodegradable poly(lactic acid) and chitosan nanoparticles after TLR ligands or HIV-1antigens adsorptionPibre-Weber, Caroline 10 December 2010 (has links)
Les vecteurs nanoparticulaires comme systèmes de relargage contrôlé pour des applications vaccinales font l’objet d’intenses recherches, notamment dans le domaine du VIH1. Une approche novatrice consiste à co-administrer des molécules immuno-stimulatrices avec les antigènes d’intérêt, afin d’amplifier le recrutement et l’activation des cellules dendritiques (DCs). Un tel vecteur vaccinal stimulerait l’intensité de la réponse immunitaire et une immunité au niveau des muqueuses vaginales et anales pourrait être obtenue après vaccination. Des nanoparticules de poly(acide lactique) (NP-PLA) ou de chitosane/sulfate de dextrane (NP-CSD) ont été utilisées comme véhicules et adjuvants de protéines du VIH1, gp140 et p24. Le poly(I:C), ligand de TLR3 est la molécule immuno-stimulatrice retenue pour ses propriétés adjuvantes. Les NP-PLA et NP-CSD présentent un potentiel équivalent pour l’adsorption de protéines. Par contre, si les NP-CSD permettent l'adsorption du poly(I:C) (95%), elle est moins reproductible sur les NP-PLA. Pour chaque formulation, la capacité à induire in vitro la maturation des DCs a été évaluée en suivant les marqueurs CD25, CD80, CD83, par cytométrie en flux. L’adsorption de poly(I:C) sur les NP-PLA ou les NP-CSD amplifie les capacités de maturation de ces nanoparticules, un effet synergique étant observé avec les NP-CSD. Nos travaux montrent que la co-adsorption d’un TLR ligand, avec des antigènes protéiques du VIH sur des nanoparticules biodégradables, est possible et confère à la formulation vaccinale un effet immuno-stimulant in vitro. In vivo, les formulations vaccinales contenant du poly(I:C) induisent de très forts taux d’anticorps sériques chez la souris. / Use of nanoparticulate vectors in vaccination as controlled release systems based on biodegradable polymers has been widely studied, particularly for HIV vaccine research. An innovative approach is to co-administer antigens of interest with immuno-stimulatory molecules to amplify the recruitment and activation of dendritic cells (DCs). Such a vaccine candidate could boost the intensity of the immune response, and mucosal immunity in vaginal and anal secretions could be obtained after vaccination.We used nanoparticles of poly(lactic acid) (NP-PLA) or chitosan / dextran sulfate (NP-CSD), as vehicles and adjuvants for HIV-1 proteins, gp140 and p24. Poly (I:C), TLR3 ligand molecule, is the immuno-stimulatory molecule chosen for its adjuvant properties. The NP-PLA and NP-CSD have shown their great potential as carriers of proteins. By cons, if NP-CSD allows the adsorption of poly(I:C) with a yield of 95%, the adsorption is less reproducible on NP-PLA. For each formulation, the ability to induce in vitro maturation of DCs was evaluated by following the marker CD25, CD80, CD83, by flow cytometry. Adsorption of poly(I:C) on the NP-PLA or the NP-CSD amplifies the maturation abilities of particles and has a synergistic effect with the NP-CSD.Our work shows that co-adsorption of a TLR ligand with HIV protein antigens onto biodegradable nanoparticles is possible and gives an immuno-stimulant effect to the vaccine formulation in vitro. In vivo, vaccine formulations containing poly(I:C) induce very high levels of serum antibodies in mice.
|
40 |
Composite chitosane-phosphate de calcium : synthèse par atomisation séchage et caractérisation structurale / Composite chitosan-calcium phosphate : spray drying synthesis and structural characterizationLe Grill, Sylvain 29 January 2018 (has links)
Ce mémoire porte sur l'élaboration et la caractérisation d'un matériau composite chitosane/phosphate de calcium destiné à une utilisation dans le domaine de la substitution osseuse. Le procédé d'atomisation-séchage a été choisi pour élaborer ce composite sous forme d'une poudre susceptible d'être transformée en revêtement ou objet 3D. Une étude préliminaire a permis d'appréhender les mécanismes de synthèse du phosphate de calcium, la phase minérale, par atomisation-séchage. Une suspension de particules d'hydroxyapatite stœchiométrique ou d'apatite biomimétique dispersées dans une solution acide mène systématiquement à l'apparition d'une phase amorphe. La proportion de cette phase amorphe dans la poudre atomisée-séchée est dépendante de la taille et de la cristallinité du matériau d'origine. L'atomisation séchage d'une solution acide contenant les ions précurseurs de calcium et phosphate mène à la formation d'une phase principalement amorphe. Cette poudre a pu être décrite à différentes échelles : à une échelle de l'ordre du nanomètre apparaissent des clusters, à une échelle de l'ordre de la centaine de nanomètres des agrégats sphériques de clusters organisés en chapelet tortueux et imbriqués sont identifiés et enfin à une échelle micrométrique des agglomérats de nanoparticules ont été mises en évidence. Le phosphate de calcium ainsi synthétisé possède un rapport molaire Ca/P proche de 1.3. Au-delà de ce rapport dans la solution à atomiser, de l'acétate de calcium (utilisé ici comme précurseur) recristallise dans la poudre. Pour élaborer la poudre composite, le polymère a été solubilisé et ajouté d'abord dans une suspension acide d'hydroxyapatite avant atomisation. Cette première stratégie mène à la formation d'un composite qui présente de fortes inhomogénéités de répartition des phases organiques et minérales. Pour limiter ce problème lié à la distribution de tailles de grains de la phase minérale, une seconde stratégie a été développée. Une solution de polymère contenant des précurseurs de phosphate de calcium a été préparée pour favoriser l'association à l'échelle nanométrique des deux phases. Après atomisation-séchage, un matériau composite présentant une très bonne dispersion de la phase minérale dans la matrice organique est synthétisé. La structuration de la phase minérale est modifiée par la présence du polymère. Cette modification se traduit par une diminution de la fraction volumique des clusters et, à l'échelle supérieure, la phase minérale n'est plus présente sous forme de chapelet mais en particules sphériques isolées. Par ailleurs, une interaction chimique est envisagée en raison des liaisons de type hydrogène, ioniques ou de coordinations possibles entre les deux phases. La présence du polymère inhibe également la formation de l'acétate de calcium cristallin en favorisant la formation d'un sel d'acétate de chitosane. Deux techniques de mises en forme ont été étudiées (MAPLE, pour l'élaboration de revêtements minces et l'impression 3D de pâte pour l'obtention d'objet massif) et ont permis de mettre en avant le potentiel de transformation de la poudre préparée par atomisation séchage. Les études biologiques faites sur le revêtement ont de plus permis de démontrer les propriétés antibactériennes du matériau utilisé. / This thesis deals with the development and characterization of a chitosan/calcium phosphate composite material for use in the field of bone substitution. The spray-drying method was chosen to develop this composite in the form of a powder that could be transformed into a coating or 3D object. A preliminary study made it possible to understand the mechanisms of synthesis of calcium phosphate, the mineral phase, by spray-drying. A suspension of stoichiometric hydroxyapatite particles or biomimetic apatite dispersed in an acidic solution systematically leads to the appearance of an amorphous phase. The proportion of this amorphous phase in the spray-dried powder is dependent on the size and crystallinity of the original material. The spray drying of an acidic solution containing the precursor ions of calcium and phosphate leads to the formation of a mainly amorphous phase. This powder could be described at different scales: on a scale of about one nanometer appear clusters, on a scale of about one hundred nanometers spherical aggregates of clusters organized into tortuous and nested chaplets are identified and finally on a micrometric scale, agglomerates of nanoparticles were highlighted. The calcium phosphate thus synthesized has a molar ratio Ca/P close to 1.3. Beyond this ratio in the solution to be atomized, calcium acetate (used here as a precursor) recrystallizes in the powder. To develop the composite powder, the polymer was solubilized and added first into an acid suspension of hydroxyapatite before atomization. This first strategy leads to the formation of a composite that has strong in homogeneities in the distribution of organic and inorganic phases. To limit this problem related to the grain size distribution of the mineral phase, a second strategy has been developed. A polymer solution containing calcium phosphate precursors has been prepared to promote nanoscale association of the two phases. After spray-drying, a composite material having a very good dispersion of the mineral phase in the organic matrix is synthesized. The structuring of the mineral phase is modified by the presence of the polymer. This modification results in a reduction of the volume fraction of the clusters and, on the larger scale, the mineral phase is no longer present in the form of a string but in isolated spherical particles. Moreover, a chemical interaction is envisaged because of the hydrogen, ionic or possible coordination bonds between the two phases. The presence of the polymer also inhibits the formation of crystalline calcium acetate by promoting the formation of a salt of chitosan acetate. Two shaping techniques were studied (MAPLE, for the elaboration of thin coatings and the 3D printing of dough for obtaining massive objects) and made it possible to highlight the transformation potential of the prepared powder by spray drying. The biological studies made on the coating have also demonstrated the antibacterial properties of the material used.
|
Page generated in 0.0368 seconds